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A multi‑omics analysis identifies 
molecular features associated 
with fertility in heifers (Bos taurus)
Mackenzie A. Marrella  & Fernando H. Biase *

Infertility or subfertility is a critical barrier to sustainable cattle production, including in heifers. The 
development of heifers that do not produce a calf within an optimum window of time is a critical 
factor for the profitability and sustainability of the cattle industry. In parallel, heifers are an excellent 
biomedical model for understanding the underlying etiology of infertility because well‑nourished 
heifers can still be infertile, mostly because of inherent physiological and genetic causes. Using a high‑
density single nucleotide polymorphism (SNP) chip, we collected genotypic data, which were analyzed 
using an association analysis in PLINK with Fisher’s exact test. We also produced quantitative 
transcriptome data and proteome data. Transcriptome data were analyzed using the quasi‑likelihood 
test followed by the Wald’s test, and the likelihood test and proteome data were analyzed using a 
generalized mixed model and Student’s t‑test. We identified two SNPs significantly associated with 
heifer fertility (rs110918927, chr12: 85648422, P  =  6.7 ×  10−7; and rs109366560, chr11:37666527, 
P = 2.6 ×  10−5). We identified two genes with differential transcript abundance (eFDR ≤ 0.002) between 
the two groups (Fertile and Sub‑Fertile): Adipocyte Plasma Membrane Associated Protein (APMAP, 
1.16 greater abundance in the Fertile group) and Dynein Axonemal Intermediate Chain 7 (DNAI7, 
1.23 greater abundance in the Sub‑Fertile group). Our analysis revealed that the protein Alpha‑
ketoglutarate‑dependent dioxygenase FTO was more abundant in the plasma collected from Fertile 
heifers relative to their Sub‑Fertile counterparts (FDR < 0.05). Lastly, an integrative analysis of the 
three datasets identified a series of molecular features (SNPs, gene transcripts, and proteins) that 
discriminated 21 out of 22 heifers correctly based on their fertility category. Our multi‑omics analyses 
confirm the complex nature of female fertility. Very importantly, our results also highlight differences 
in the molecular profile of heifers associated with fertility that transcend the constraints of breed‑
specific genetic background.

Abbreviations
μg  Microgram
AI  Artificial insemination
ALB  Albumin
APMAP  Adipocyte plasma membrane associated protein
APOC2  Apolipoprotein C-II
ASAP3  ArfGAP with SH3 domain, ankyrin repeat and PH domain 3
ATP5MC1  ATP synthase membrane subunit c locus 1
C8B  Complement component C8 beta chain
CCDC34  Coiled-coil domain containing 34
CEP170  Centrosomal protein 170
CIDR  Controlled internal drug release
CPM  Counts per million
DNAI7  Dynein axonemal intermediate chain 7
DTT  Dithiothreitol
DGE  Differential gene expression
DPA  Differential protein abundance
eFDR  Empirical false discovery rate
EML6  Echinoderm microtubule associated protein like 6
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FDR  False discovery rate
FPKM  Fragments per kilobase per million
FTO  Alpha-ketoglutarate-dependent dioxygenase FTO
GnRH  Gonadotrophin-releasing hormone
GPLD1  Phosphatidylinositol-glycan-specific phospholipase D
GWAS  Genome-wide association study
IAA  Indole-3-acetic acid
IACUC   Institutional animal care and use committee
IM  Intramuscular
K2 EDTA  Dipotassium ethylenediaminetetraacetic acid
LCP1  Lymphocyte cytosolic protein 1
LOC525947  Serotransferrin-like
M  Molar
m6A  N6-methyladenosine
m6Am  N6mena2′-O-dimethyladenosine
mg  Milligram
Min  Minutes
ml  Milliliter
mRNA  Messenger RNA
ms  Millisecond
MYDGF  Myeloid derived growth factor
ng  Nanogram
nm  Nanometer
nl  Nanoliter
P  Probability
PGF2α  Prostaglandin F2 alpha
PROZ  Vitamin K-dependent protein Z
RAD51AP1  RAD51 associated protein 1
RIN  RNA integrity number
SERPINF1  Pigment epithelium-derived factor
SNP  Single nucleotide polymorphism
TAFA5  TAFA chemokine-like family member 5
UQCRQ  Ubiquinol-cytochrome c reductase complex III subunit VII
VT-MSI  Virginia tech mass spectrometry incubator
Xg  Relative centrifugal force
µl  Microliter

The latest data from the Food and Agriculture Organization show that in 2020 more than 46% of the daily protein 
supply in the world was from animal-based foods (FAO-STATS). Bovine meat and milk accounted for 12.8% 
of the total protein supply in the world in 2020 (FAO-STATS). These numbers underscore the importance of 
cattle production to sustain a growing demand for protein  globally1. Infertility or subfertility is a critical barrier 
to sustainable cattle  production2, including in heifers. For example, approximately 15%3 and 5%4 of beef and 
dairy heifers, respectively, do not calve at 24 months of age. Heifers that calve at an optimum age have greater 
productivity and longevity in the  herd5–10. Therefore, identifying heifers with optimum fertility is a promising 
approach to improving sustainability in cattle production.

The heritability of breeding values for heifer fertility is often low for  beef11–17 and  dairy18–23 heifers, which 
indicate that there are multiple genetic factors impacting this complex trait beyond additive genetic effects. 
Another potential avenue for the understanding of infertility is the use of molecular  phenotyping24. The pioneer-
ing efforts focused on genome-wide association studies (GWAS) to identify genetic markers associated with heifer 
 fertility4,12,25–38, but only a few seem to be reproducible across  populations37. More recent efforts have also focused 
on  transcriptome39–41 and  metabolome42 datasets characterizing these molecules in blood samples. Again, limited 
genes have been identified with differential transcript abundance across  datasets39. Much research is needed for 
the identification of molecular features that can help explain fertility fitness.

Altogether, approximately 5% of heifers are  infertile4,43, and this cohort is a great biological model for studying 
the genetic bases of infertility for several reasons. First, neither dairy nor beef heifers are under the challeng-
ing metabolic demand required for milk  production44–46. Second, post-partum cows need to undergo a critical 
period of physiological and anatomical recovery before the next  breeding47–49. Third, there are several postpar-
tum diseases with negative consequences on reproduction  success50–52. Reproductive problems in well-managed 
heifers are inherent to their  physiology20, most of which are also under genetic  control53, or directly related to 
 mutations54 that impair female reproductive functions.

Angus and Holstein heifers have similar frequencies of infertility or  subfertility4,43 despite the selection pres-
sures directed at beef or dairy production, and thus have distant genetic background. Most studies involving 
the identification of biological features associated with fertility in heifers have used either one group of pure-
bred or crossbreed  animals4,12,25–42. Here, we carried out a case-control55 experiment to test the hypothesis that 
differences in genetic variants, gene transcript, and protein abundance due to fertility fitness would be shared 
between heifers of different genetic background. Our objective was to contrast genetic variants, gene transcripts, 
and protein abundance between Fertile and Sub-Fertile heifers from Angus and Holstein genetic backgrounds. 
We show that both the independent analysis and multi-omics approach identified molecular signatures that 
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capable of discriminating heifers of differing fertility potential, and thus with an underlying biology associated 
with fertility that is shared between both breeds.

Methods
All analytical procedures are presented in Additional file 1 and accessible at https:// biase- lab. github. io/ Multi 
Omics/.

Ethics statement. Animal handling for this experiment was approved by the Institutional Animal Care and 
Use Committee (IACUC) at Virginia Polytechnic Institute and State University.

Experimental design. We collected blood samples from purebred Angus heifers (n = 12), averaging 14 
months in age, at the time of their first artificial insemination (AI) service. Heifers were subjected to a 7-Day 
Co-Synch + CIDR estrus synchronization protocol prior to breeding. Briefly, heifers were administered an intra-
muscular (IM) injection of gonadotrophin-releasing hormone (GnRH, 100 μg; Factrel®; Zoetis Inc.) on Day 0, 
followed by the insertion of a controlled internal drug release (CIDR, 1.38 g Progesterone; Eazi-Breed™ CIDR®; 
Zoetis Inc.). On Day 7, the CIDR was removed and an injection of prostaglandin F2 alpha (PGF2α, 25 μg; Luta-
lyse®; Zoetis Inc.) was delivered. Fixed-time AI was performed 54 ± 2 h following CIDR removal alongside a 
second injection of GnRH.

Additionally, we collected blood samples from purebred Holstein (n = 10) heifers, averaging 12 months in age, 
at the time of the first AI service. Heifers were enrolled in a 5-Day CIDR-Synch protocol before insemination. 
Briefly, an IM injection of GnRH was delivered on Day 0 with the insertion of a CIDR device. The CIDR device 
was removed on Day 5, followed by an IM injection of PGF2α. A second injection of PGF2α was administered 
24 hours later. Then, timed AI was performed with a second GnRH injection on Day 8.

Heifers were identified as Fertile (Holstein, n = 5; Angus, n = 5) or Sub-Fertile (Holstein, n = 5; Angus, n = 7) 
based on their pregnancy outcome, following similar criteria used  previously39,40. Fertile animals were identified 
as those who became pregnant and subsequently delivered a calf following the first insemination service. Angus 
heifers were categorized as Sub-Fertile after failing to achieve pregnancy following two insemination services 
and exposure to a bull for natural breeding. Holstein heifers were identified as Sub-Fertile after needing four or 
more artificial inseminations.

Heifers were synchronized with protocols that have been identified by prior research to have high success 
for a heifer to become pregnant to  AI56,57. Hence the different protocols for beef and dairy heifers. The criteria 
for classification were different for each group due to differences in management that are inherent to beef and 
dairy replacement heifers. Most importantly, each heifer had multiple opportunities to become pregnant before 
being classified as sub-fertile.

The heifers utilized in this study were not part of a nutritional experiment, and thus nutrition was not 
accounted as a variable nor was it a factor in the selection of heifers. All dairy heifers were raised with equivalent 
exposure to feed. Similarly, all beef heifers were raised with equivalent exposure to feed.

Blood sample collection and white blood cell isolation. Fifty ml of blood were drawn from each 
animal by venipuncture of the jugular vein using 18 mg K2 EDTA vacutainers (Becton, Dickinson, and Com-
pany). The tubes were inverted for proper mixing with the anticoagulant and then immediately placed on ice 
until further processing.

We processed the blood samples following procedures described  elsewhere39,40,58 within three hours of 
 sampling58. Tubes containing whole blood samples were centrifuged for 25 minutes (min) at 4 °C and 2000×g 
to separate the buffy coat. The buffy coat was then aspirated and mixed with 14 ml of red blood cell lysis buffer 
(1.55 M ammonium chloride, 0.12 M sodium bicarbonate, 1 mM EDTA (Cold Spring Harbor Protocols)). Then, 
the solution was centrifuged for 10 min at 4 °C at 800×g and the supernatant was discarded. The remaining 
pellet was mixed with 200 µl TRIzol™ Reagent (Invitrogen™, Thermo Fisher Scientific, Waltham, MA) in a 2 ml 
cryotube (Corning Inc., Corning, NY) prior to snap-freezing with liquid nitrogen. Samples were then stored 
at – 80 °C until further processing.

Total RNA and DNA extraction. The buffy coat samples were thawed at room temperature in a total 
volume of 525 µl TRIzol™ Reagent. Then, total RNA was extracted from peripheral white blood cells using the 
Zymo Research Direct-zol™ DNA/RNA Miniprep kit (Zymo Research Corporation, Irvine, CA), according to 
the manufacturer’s protocol. Next, we assessed the quality of the RNA by quantifying the RNA integrity number 
(RIN) for each sample using the Agilent RNA 6000 Pico kit (Agilent, Santa Clara, CA) on the Agilent 2100 Bio-
analyzer (Agilent, Santa Clara, CA).

Genotyping and data processing. We submitted 400 ng of DNA for each heifer to Neogen (Neogen 
Corporation, Lincoln, NE) for genotyping. The samples were genotyped using the Illumina BovineHD Bead-
chip (Illumina Inc., San Diego, CA) genotyping array (777K). We processed the data for quality  control59 using 
 PLINK60. First, we removed SNPs that were preferentially called in one of the groups in the case and control. This 
was followed by the removal of samples with more than 10% of the genotypes missing, and removal of SNPs with 
a minor allelic frequency less than 1%, a missing rate greater than 10%, or deviation from the Hardy-Weinberg 
equilibrium (P < 0.00001). Next, we carried out variant pruning. We considered a window size of 50 kilobases 
with five variants in each window at a correlation threshold of 0.2. After pruning, we calculated relatedness and 

https://biase-lab.github.io/MultiOmics/
https://biase-lab.github.io/MultiOmics/


4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12664  | https://doi.org/10.1038/s41598-023-39858-0

www.nature.com/scientificreports/

inbreeding coefficients using the parameter ‘--make-rel’ in PLINK (Additional file 2). All reported SNP coordi-
nates are relative to btau9 assembly converted with the LiftOver  tool61.

Library preparation and sequencing. For sequencing library construction, 900 ng of total RNA was 
diluted into 25 µl of nuclease-free water, and RNA quantity was confirmed using the Qubit™ RNA High Sensitiv-
ity Assay kit (Invitrogen™, Thermo Fisher Scientific, Waltham, MA) on the Qubit™ 4 Fluorometer (Invitrogen™, 
Thermo Fisher Scientific, Waltham, MA). Libraries were prepared for next-generation sequencing using the 
Illumina Stranded mRNA Prep kit (Illumina, Inc., San Diego, CA) and the IDT® for Illumina RNA UD indexes 
(Illumina, Inc., San Diego, CA) according to the manufacturer’s instructions. Sequencing was conducted on the 
NovaSeq 6000 sequencing system (Illumina, Inc., San Diego, CA) using the NovaSeq 6000 SP Reagent kit v1.5 
(Illumina, Inc., San Diego,CA) to produce paired-end reads 150 nucleotides in length. Sequencing was per-
formed by the VANTAGE laboratory at Vanderbilt University Medical Center (Nashville, TN).

Sequence alignment and filtering. We aligned the sequences to the cattle reference genome (Bos_tau-
rus.ARS-UCD1.2.105) in the  Ensembl62 database with  hisat263–65 using the -very-sensitive parameter. Then, we 
used  Samtools66,67 to filter sequences and remove secondary alignments, duplicates, and unmapped reads. Next, 
we used  biobambam268 to mark and remove duplicates.

Transcript quantification and gene filtering. The number of fragments that matched to the  Ensembl62 
cow gene annotation (Bos_taurus.ARS-UCD1.2.105) was quantified using  featureCounts69, and we preserved 
genes annotated as protein-coding, pseudogenes, or long non-coding RNA. Genes were then retained for further 
analysis if counts per million (CPM) and fragments per kilobase per million (FPKM) were >1 in at least five 
samples.

Proteomics data and processing. One hundred μl of plasma per sample was submitted to the Virginia 
Tech Mass Spectrometry Incubator (VT-MSI) facility at the Fralin Life Sciences Institute, Virginia Tech, for 
protein extraction and data collection.

Plasma samples (100 μl) were acidified by the addition of 11.1 µl 12% (v/v) o-phosphoric acid (MilliporeSigma, 
St. Louis, MO), then proteins were precipitated by the addition of 725 µl LC/MS grade methanol and incubated 
at -80°C overnight. Precipitated protein was collected by centrifugation and solubilized in S-trap lysis buffer 
(10% (w/v) SDS in 100 mM triethylammonium bicarbonate ( MilliporeSigma, St. Louis, MO, pH 8.5)). Protein 
concentration was determined by measuring the absorbance at 280 nm, then 150 μg of protein for each sample 
was reduced using DTT (4.5 mM) then alkylated with iodoacetamide (10 mM, MilliporeSigma, St. Louis, MO). 
Unreacted I iodoacetamide was quenched with DTT (10 mM, MilliporeSigma, St. Louis, MO) and samples were 
acidified using o-phosphoric acid (MilliporeSigma, St. Louis, MO). Protein was again precipitated using methanol 
and incubated at -80ºC overnight as above. Precipitated protein was loaded onto a micro S-trap and washed with 
methanol then digested overnight with trypsin. Peptides were recovered and five μg, as determined by measuring 
the absorbance at 215 nm using a DS-11 FX+ spectrophotometer/fluorometer (DeNovix, Wilmington, DE), of 
each sample was analyzed twice (duplicates) using ESI-MS/MS Orbitrap Fusion Lumos (Thermo Fisher Scientific 
(Waltham, MA)).

Samples were first loaded onto a precolumn (Acclaim PepMap 100 (Thermo Scientific, Waltham, MA), 100 
µm × 2 cm) after which flow was diverted to an analytical column (50 cm µPAC (PharmaFluidics, Woburn, 
MA). The UPLC/autosampler utilized was an Easy-nLC 1200 (Thermo Scientific, Waltham, MA). Flow rate was 
maintained at 150 nl/min and peptides were eluted utilizing a 2 to 45% gradient of solvent B in solvent A over 88 
min. Spray voltage on the µPAC compatible Easy-Spray emitter (PharmaFluidics, Woburn, MA) was 1300 volts, 
the ion transfer tube was maintained at 275 °C, the RF lens was set to 30% and the default charge state was set to 3.

MS data for the m/z range of 400–1500 was collected using the orbitrap at 120,000 resolution in positive 
profile mode with an AGC target of 4.0e5 and a maximum injection time of 50 ms. Peaks were filtered for MS/
MS analysis based on having isotopic peak distribution expected of a peptide with an intensity above 2.0e4 and 
a charge state of 2–5. Peaks were excluded dynamically for 15 s after 1 scan with the MS/MS set to be collected 
at 45% of a chromatographic peak width with an expected peak width (FWHM) of 15 s. MS/MS data starting at 
m/z of 150 was collected using the orbitrap at 15000 resolution in positive centroid mode with an AGC target of 
1.0e5 and a maximum injection time of 200 ms. Activation type was HCD stepped from 27 to 33.

Data were analyzed utilizing Proteome Discoverer 2.5 (Thermo Scientific, Waltham, MA) combining a 
Sequest HT and Mascot 2.7 (Matrix Science, Boston, MA) search into one result summary for each sample. 
Both searches utilized the UniProt reference Bos taurus proteome database and a common protein contaminant 
database provided with the Proteome Discoverer (PD) software  package70. Each search assumed trypsin-specific 
peptides with the possibility of 2 missed cleavages, a precursor mass tolerance of 10 ppm and a fragment mass 
tolerance of 0.1 Da. Sequest HT searches also included the PD software precursor detector node to identify MS/
MS spectra containing peaks from more than one precursor. Sequest HT searches included a fixed modification 
of carbamidomethyl at Cys and the variable modifications of oxidation at Met and loss of Met at the N-terminus 
of a protein (required for using the INFERYS rescoring node). Peptide matches identified by Sequest HT were 
subjected to INFERYS rescoring to further optimize the number of peptides identified with high confidence.

Mascot searches included the following dynamic modifications in addition to the fixed modification of Cys 
alkylated by iodoacetamide (carbamidomethylated): oxidation of Met, acetylation of the protein N-terminus, 
cyclization of a peptide N-terminal Gln to pyro-Glu, and deamidation of Asn/Gln residues.

Protein identifications were reported at a 1% false discovery rate (high confidence) or at 5% false discovery 
rate (medium confidence) based on searches of decoy databases utilizing the same parameters as above. The 
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software matched peptide peaks across all runs, and protein quantities are the sum of all peptide intensities 
associated with the protein.

Principal component analysis. We carried out principal component analysis for the genotypes after 
pruning using the parameter ‘--pca’ in PLINK. The eigenvectors were used for plotting. For the transcriptome 
data, first we obtained the variant stabilized data using the function ‘vst’ from the R package ‘DESeq2’. Next, we 
calculated the components using the function ‘plotPCA’ in R. For the protein data, we averaged the values for 
each technical duplicate and used these values as input for the function ‘prcomp’ in R.

Statistical analyses. SNP association analysis. After filtering, 575,053 genotypes from 22 animals were 
used for association analysis conducted in  PLINK60 using Fisher’s exact test. We adjusted the nominal P values 
to correct for multiple hypothesis testing using the adaptative permutation  procedure71 in  PLINK60. Locus as-
sociation was inferred at alpha  =  1 ×  10−5, as reported by The Wellcome Trust Case Control  Consortium72 for 
case-control studies, as well as by previous GWAS analyses of reproductive traits in cows or  heifers4,25,32, which 
corresponded to an adjusted P value <0.005.

Differential transcript abundance. We compared transcript abundance between samples from each breed and 
each fertility group. The R packages ‘edgeR’73,74, with the quasi-likelihood test, and ‘DEseq2’75, using the Wald’s 
and likelihood test, were utilized to conduct the analyses. We adjusted the raw P values for multiple hypothesis 
testing by calculating the empirical false discovery rate  (eFDR76), with 10,000 permutations. Differences in tran-
script abundance were deemed statistically significant when eFDR <0.002 in the results obtained from the three 
tests.

Differential protein abundance. To identify differential protein abundance that is robust to the algorithm uti-
lized, we analyzed the protein data using two different algorithms. First, we transformed the protein data using 
natural logarithm  (Loge(x)). We analyzed the transformed data using a generalized mixed  model77 using the R 
package ‘lme4’, which included the fertility group (Fertile or Sub-Fertile), breed (Angus or Holstein), and the 
random effect of the subject. Random effect was included in this analysis as samples were assayed twice to pro-
vide a more robust estimate of differential protein abundance. Then, we used the function ‘emmeans’, which tests 
the significance of the difference  (H0:μ1 = μ2,  H1:μ1≠μ2) with the Student’s t  test78, to calculate the estimated dif-
ferences in protein abundance between fertility groups within each breed. We also analyzed the log-transformed 
data using the R package ‘limma’79. We accounted for the same independent variables mentioned above (fertility 
group and breed), in addition to accounting for the correlation between the duplicated data for each individual 
with the function ‘duplicateCorrelation’. We tested for a differential abundance of the identified proteins using 
the empirical Bayes Statistics implemented in the function ‘eBayes’80,81. In both analyses, we adjusted the nomi-
nal P values using  FDR82. Significance was assumed if FDR< 0.05 in both approaches.

Multi‑omics factor analysis. We analyzed the multimodal multi-omics datasets (genome, transcriptome, and 
proteome) interactively using Multi-omics Factor Analysis  approach83,84. We subset the genotypes, transcrip-
tome, and proteome data to reduce the global profiling. We retained SNPs with a P value < 0.001 for the Fisher’s 
test, genes with a P value < 0.01 for all three statistical tests employed, and proteins with a P value < 0.05 in both 
statistical tests used. We conducted the analysis using the R package ‘MOFA2’83,84, accounting for the breed as 
a group.

Results
Overview of the data produced. We selected 22 Bos taurus heifers of Angus (n = 12) and Holstein 
(n = 10) breeds based on their fertility fitness (Fig. 1A). We isolated total RNA from circulating white blood 
cells, averaging 16.3 µg ± 4.0, and quality, measured by the RIN, averaging 9.4  ±  0.4. The extraction of genomic 
DNA yielded 1.1 µg ± 0.4. We produced RNA-sequencing data (Fig. 1B) and quantified the transcript abundance 
of 12,445 genes (12,105 protein-coding genes, 228 long non-coding RNAs, and 112 pseudogenes). We also ana-
lyzed 575,053 nucleotide positions across the bovine genome (Fig. 1B). Lastly, we produced untargeted proteom-
ics data from plasma that resulted in the relative quantification of 213 proteins. As expected, the genotypic and 
proteomic data clustered the heifers of different genetic background separately (Fig. 1A). Conversely, there was 
no clustering of the samples based on the transcriptome data of the peripheral white blood cells (Fig. 1D,E).

GWAS identifies SNPs associated with fertility in Angus and Holsteins heifers. Our analysis 
identified two SNPs significantly associated with heifer fertility (rs110918927, chr12: 85648422, P  =  6.7 ×  10-7; 
and rs109366560, chr11:37666527, P  =  2.6 ×  10-5, Fig. 2A, Additional file 3). For the SNP rs110918927, all heif-
ers that delivered a calf after one artificial insemination presented the genotype AA  (f(A) = 1,  f(G) = 0), whereas 11 
out of 12 heifers classified as sub-fertile presented at least one copy of the allele G  (f(A) = 0.29,  f(G) = 0.71). This 
polymorphism sits in an intergenic region of the genome with the closest gene located > 73 kilobases down-
stream relative to the SNP. For the SNP rs109366560, none of the heifers classified as sub-fertile were homozy-
gous for the allele G  (f(G) = 0.12,  f(A) = 0.88), and five out of the nine fertile heifers genotyped were homozygous 
GG  (f(G) = 0.78,  f(A) = 0.22). This SNP is located on intron 22 of the gene Echinoderm microtubule associated 
protein like 6 (EML6).
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Transcriptome analysis identifies differential transcript abundance between Fertile and 
Sub‑Fertile heifers. Next, we sought to determine if there were differences in transcript abundance from 
circulating white blood cells between the Fertile and Sub-Fertile heifer groups, accounting for their genetic 
background. We identified two genes whose transcript abundance differed (eFDR ≤ 0.002) between the two 
groups (Fertile and Sub-Fertile), namely Adipocyte Plasma Membrane Associated Protein (APMAP, 1.16 greater 
abundance in the Fertile group) and Dynein Axonemal Intermediate Chain 7 (DNAI7, 1.23 greater abundance 
in the Sub-Fertile group) (Fig. 3A, Additional file 4).
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Figure 1.  Overview of data produced. (A) Breeds and classification used in this study, including sample size. 
(B) Schematics of the data produced, and analysis undertaken. Principal component analysis of the genome-
wide single nucleotide polymorphisms (C), transcriptome (D) and (E) proteome data. GWAS: genome-wide 
association analysis, DGE: differential gene expression, DPA: differential protein abundance.

Figure 2.  Genome-wide association analysis of fertility in beef and dairy heifers. (A) Manhattan plot with the 
distribution of SNPs across their genome and their P values from Fisher’s exact association test. (B) Genetic 
frequencies of the two SNPs that are putatively linked to fertility in heifers.
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Proteomic analysis identifies differential protein abundance between Fertile and Sub‑Fertile 
heifers. We also tested if there were differential abundance in proteins present in the plasma of heifers clas-
sified based on their fertility groups in both genetic backgrounds. The protein Alpha-ketoglutarate-dependent 
dioxygenase FTO was more abundant in the plasma collected from Fertile heifers relative to their Sub-Fertile 
counterparts (FDR < 0.05, Fig. 3B, Additional file 5).

Integrative multi‑omics analysis identifies molecular features that classify heifers based on 
their fertility potential. When each data were evaluated independently, the quantification of 22 and 23 
gene and protein relative abundances accounted for 44.1% and 16.6% of the variance associated with fertility 
classification, respectively, and the genotypic information of 59 SNPs explained 70.1% of the variance associated 
with fertility classification. Overall, there were four factors identified in the analysis with the potential to distin-
guish the samples based on their fertility status, out of which three were most representative with Factors one, 
two, and three being mostly dominated by genotype, transcript, and protein data, respectively (Fig. 4A). Factors 
one, two, and three separated most of the samples based on their fertility classification except two, three, and five 
samples, respectively (Fig. 4B).

Notably, the top nine SNPs that explained most of the variance related to Factor one are located in a window 
on chromosome 5 spanning from nucleotide 118332762 to 118345383. The tenth SNP was the top significant 
polymorphism identified on chromosome 12 nucleotide 85648422 according to our Fisher’s exact test contrasting 
heifers of different fertility potential (Fig. 4C). Among the genes whose transcript abundance explained the 
variance related to Factor two, we identified the following annotated genes: ArfGAP with SH3 domain, ankyrin 
repeat and PH domain 3 (ASAP3), ATP synthase membrane subunit c locus 1 (ATP5MC1), Centrosomal protein 
170 (CEP170), Myeloid derived growth factor (MYDGF), Coiled-coil domain containing 34 (CCDC34), RAD51 
associated protein 1 (RAD51AP1), and Ubiquinol-cytochrome c reductase complex III subunit VII (UQCRQ) 
(Fig. 4C). Among the proteins whose abundance explained the variance related to Factor three, the following 
were annotated to known genes: Apolipoprotein C-II (APOC2), Lymphocyte cytosolic protein 1 (LCP1), Vitamin 
K-dependent protein Z (PROZ), Albumin (ALB), Serotransferrin-like (LOC525947), Complement component 
C8 beta chain (C8B), Pigment epithelium-derived factor (SERPINF1), Phosphatidylinositol-glycan-specific 
phospholipase D (GPLD1), Alpha-ketoglutarate-dependent dioxygenase FTO (FTO) (Fig. 4C). Collectively, 
data from the genotypes, transcriptome, and proteome clustered 21 out of 22 heifers correctly based on their 
fertility status, with only one Fertile heifer clustering with the group of Sub-Fertile heifers.

Discussion
Reproduction is a multidimensional biological function in mammals that can be partitioned into multiple 
components or  traits85, and as a consequence, infertility is a complex phenotype with multifactorial origins, 
including a strong genetic  component53,54. Our study was not designed to identify molecular markers for future 
use in selection programs. Rather, our work addressed two critical questions regarding the underlying biology 
of infertility: (a) whether multiple layers of molecular information, present in the circulatory system, would 
differ based on female fertility fitness; and (b) whether the integrative analysis of multiple layers of molecular 
information would be a better predictor of the causes of infertility. Our analysis identified molecular signatures 
in the genome, transcriptome, and proteome that provide important insights about the root causes of infertility.

Neither one of the significant SNPs were located in a region previously associated with female reproductive 
 traits86. These SNPs have also not been previously reported to be associated with fertility traits in previous 
investigations that focused on sire-centric  models4,33–37, nor on studies that focused on genotyped heifers  only32,38. 
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However, it is notable that the polymorphism rs110918927 is in the gene EML6, which produces a protein that 
participates in the function of spindle microtubules in  oocytes87. Knockdown of this protein in mice oocytes at 
the germinal vesicle stage impairs spindle morphology and increases  aneuploidy87 in oocytes that progress to the 
metaphase II stage in the absence of  EML688. The gene EML6 also produces transcripts in bovine  oocytes89, and 
the significant SNP in this gene is a strong indication of a functional connection to reduced oocyte developmental 
competence in the Sub-Fertile group of heifers.

Genes differentially expressed in the peripheral white blood cells have been associated with fertility in 
 heifers39–41. The protein APMAP exhibits arylesterase activity, which is known to protect lipoproteins from 
 oxidation90. Importantly, the APMAP protein regulates adipose composition and metabolic health, and the 
disruption of the APMAP gene in mice leads to an increase in visceral adipose tissue  expansion91. This protein 
was also shown to be less abundant in the omental tissue of women diagnosed with polycystic ovary  syndrome92. 
Therefore, lower expression of APMAP in the peripheral white blood cells of Sub-Fertile heifers is possibly 
connected with a metabolic, hormonal or inflammatory disorder that disrupts fertility in heifers.
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The Protein DNAI7 composes the axonemal dynein complex and participates in beta-tubulin binding 
activity and microtubule binding activity, and thus contributes to ciliary  beating93. Variants that impair the 
function of DNAI7 are associated with Primary Ciliary Dyskinesia, with one potential consequence being the 
abnormal function of cilia and possible impaired transport of the cleaving embryos into the  uterus94. DNAI7 
may also function as a cell cycle regulator, and dysregulated transcript abundance of DNAI7 was associated 
with nasopharyngeal neoplasm in  mice95 and lung adenocarcinoma in  humans96. Since Sub-Fertile heifers have 
greater abundance of DNAI7 transcripts in their circulating white blood cells, it is possible that dysregulation 
in the cell cycle has a biological link with subfertility. Further research is required, however, to evaluate whether 
a dysregulation in the cell cycle linked to upregulation of DNAI7 is connected with increased  inflammation91 
associated with less transcripts from APMAP.

The protein Alpha-ketoglutarate-dependent dioxygenase FTO has oxidative demethylation activity of 
abundant N6-methyladenosine  (m6A) residues in  RNA97. The protein FTO preferentially demethylates N6,2′-
O-dimethyladenosine  (m6Am) rather than  m6A and contributes to a reduced stability of  m6Am  mRNAs98. On a 
systemic level, genomic variants in FTO were associated with symptoms of metabolic  disorders99, although the 
effects observed in humans, such elevated body mass  index100,101, and  mice102 may be contradictory. Also worth 
noting, a variant on the FTO gene was associated with polycystic ovary  syndrome103. Interestingly, in mice, the 
FTO gene is downregulated due to a deficiency in essential amino-acids104, and deficiency in the FTO protein 
causes postnatal growth retardation and a significant reduction in adipose tissue and lean body  mass105. Our 
observation of the FTO abundance in heifers of different fertility potential is an indication that Sub-Fertile 
heifers could be experiencing a metabolic imbalance, contributing to their lower fertility. We note that the heifers 
utilized in this experiment were not nutritionally challenged and thus, our observations are a consequence of 
their intrinsic biological system and how it may utilize nutrients.

The next step was to interrogate the data we produced in a comprehensive manner. Interestingly, the largest 
source of variability was observed in the genomic data. Nine of the top ten SNPs that were assigned to Factor one 
were located in an intron of the TAFA chemokine-like family member 5 (TAFA5) gene. These SNPs are within 
a quantitative trait loci for milk  yield106, a trait negatively correlated with reproductive  traits107, however, no 
relationship between genetic variants in this gene and female fertility has been reported previously. None of the 
top ten genes with transcript abundance relevant for the modeling of the variance were identified as differentially 
expressed when analyzed independently. This result is not surprising because the identification of significant 
features using standard statistical approaches for association analysis is not necessarily the best approach for 
identifying predictive genes associated with complex  traits108,109. It was surprising that three out of nine annotated 
proteins, which composed the top ten proteins that explained most of the variance in factor three, were also 
identified in our analyses using general linear mixed models. The most interesting result, however, was that all 
three data modalities were able to separate 21 out of 22 heifers correctly based on their fertility potential. Our 
results show that molecular differences have strong signals linked to fertility fitness that surpasses their differing 
genetic background.

Conclusions
Our interrogation of multiple levels of biological information (genome, transcriptome, and proteome) at a 
systemic level in heifers highlighted the molecular complexity of female fertility. While the genomic data pointed 
to a disruption of oocyte developmental competence, the transcriptome and proteomic data point to metabolic 
dysregulation contributing to subfertility or infertility. Although the differences in molecular profiles identified 
in our study need to be further validated by mechanistic studies, our results, supported by the current literature, 
highlight differences in the molecular profile associated with female fertility that transcend the constraints of 
breed-specific genetic background.

Data availability
The transcriptome and proteome data generated and analyzed during the current study are available in the 
Gene Expression Omnibus and ProteomeXchange repositories under the following identifiers: GSE220220 and 
PXD038756, respectively. The genotypic data are available from the corresponding author upon reasonable 
request.
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