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A spatio‑temporal analysis of fire 
occurrence patterns in the Brazilian 
Amazon
Fernanda Valente 1,2 & Márcio Laurini 1,2*

Wildfires in the Amazon significantly impact the forest structure and carbon cycle. Understanding 
the patterns of fire occurrence is crucial for effective management. A novel spatio‑temporal point 
process framework was used to analyze changes in fire occurrence patterns in the Brazilian Amazon. 
A dynamic representation of a Log Gaussian Cox process was used to model the intensity function, 
which was decomposed into trend, seasonality, cycles, covariates, and spatial effects. The results 
show a marked decrease in long‑term fire occurrence movements between the start of the sample 
and 2012, followed by an increase until the end of the sample, attributed to governance measures 
and market mechanisms. Spatial variability of fire occurrence rates in the Brazilian Amazon was 
successfully captured, with regions having more dry seasons experiencing higher fire occurrence rates. 
This analysis provides valuable insights into fire occurrence patterns in the Amazon region and the 
factors driving them.

The Amazon biome is widely recognized as a significant global asset due to its extraordinary biodiversity, encom-
passing more than half of the world’s rainforests and supporting a quarter of all terrestrial  species1. Moreover, 
the Amazon rainforest plays a vital role in mitigating global warming by serving as a carbon reservoir through 
carbon storage in biomass and  soils2. Furthermore, the evaporation and precipitation processes in the Amazonia 
region have far-reaching implications for the global atmospheric circulation, influencing climate patterns not 
only in South America but also across the Northern  Hemisphere3,4. While the Amazon rainforest spans multiple 
countries, approximately 60% of the Amazon Basin falls within Brazil, with the administrative region known as 
Legal Amazon covering nine Brazilian states, accounting for 61% of the Brazil national territory.

Fire occurrences, stemming from both natural and human activities, are significant disturbances in the 
Amazon region, impacting atmospheric  composition5,6, forest structure and  composition7, and the carbon cycle. 
Generally, fire incidence in the Amazon rainforest is influenced by land use, land cover, and climate patterns. 
Notably, the majority of changes in land cover and human activities are concentrated in the southern and eastern 
areas of the Brazilian Amazon region, often referred to as the “arc of deforestation”  by8. The expansion of roads 
and agriculture in the Legal Amazon began in the early 1970s with the construction of the Transamazon Highway, 
resulting in high rates of deforestation. For instance, between 1980 and 1990, deforestation rates in the Legal 
Amazon substantially increased, leading to the clearance of approximately 225,000 km2 of forest. Concurrently, 
the length of paved roads increased by over 100%, while unpaved roads saw a growth of approximately 460%9.

From an economic perspective, fire incidents in the Amazon region incur various costs, with both private 
and social consequences. In rural areas, the primary losses occur when fires get out of control, spreading to pas-
tures and forested areas. Additionally, fire-related losses can have wider social impacts, including the release of 
carbon into the atmosphere, which affects global climate patterns and leads to adverse health outcomes. These 
consequences impose direct and indirect costs on society, such as medical expenses, loss of labor, and reduced 
 utility10,11.

There are various factors that can influence the occurrence patterns of fires in the Amazon region. Previ-
ous studies have indicated the impact of dry conditions on the risk of forest  fires12,13, as well as the effects of 
deforestation and fragmentation on the regional climate. These effects include a significant increase in mean 
surface temperature and a decrease in annual evapotranspiration and precipitation, which can further elevate 
the risk of  fires14,15. Agricultural expansion has also been identified as a contributing factor to changes in forest 
fire  patterns16, as fires are commonly used by Brazilian farmers as a cost-effective method to expand agricultural 
frontiers and maintain and rejuvenate pastures. Additionally, climate change, including shifts in circulation 
patterns and increased anomalies like El Niño events, exacerbates the occurrence of extreme dry seasons in the 
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Amazonia  region17–19, which alters vegetation structure and potentially transforms the forest from being highly 
resistant to fire ignition to extensively  flammable20, ultimately leading to an increase in future burning frequency. 
Moreover, there is evidence to suggest that forest fires create a positive feedback loop in terms of fire susceptibil-
ity, fuel loading, and fire intensity, making recurrent fires more likely and  severe21,22.

One approach to assess changes in climate-related events, such as fire occurrence, is to estimate permanent 
and periodic  components23–25, using statistical tools to decompose the observed temporal variability into trend, 
seasonal, and cyclical components. However, existing methods used for extracting trends, seasonality, and cycli-
cal components face certain challenges when it comes to performing inference procedures on climate-related 
issues. Firstly, these models are not well adapted to the dimensionality of the data sources commonly used in 
 climatology26, and they do not adequately account for the spatial heterogeneity of climate  effects25. An alternative 
approach to address these issues is to combine elements of structural time series decomposition with spatio-
temporal models that incorporate continuous spatial random effects. This approach can be seen as a process of 
decomposing geostatistical time series into a combination of trend, seasonal, and cyclical components, as well 
as the effects of additional  covariates25,27,28.

The objective of this study is to analyze changes in the occurrence patterns of fires in the Legal Amazon and 
the Amazon biome within the framework of spatio-temporal point processes. To achieve this, we propose a 
methodology that extends the trend-cycle decomposition in spatio-temporal models to spatio-temporal point 
pattern data. Specifically, we suggest using a dynamic representation of a Log Gaussian Cox process (LGCP), 
where the intensity function is modeled by decomposing the components into trends, seasonality, cycles, covari-
ates, and spatial  effects25,27,28. This formulation is valuable for identifying potential changes in the occurrence 
intensity over time, such as permanent changes in fire occurrence, and capturing seasonal and cyclical effects.

The Log Gaussian Cox process (LGCP) is a specific instance of the Cox process, where the log-intensity 
function follows a Gaussian random field. However, due to the stochastic nature of the LGCP, fitting this model 
can be computationally  demanding29. To address this challenge and achieve efficient estimation, we employ the 
stochastic partial differential equation (SPDE)  approach30 to transform the initial Gaussian random field (GRF) 
into a Gaussian Markov Random Field (GMRF), which is characterized by sparse matrices. Additionally, the 
resulting Bayesian hierarchical model is compatible with the integrated nested Laplace approximations (INLA) 
 framework31, which further enhances computational efficiency.

In this study, we present the analysis results of fire occurrence data in the Legal Amazon and the Amazon 
biome, spanning from July 2002 to December 2022. Our database comprises daily fire reports obtained from the 
Moderate-Resolution Imaging Spectroradiometer (MODIS), including information such as spatial coordinates 
and temporal instances of fire events. Furthermore, we incorporate explanatory variables to account for the main 
fixed effects related to climatic conditions and soil usage. Our findings demonstrate a distinct long-term trend 
in fire occurrence, with a notable decline from the beginning of the dataset until 2012, followed by a subsequent 
increase that persists until the end of the observation period. These patterns could be attributed to governance 
interventions and market mechanisms. Moreover, our model effectively captures the spatial variations within the 
Legal Amazon, particularly in regions classified as wet tropical (Am), characterized by a dry season occurring 
between August and November (third and fourth quarters), as well as tropical regions with a dry season (Aw). 
Conversely, in the western Amazon, where the climate is predominantly tropical without a dry season (Af), the 
variability is relatively low.

The structure of our paper is as follows: in “Methodology and data”, we introduce the proposed methodology 
and describe the data used. “Results presents the obtained results, while “Discussion” discusses and interprets 
these findings. Finally, we provide our concluding remarks in “Conclusion”, and additional results are presented 
in the supplement of the article.

Methodology and data
Methodology. Among models for the spatial point process, the Poisson process is considered the most 
fundamental  structure32. However, its application is limited due to its simplistic nature, even when assuming 
a non-homogeneous distribution in space through a function of deterministic  intensity32. The limitations are 
associated with the absence of possible sources of uncertainty and the conditional independence property of 
the Poisson process. A related, yet more flexible structure is the Log Gaussian Cox process (LGCP), which is a 
hierarchical model where the process is assumed to be Poisson conditioned on the intensity function at the first 
level, and the log of the intensity function is assumed to follow a Gaussian field at the second  level32.

Fitting the LGCP model poses a computational challenge due to its doubly-stochastic property. In the Bayesian 
framework, the conditional autoregressive approach provides an alternative for performing inference procedures 
and can be fitted using the Integrated Nested Laplace Approximation (INLA)33. However, this approach is based 
on regular lattices over the observation  window29, which may be highly inefficient as it requires constructing a 
fine grid. For spatial models that combine a Gaussian random field (GRF) with a Matérn correlation structure, 
the stochastic partial differential equations (SPDE)30,34 approach offers a solution to the inefficiency problem 
in estimation under the INLA method. The key idea is to leverage the fact that a GRF with Matérn covariance 
function is a solution to a SPDE, and the SPDE representation, combined with a basis representation, is used to 
construct a discrete approximation of the continuous field over the vertices of a two-dimensional mesh cover-
ing the spatial  domain29. In other words, the SPDE approach aims to approximate the initial Gaussian field as a 
Gaussian Markov random field, providing the advantage of computationally efficient methods due to the sparse 
matrix representation of GMRFs.

In this paper, we use a spatio-temporal representation of spatial point processes with stochastic intensity by 
decomposing the intensity function into components that vary both in time and space. Specifically, we adopt an 
LGCP structure where the intensity function is decomposed into trend, seasonal, and cyclical components, along 
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with spatial random  effects25. This decomposition enables us to identify permanent changes, as well as cyclical and 
seasonal effects. To perform inference procedures, we employ the SPDE approach, allowing us to utilize Bayes-
ian inference methods based on INLA. Our implementation follows the general structure proposed in Valente 
et al.28, which uses a basic version of the model without the inclusion of covariates to analyze spatio-temporal 
patterns of fires in Australia, and thus our formulation can be interpreted as a generalization  of28. We provide a 
brief description of the SPDE approach, and further details can be found in Lindgren et al.30 and Simpson et al.29.

Spatio-temporal data can be represented as realizations of a stochastic process (a random field) indexed by 
both space and time dimensions.

where D is a subset of R2 , T is a subset of R , s encodes a spatial coordinate and t  denotes a time index. With this 
formulations, we represent a spatio-temporal LGCP as

where Y(s, t) is the counting of fire occurrences in a location s and in time t, e(s, t) is the exposure offset for the 
region s, z(s, t) is a set of observed covariates in the location s and time period t  , and ξ(s, t) are the spatial random 
effects, which follow a spatially continuous Gaussian process ω(s, t) given by

where C(h) is a covariance function of the Matérn class

where h = s − s′ is the Euclidean distance between locations s and s′ , κ > 0 is a spatial scale parameter, ν > 0 
is parameter controlling the smoothness of the process and Kν is the modified Bessel function. The marginal 
variance σ 2 is obtained as:

with τ being a scale parameter and d is the spatial dimension. Additionally, we use a reparameterization in terms 
of log τ and log κ for the covariance  function30:

and ρ = (8ν)1/2

κ
 . This representation is advantageous since, given ν , it is necessary to estimate only two parameters.

Assuming a bounded region � ∈ R
2 , it  follows29 that the likelihood for an LGCP associated with data 

Y = {si ∈ � : i = 1, . . . , n; t = 1, . . . ,T} is

Due to the doubly-stochastic property of the intensity function, the likelihood in (7) is analytically intractable, 
as discussed  by29. Since the term ω(s, t) corresponds to a GF with Matérn covariance, Simpson et al.29 shows 
that it is possible to adopt SPDE formulation to approximate the GF with GMRF. Using the fact that a GF x(s) 
with the Matérn covariance function is equivalent to the stationary solution to the linear fractional  SPDE30,34:

where � =
∑d

i=1
∂2

∂s2i
 is the Laplacian operator and W(s) is a spatial white noise. Therefore, to find a GMRF 

approximation of a GF, it is necessary to find the stochastic weak solution of a SPDE, which can be constructed 
through finite method elements (FEM)30. Using this property, the approximated SPDE solution is

where n is the number of vertices of the triangulation, {wj}
n
j=1 are the weights with Gaussian distribution and 

{ϕj}
n
j=1 are the basis functions defined for each node on the mesh, following the definitions used  by30. To sum-

marize, the concept involves computing the weights {wj} that define the field values at the vertices, while the 

(1)Y(s, t) = {y(s, t) | (s, t) ∈ D × T ∈ R
2 × R}

(2)
Y(s, t) = Poisson(e(s, t)exp(�(s, t)),

�(s, t) = z(s, t)β + ξ(s, t)

ξ(s, t) = �ξ(s, t − 1)+ ω(s, t)

(3)Cov(ω(s, t)ω(s
′, t′)) =

{

0 if t �= t ′

σ 2C(h) if t = t ′
for s �= s′

(4)C(h) =
21−ν

Ŵ(ν)
(κh)νKν(κh)

(5)σ 2 =
Ŵ(ν)

4πκ2ντ 2Ŵ(ν + d
2 )

(6)
log τ =

1

2
log

(

Ŵ(ν)

Ŵ(α)(4π)d/2

)

− log σ − ν log ρ

log κ =
log(8ν)

2
− log ρ

(7)π(Y | �) = exp

(

| � | −

∫

�

�(s, t)ds

) T
∏

t=1

nt
∏

i=1

�(si , t).

(8)(κ −�)α/2x(s) = W(s), s ∈ R
d , α = ν + d/2, κ > 0, ν > 0

(9)ω(s, t) ≈ ω̃(s, t) =

n
∑

j=1

wjϕj(s, t)
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values within the triangles are determined through linear  interpolation30. In this approach, the basis functions 
are selected as piecewise linear functions within each triangle.

The stochastic weak solution of (8) is found by imposing

where {φi(s), i = 1, . . . ,m} are test functions and “ d= ” denotes equality in distribution. Replacing (9) in (11) 
gives us

for i = 1, . . . ,m , and m is the number of test functions. The finite dimensional solution is the distribution 
for the Gaussian weights in Eq. (9) that fulfils (12) for a certain set of test functions, with m = n . When 
φk = (κ2 = �)1/2ϕk for α = 1 and φk = ϕk for α = 2 , these two approximations are denoted as least squares 
and Galerkin solutions, respectively. Assuming α = 2 and φk = ϕk yields

Define the n× n matrices, C and G as

then a weak solution to (8) is given by (9), where

and the precision of the weights, w, is

Although Gij and Cij are sparse matrices, C−1 is dense. The solution is to replace Cij = �ϕi ,ϕj� by the diagonal 
matrix Cii = �ϕi , 1� , that yields a Markov approximation. Therefore, w is a Gaussian Markov Random Field with 
precision (16).

By replacing the GF ω(s, t) with the GMRF approximation ω̃(s, t) in Eq. (2), and approximating the integral 
in Eq. (7) using a quadrature rule, the resulting approximate likelihood consists of (n+ nt)T independent Pois-
son random variables, where n is the number of vertices and nt is the number of observed point  processes29. By 
obtaining the LGCP likelihood approximation, it is possible to perform inference procedures through the INLA 
algorithm, which provides accurate and efficient approximations for Bayesian hierarchical models that can be 
represented as latent Gaussian models. For details about the INLA method, refer  to31.

The dynamic formulation proposed in this paper is a generalization of the formulation given in Eq. (2). In 
this case, we include the components µt and st as follows:

where µt is the long term (permanent) trend modeled as a second-order random walk (RW2), also known as 
the local-trend model. The st represents the seasonal effects, which is based on a seasonal autoregressive model. 
The ct is a cycle component represented by a second-order autoregressive process with possible complex roots, 
which allows to capture cyclic patterns if the roots are in the complex region of the  plane25. The ηµ , ηc and ηs are 
independent innovations with ηµ ∼ N(0, σ 2

ηµ
) , ηc ∼ N(0, σ 2

ηc
) and ηs ∼ N(0, σ 2

ηs
) . In all estimation procedures, 

we use default priors for the SPDE model in the R-INLA package implementation, which is available upon 
request from the authors.

Data. In this paper, we use daily data of fire occurrence in the Legal Amazon and Amazon biome from 
MODIS Thermal Anomalies/Fires between July 2002 and December 2022, which provides information such as 
fire occurrences (day/night), fire location, the logical criteria for the fire selection, and detection confidence. The 
Brazilian Legal Amazon and the Brazilian Amazon Biome are related but distinct concepts. The Brazilian Legal 
Amazon is a region defined by Brazilian law, comprising nine states: Acre, Amapá, Amazonas, Pará, Rondônia, 
Roraima, Mato Grosso, Tocantins, and parts of Maranhão. This region covers approximately 59% of Brazil’s total 
land area and is characterized by a large forested area, including the Amazon rainforest. On the other hand, the 
Brazilian Amazon Biome is a large tropical forest that covers most of the Amazon Basin in South America. The 

(10)ϕl(s, t) =

{

1 at vertex l
0 elsewhere

(11){�φ, (κ2 −�)α/2ω�}�
d
= {�φ,W�}�,

(12){�φi , (κ
2 −�)α/2ϕj�}�w

d
= {�φi ,W�}�,

(13)
(

κ2{�ϕi ,ϕj�} + {�ϕi ,−�ϕj�}
)

w
d
= {�ϕi ,W�}.

(14)
Cij = �ϕi ,ϕj�

Gij = �∇ϕi ,∇ϕj�,

(15)(κ2C + G)w ∼ N(0,C)

(16)Qα=2 = (κ2C + G)TC−1(κ2C + G).

(17)

Y(s, t) = Poisson(e(s, t)exp(�(s, t)),

�(s, t) = µt + st + z(s, t)β + ξ(s, t)

�2µt = µt − 2µt+1 + µt+2

st = st−4 + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(s, t) = �ξ(s, t − 1)+ ω(s, t)
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Brazilian Amazon Biome includes not only the Brazilian Legal Amazon but also other regions in Brazil that are 
part of the biome. The Brazilian Legal Amazon is a political-administrative region defined by Brazilian law, while 
the Brazilian Amazon Biome is an ecological and biogeographic region defined by its natural characteristics.

In order to provide better interpretations of the results, we use a quarterly aggregation of the daily data. In 
addition, from the computational aspect, the use of a very high frequency could lead to numerical problems in 
the estimation and inference processes since the dimension of the spatio-temporal covariance matrix is given 
by the Kronecker product between the time and spatial dimensions. We present here the results for the Legal 
Amazon, and the results for the Amazon Biome are presented in the next section.

To illustrate, Fig. 1 provides the number of fire events over time in the Legal Amazon, while Fig. 2 shows a 
graphical distribution of the fires over time and space. From July to October 2005 large areas of the Amazon 
region experienced one of the strongest drought of the past 100  years19. The event in 2005 was driven by elevated 
tropical North Atlantic sea surface temperatures associated with a weaker cold anomaly in the South  Atlantic19,35, 
and caused intense forest fire. After the peak in 2005, the fire occurrence in the Legal Amazon decreased until 
2012, whereas from 2013 to 2022 forest fires increased (see Fig. 1). The spatial distribution of fire occurrence 
shows that forest fires are more concentrated in the region called “arc of deforestation”, an area that extends from 
Maranhão to Acre, but with a pattern of increasing toward central areas. Additionally, it is possible to note that 
most of the fire events occur during the third and fourth quarter, the dry season (May–October).

Since our data base includes fire occurrence of different causes, such as human sources (deliberately or acci-
dentally), and natural causes, it is important to include explanatory variables in the analysis to control the main 
fixed effects related to climatic conditions and to control for possible use of the soil in agricultural and livestock 
activities. Thus, to reach our goal, we include explanatory variables, as the Köppen climate Classification, which 
classifies the climate in a certain region by types (see Table 1 in Supplementary Material) that are characterized 
by two or three characters, where the first indicate the climate zone defined by the temperature and rainfall, the 
second is defined by the rainfall distribution, and the third considers the sea seasonal temperature  variation36. 
According to Köppen Classification, the climate in the Legal Amazon is mostly wet tropical (Am) in the cen-
tral areas, tropical with dry winter (Aw) in the Southeastern Amazon and tropical without dry season (Af) in 
Western Amazon.

We also include MapBiomas Collection 7 for Amazon that contains annual land use and land cover maps 
(LULC), that classifies the Amazon Biome into 7 different classes of land cover/land use including forest forma-
tion, savanna formation, wetland, grassland formation, pasture, agriculture, other non-vegetated area, non-
observed, and water bodies (Available at https:// mapbi omas. org/).

Evidence of intentional fire can be seen through the proximity of fire outbreaks and highways, as proximity to 
highways implies human accessibility and lower transportation costs for agricultural and livestock production. 
Therefore, as explanatory variable, we also include the distance of fire occurrence from federal and state highways. 
The data base containing the location of federal and state highways is provided by Departamento Nacional de 
Infraestrutura de Transportes (DNIT) and Empresa de Planejamento e Logística (EPL).

Lastly, we include rainfall and maximum temperature information which were constructed using the time 
series of the monitoring stations provided by Agência Nacional de Águas and Instituto Nacional de Meteorologia 
(INMET), whereas the maximum temperature data were obtained based on the information provided by the 
INMET. In both cases, we used the spatially continuous projections for each period in the sample, which were 
calculated based on the methodology proposed  by37.

Figure 1.  Fires in Legal Amazon by quarter between 2002 and 2022.

https://mapbiomas.org/
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Results
In this section, we report the results obtained with the estimation of the model described in  “ Methodology and 
data” to map changes in spatial and temporal patterns of fire occurrence in the Brazilian Amazon. We perform 
inference procedures based on the specification described in Eq. (2). Thus, the estimated parameters are the 
precision of the trend component ( 1/ηµ ), seasonal component ( 1/ηs ), and cycle component ( 1/ηc ), the param-
eters of the second-order autoregressive process of the cycle (PACF1 and PACF2), the parameters associated 
with the set of observed covariates ( β ), the parameters of spatial covariance ( log τ and log κ ), and the parameter 
of spatial time dependence ( �).

Table 1 reports the estimated parameters. As might be expected, the results indicate a negative relation 
between the distance to roads and the fire occurrence. The importance of the highways as a prime driver of fire 
occurrence and deforestation at local scales has been discussed in the literature, showing that the roads play 

Figure 2.  Spatial distribution of fires in Legal Amazon between 2002 and 2022.
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important roles facilitating transformation of land-use practices, creating fresh access to new settlements in 
frontier regions, and reducing transportation costs in earlier settled  areas9,38.

Regarding the rainfall and temperature covariates, the results indicate a negative relationship between rainfall 
and the intensity of fire occurrences and, on the other hand, higher temperatures are related with higher incidence 
of fires, according to the results.

Based on the Köppen classification, the climate of the Legal Amazon is predominantly characterized by a wet 
climate (Af), experiencing precipitation throughout the year. It also exhibits a monsoon climate (Am) with an 
annual total precipitation exceeding 1500 mm, and a dry season occurring from August to November. Addition-
ally, the region features a tropical climate with a distinct dry season (Aw). As expected, obtained results suggest 
that the types of climates with dry season (Am, As, and Aw) have higher influence on fire occurrence than those 
without dry season (Cwa, Af, and Cfa). Our analysis associated to land cover classifications shows a positive rela-
tion between fire occurrence and savanna formation, mangrove, wetland, grassland, pasture, mosaic of uses, sand 
spot, water bodies, soybean, and other temporary crops. On the other hand, the estimated parameters indicate a 
negative relation between fire occurrence and forest formation and other non vegetated areas.

Regarding the random effects, the precision parameters represent the variability associated with the trend, 
seasonal and cycle components, where high values indicate low variability. Based on the results reported in 
Table 1, it is possible to note a high precision associated with the cycle component as well as the trend component, 
whereas the seasonality component shows a relatively minor precision.

A primary empirical motivation for the present study was to assess the existence of changes in the patterns of 
fire occurrence in the Legal Amazon. To better understand the results, we plotted the estimated trend, seasonal 
and cycle components (posterior mean and 95% Bayesian credibility interval; see Fig. 3). The trend component 
exhibit a marked decrease between the beginning of the sample and 2012, followed by an increase that extends 
to the end of the sample. Regarding the cycle and seasonal components, based on Fig. 3, it is possible to note that 
both are quite stable, and the model does not indicate relevant changes in those components.

Table 1.  Estimated parameters for the Legal Amazon.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Fixed effects

 Distance highways − 0.012 0.001 − 0.014 − 0.012 − 0.010 − 0.012

 Temperature 0.155 0.011 0.132 0.155 0.177 0.155

 Rainfall − 0.006 0.001 − 0.007 − 0.006 − 0.005 − 0.006

 Köppen 1 (Cwa) 0.012 0.248 − 0.474 0.012 0.497 0.012

 Köppen 2 (Am) 0.252 0.061 0.134 0.252 0.371 0.252

 Köppen 3 (Af) 0.219 0.094 0.035 0.219 0.404 0.219

 Köppen 4 (Cfa) 0.153 0.254 − 0.344 0.153 0.650 0.153

 Köppen 10 (As) 0.265 0.159 − 0.045 0.265 0.576 0.265

 Köppen 12 (Aw) 0.444 0.143 0.165 0.444 0.724 0.444

 Forest formation − 0.024 0.055 − 0.131 − 0.024 0.084 − 0.024

 Savanna formation 0.056 0.084 − 0.109 0.056 0.220 0.056

 Mangrove 0.133 0.152 − 0.166 0.133 0.432 0.133

 Wetland 0.205 0.112 − 0.015 0.205 0.426 0.205

 Grassland 0.151 0.078 − 0.003 0.151 0.304 0.151

 Pasture 0.076 0.079 − 0.078 0.076 0.230 0.076

 Mosaic of uses 0.078 0.128 − 0.173 0.078 0.328 0.078

 Beach, dune and sand spot 0.542 0.248 0.055 0.542 1.029 0.542

 Other non vegetated areas − 0.541 0.177 − 0.888 − 0.541 − 0.195 − 0.541

 River, lake and ocean 0.154 0.066 0.024 0.154 0.284 0.154

 Soybean 0.088 0.177 − 0.258 0.088 0.435 0.088

 Other temporary crops 0.116 0.169 − 0.214 0.116 0.447 0.116

Random effects

 Precision for trend 5.270 0.185 4.897 5.271 5.633 5.284

 Precision for seasonality 1.059 0.082 0.933 1.049 1.251 1.010

 PACF4 for seasonality 0.136 0.039 0.074 0.132 0.224 0.112

 Precision for cycle 4.673 0.161 4.344 4.676 4.983 4.694

 PACF1 for cycle 0.308 0.020 0.264 0.309 0.344 0.314

 PACF2 for cycle − 0.366 0.017 − 0.403 − 0.365 − 0.336 − 0.360

 Log τ − 2.135 0.007 − 2.148 − 2.136 − 2.120 − 2.137

 Log κ − 0.035 0.008 − 0.052 − 0.034 − 0.022 − 0.031

 Group � 0.842 0.003 0.837 0.842 0.847 0.841
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The spatial heterogeneity of the fire occurrence in the Legal Amazon can be better seen through the estimated 
spatial random effect (posterior mean of estimated spatial random effect; see Fig. 4).

In order to show the model’s ability to fit the fire occurrence, we plotted the estimated log intensity function 
and the observed fire occurrence (black dots; see Fig. 5), which shows that the estimated log intensity function 
explains the spatio-temporal variation observed in the fire count in the Legal Amazon, suggesting that the model 
has a good fit. Additionally, to show the importance of the trend, seasonal and cycle components in the analysis 
of fire occurrence in the Legal Amazon, we plotted the observed total fire count and the predicted value of fire 
count in each year given by the sum of the estimated trend, seasonal, cycle and intercept components (see Fig. 6)

Amazon biome. The region known as Legal Amazon in Brazil comprises nine Brazilian states, containing 
three different biomes: Amazon, Cerrado and Pantanal. These biomes differ from each other not only in vegeta-
tion and fauna, but in the way they provide ecosystem services. As a complementary analysis, we did the same 
previous analysis, but now considering the Amazon biome, in order to uncover possible changes in the patterns 
only in this biome. The results (see Table 2) obtained with the analysis of the Amazon biome differ from the pre-
vious one mostly in terms of land cover. While we considered the three biomes in the analysis, the relationship 
between fire occurrence and wetland, grassland, pasture and soybean were positive. On the other hand, when we 
consider only the Amazon biome, these relationships become negative.

In the case of wetlands and grasslands, this result can be attributed to the fact that the Pantanal biome is the 
major wetland ecosystem of the world, characterized by well-defined dry and wet seasons. Also, the Pantanal and 
Cerrado are biomes in which fire-dependent ecosystems (savanna and grassland) predominates, i.e., in these type 
of formation fires are typically mild and frequent, often occurring in the transitional months between seasons, 

Figure 3.  Trend, seasonal and cycle decomposition of fire occurrences in the Legal Amazon.
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mostly during dry seasons, and providing benefits to the fauna and  flora39,40. Differently from the Pantanal and 
Cerrado, the Amazon biome is covered predominantly by dense forest formation, which is considered fire-
sensitive. As a consequence, in the absence of Pantanal and Cerrado biomes in the analysis, when we consider 
only the Amazon biome, due to its features, the relationship between the intensity of fire activity and cerrado, 
savanna, and wetland become negative.

Regarding the pasture and soybean fields, according  to41, in the Cerrado and Pantanal, the climate is the 
major determinant of fire activity, while human action is the main driving factor in the Amazon biome. In this 
case, the incidence of accidental fires in pastures and agricultural areas caused by climate variables is higher in 
the Pantanal and Cerrado than in the Amazon biome. As a consequence, when we analyze only the Amazon 
biome, the relationship between the intensity of fire activity and pasture and soybean fields becomes negative.

Figure 7 shows the posterior mean and 95% Bayesian credibility interval for the estimated trend, seasonal and 
cycle components considering the data for the Amazon biome. As the previous result, the trend component also 
exhibits a marked decrease between the beginning of the sample and 2012, followed by an increase that extends 
to the end of the sample. Similarly, the cycle and seasonal components are also quite stable, and the model does 
not indicate relevant changes in those components.

The spatial heterogeneity of the fire occurrence in the Amazon biome (see Figure 1 in Supplementary Mate-
rial) is also very similar to the previous analyze, as well as the estimated log intensity function and the observed 
fire occurrence (black dots; see Figure 2 in Supplementary Material), and the observed total fire count and the 
predicted value of fire count in each year given by the sum of the estimated trend, seasonal, cycle and intercept 
components (see Figure 3 in Supplementary Material).

Figure 4.  Spatial random effects-Legal Amazon.
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Monthly data. In order to consolidate our results, we also provide a monthly analysis of the changes in the 
patterns of fire intensity in the Legal Amazon, and the results are presented in Table 2 in Supplementary Mate-
rial. With respect to the estimated trend, seasonality, and cycle components, showed in Fig. 8, the monthly analy-
sis revealed the same patterns observed in the previous analysis, however, as expected, with less uncertainty. 
Lastly, considering the observed total fire count and the predicted value of fire count in each year given by the 
sum of the estimated trend, seasonal, cycle and intercept components (see Figure 4 in Supplementary Material), 
it also shows the importance of the trend, seasonal and cycle components in the analysis of fire occurrence in 
the Legal Amazon.

Discussion
According to our findings, the intensity of fire occurrence in the Legal Amazon, encompassing the Amazon, 
Cerrado, and Pantanal biomes, as well as specifically in the Amazon biome, exhibits temporal and spatial vari-
ability. These results align with the findings presented by Libonati et al. (2021)42, who conducted an analysis of 
the interconnections between deforestation, fire, and droughts in the Brazilian Amazon.

Our examination of the trend component indicates a decline in fire activity from 2002 to 2012. This decrease 
can primarily be attributed to the implementation of governance measures and market mechanisms. Notably, 
the policies implemented to mitigate deforestation underwent significant revisions during the 2000s, introduc-
ing innovative procedures for monitoring, environmental control, and territorial management. For instance, 
the Action Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm), launched 
its initial and highly successful phase in 2004. Furthermore, novel policy measures were introduced in 2008, 
specifically targeting municipalities with high deforestation rates and implementing restrictions on rural  credit43.

Figure 5.  Estimated log-intensity function and observed fire occurrence-Legal Amazon.
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The effectiveness of these policies and the impact of market mechanisms on deforestation in the Legal Ama-
zon have been extensively discussed in the literature. Numerous studies have demonstrated that conservation 
policies, coupled with decreases in agricultural prices and the availability of rural credit, have effectively curbed 
 deforestation43–48.

Furthermore, our analysis revealed a notable trend starting from 2013, indicating a continuous increase in 
the long-term component. This trend seemingly corresponds to the expanding opportunities in international 
markets for Brazilian beef and soy, which exerted greater pressure on forested areas during this period. Another 
contributing factor was the replacement of Brazil’s Forest Code (Law 4771/1965) by Law 12651/2012. This leg-
islative change resulted in reduced restrictions and pardoned areas that had been illegally cleared prior to 2008, 
leading to significant environmental and social  challenges49.

By incorporating covariates into our statistical model, we were able to examine the associations between the 
intensity of fire occurrences, human activities, and climate dynamics. Fire occurrence typically depends on four 
key factors: the presence of sufficient biomass, availability of burnable biomass, conducive ambient conditions 
for fire spread, and ignition  sources50. These conditions are influenced by meteorological patterns and their 
interaction with vegetation types. Our results indicate that climate patterns and human actions play pivotal roles 
in driving the observed trend of fire occurrences.

In support of the notion that fire intensity is linked to climate variability, our analysis provides evidence of 
a positive dependence between temperature and fire activity, as well as a negative relationship between rainfall 
and fire events. Furthermore, human impacts can amplify the influence of biophysical drivers through actions 
like altering land use, igniting fires, and suppressing fire  occurrences51.

Within this context, our results offer evidence that pasturelands, areas with mixed land uses, soybean fields, 
and other temporary crops exhibit a positive correlation with fire intensity. Conversely, non-vegetated areas 
demonstrate a negative relationship with fire occurrence. It is important to acknowledge that for thousands of 
years, humans have actively manipulated fire regimes. They have suppressed wildfires as a means to safeguard 
lives and property, resulting in landscapes that inhibit the widespread propagation of fires. Consequently, these 
anthropogenic influences lead to fire regimes that differ in terms of frequency, seasonality and intensity, from 
the natural fire patterns in the absence of human  intervention52,53.

From a spatial perspective, it becomes apparent that the spatial random effects effectively capture the vari-
ability within the Legal Amazon region. This variability is particularly pronounced in regions classified as wet 
tropical (Am), which experience a dry season between August and November (third and fourth quarters), as well 
as in areas categorized as tropical with a dry season (Aw). Conversely, in the western Amazon, characterized by 
a predominantly tropical climate without a dry season (Af), the level of variability is relatively lower.

Conclusion
The Amazon biome plays a crucial role in the climate system, exerting both regional and global influences. Fire 
occurrences, resulting from natural and human activities, are significant disturbances in the Legal Amazon, 
causing notable impacts. Extensive literature highlights changes in the patterns of fire occurrence in the Amazon 
region, attributed to various factors such as dry conditions, deforestation, agricultural expansion, climate change, 
and climatic anomalies like El Niño events.

Figure 6.  Predicted fires given by the sum of trend, seasonality and cycle components and observed fires. 
Shaded areas in the graph represent the 95% Bayesian credibility interval.
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The objective of this study was to examine potential changes in fire occurrence patterns in the Legal Amazon, 
utilizing a spatio-temporal point process framework. To enable inference procedures, we proposed a structural 
decomposition approach for analyzing spatio-temporal point pattern data. Specifically, we introduced a dynamic 
representation of a Log Gaussian Cox process, which models the intensity function through the decomposition 
of components including trends, seasonality, cycles, covariates, and spatial effects. This formulation effectively 
captured permanent changes, as well as seasonal and cyclic effects. Moreover, the utilization of a Bayesian hier-
archical structure facilitated computationally efficient inference within the integrated nested Laplace approxi-
mation framework.

Table 2.  Estimated parameters for the Amazon biome.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Fixed effects

 Distance highways  − 0.011 0.001 − 0.014 − 0.011 − 0.009 − 0.011

 Rainfall 0.003 0.001 0.002 0.003 0.004 0.003

 Köppen 1 (Cwa) − 0.088 0.431 − 0.932 − 0.088 0.756 − 0.088

 Köppen 2 (Am) 0.325 0.065 0.197 0.325 0.454 0.325

 Köppen 3 (Af) 0.357 0.087 0.186 0.357 0.529 0.357

 Köppen 4 (Cfa) 0.534 0.209 0.123 0.534 0.945 0.534

 Köppen 10 (As) − 0.391 0.158 − 0.701 − 0.391 − 0.082 − 0.391

 Köppen 12 (Aw) 0.238 0.136 − 0.028 0.238 0.503 0.238

 Forest formation − 0.094 0.158 − 0.404 − 0.094 0.215 − 0.094

 Savanna formation 0.001 0.169 − 0.331 0.001 0.333 0.001

 Mangrove 0.298 0.252 − 0.196 0.298 0.792 0.298

 Forest plantation 0.530 0.561 − 0.569 0.530 1.629 0.530

 Wetland − 0.418 0.195 − 0.799 − 0.418 − 0.037 − 0.418

 Grassland − 0.105 0.165 − 0.430 − 0.105 0.219 − 0.105

 Pasture − 0.071 0.159 − 0.383 − 0.071 0.241 − 0.071

 Beach, dune and sand spot 0.064 0.234 − 0.394 0.064 0.522 0.064

 Urban area 0.532 0.571 − 0.587 0.532 1.651 0.532

 Salt flat − 0.146 0.358 − 0.848 − 0.146 0.556 − 0.146

 River, lake and ocean 0.101 0.156 − 0.204 0.101 0.407 0.101

 Soybean − 0.053 0.181 − 0.408 − 0.053 0.302 − 0.053

 Other temporary crops 0.042 0.189 − 0.328 0.042 0.413 0.042

Random effects

 Precision for trend 5.622 0.453 4.817 5.591 6.604 5.506

 Precision for seasonality 0.421 0.034 0.361 0.418 0.493 0.411

 PACF4 for seasonality 0.769 0.016 0.739 0.768 0.801 0.765

 Precision for cycle 4.033 0.408 3.270 4.020 4.875 4.007

 PACF1 for cycle 0.149 0.048 0.055 0.148 0.246 0.144

 PACF2 for cycle − 0.379 0.057 − 0.478 − 0.383 − 0.255 − 0.398

 Log τ − 2.157 0.014 − 2.182 − 2.157 − 2.129 − 2.158

 Log κ − 0.125 0.012 − 0.148 − 0.126 − 0.099 − 0.129

 Group � 0.873 0.004 0.863 0.873 0.881 0.874



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12727  | https://doi.org/10.1038/s41598-023-39875-z

www.nature.com/scientificreports/

Figure 7.  Trend, seasonal and cycle decomposition of fire occurrences in the Amazon biome.
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We present the results obtained from analyzing fire occurrence data in the Legal Amazon, specifically reported 
by MODIS, spanning from July 2002 to December 2022. To account for key fixed effects related to climatic condi-
tions and agricultural practices, we incorporated explanatory variables. Our findings reveal a notable decline in 
the estimated trend component of fire occurrence from 2002 to 2012, followed by a subsequent increase that per-
sisted until the end of the dataset. These patterns could be linked to governance actions and market mechanisms. 
Additionally, our model effectively captured the variability within the Legal Amazon, particularly in regions 
classified as wet tropical (Am), characterized by a dry season occurring between August and November (third 
and fourth quarters), as well as tropical regions with a dry season (Aw). Conversely, in the western Amazon, 
characterized by a predominantly tropical climate without a dry season (Af), variability was comparatively low.

Data availability
All data is from public sources, as detailed in the manuscript.

Code availability
Custom code developed by the authors, using r-inla (www.r- inla. org) library.
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