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Dissipative dynamics 
of optomagnonic nonclassical 
features via anti‑Stokes optical 
pulses: squeezing, blockade, 
anti‑correlation, and entanglement
E. Ghasemian 

We propose a feasible experimental model to investigate the generation and characterization of 
nonclassical states in a cavity optomagnonic system consisting of a ferromagnetic YIG sphere that 
simultaneously supports both the magnon mode and two whispering gallery modes of optical 
photons. The photons undergo the magnon‑induced Brillouin light scattering, which is a well‑
established tool for the cavity‑assisted manipulations of magnons as well as magnon spintronics. At 
first, we derive the desired interaction Hamiltonian under the influence of the anti‑Stokes scattering 
process and then proceed to analyze the dynamical evolution of quantum statistics of photons and 
magnons as well as their intermodal entanglement. The results show that both photons and magnons 
generally acquire some nonclassical features, e.g., the strong antibunching and anti‑correlation. 
Interestingly, the system may experience the perfect photon and magnon blockade phenomena, 
simultaneously. Besides, the nonclassical features may be protected against the unwanted 
environmental effects for a relatively long time, especially, in the weak driving field regime and when 
the system is initiated with a small number of particles. However, it should be noted that some fast 
quantum‑classical transitions may occur in‑between. Although the unwanted dissipative effects 
plague the nonclassical features, we show that this system can be adopted to prepare optomagnonic 
entangled states. The generation of entangled states depends on the initial state of the system 
and the interaction regime. The intermodal photon‑magnon entanglement may be generated and 
pronounced, especially, if the system is initialized with low intensity even Schrödinger cat state in 
the strong coupling regime. The cavity‑assisted manipulation of magnons is a unique and flexible 
mechanism that allows an interesting test bed for investigating the interdisciplinary contexts 
involving quantum optics and spintronics. Moreover, such a hybrid optomagnonic system may be 
used to design both on‑demand single‑photon and single‑magnon sources and may find potential 
applications in quantum information processing.

Cavity magnonics, as a new and active platform for the study of strong interactions between light and matter has 
emerged and developed during the past  decade1–3. In particular, cavity magnonics deals with microwave photons 
in a resonant cavity interacting with magnons (i.e., collective spin excitations) in a ferrimagnetic material, e.g., 
yttrium iron garnet (YIG) as the most well-known ferrimagnetic insulators. Such a system exhibits some unique 
features and advantages, i.e., the large frequency tunability and low damping rate. Besides, magnonics systems 
show excellent ability to be coherently coupled with other systems including microwave or optical photons, 
phonons, and superconducting  qubits4–7.

On the other hand, many notable physical phenomena have been reported in cavity magnonics such as 
exceptional  point8, remote manipulation of spin  current9,  bistability10, cavity mediated magnon long-range 
 coupling11, optical probe spin wave  physics12,13, magnon-based quantum networks and magnon-mediated quan-
tum  gates14, Bose-Einstein condensation in YIG thin  films15,16, and optical whispering-gallery modes (WGMs) in 
YIG  spheres5,17. For example, the optical WGMs are particularly appealing for cavity quantum  electrodynamics18, 
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 optomechanics19, and frequency combs, due to the fact that they can offer high optical quality factors and rela-
tively small mode volumes. Experimentally, the high quality factor of YIG sphere in the telecommunication 
band is still challenging because of the low telecom photon absorption of YIG material and surface roughness 
of YIG sphere. In this line, some potentially feasible solutions have been proposed such as using other magnetic 
materials possessing larger Verdet constant like CrBr3 for enhancing the optomagnonical coupling and resort-
ing to advanced micro- and nano-fabrication technology for reducing the surface roughness, i.e., enhancing the 
quality factor of YIG  sphere20,21.

Notably, some magnetic materials are promising for future spintronics. For instance, they allow long-range 
information  transfer22,23 and low-power  logic24. Some extra unique features of magnons, e.g., long coherence 
times, long spin diffusion length, low energy consumption, and integration capability with traditional electronic 
devices are useful for “quantum magnonics” and render this field as one of the most promising research areas 
in  spintronics25–27. Accordingly, a family of hybrid quantum systems has been extended by incorporating mag-
netic materials due to the fact that magnons can be utilized for quantum information processing. Interestingly, 
magnons, as information carriers with long lifetime and tunability, can remove Ohmic losses, increase memory 
to store information, and enhance processing  capabilities28–30.

The potential applications of hybrid cavity magnonics systems have been extensively reported in quantum 
information processing and quantum  sensing21. These hybrid optomagnonic systems demonstrate some interest-
ing phenomena including magnon gradient  memory31, manipulation of distant spin  currents9, level  attraction32,33, 
and  nonreciprocity34. In particular, spintronics deals with the systems including superconducting quantum 
circuits coupled coherently to magnons via microwave fields in a  cavity35. Such systems have been accomplished 
for generating and characterizing nonclassical magnonic  states27,36–39, quantum thermometry  protocols40, and 
for developing microwave-to-optical quantum transducers for quantum information  processing21,41. Recently, 
the coherent coupling of magnons to optical photons has been experimentally demonstrated by many research 
 groups4,5,17,42. Since the magnon-photon interaction gives rise to inelastic Brillouin light scattering (BLS)43, 
hence, it would be a well-established tool to study quantum  magnonics44–46. It should be noted that magnons 
may be generated by optical  pumps47,48 and more importantly optical photons can be used to probe magnons 
through  BLS49,50. In addition, the WGMs coupled via an optical nanofiber can be exploited to implement the 
resonant structures for the enhanced BLS, and gives insights into the magnon-induced  BLS4. Nowadays, BLS is 
viewed as a mature imaging tool for magnon  spintronics51,52 and fundamental magnon  studies53,54. Notably, the 
observation of Bose-Einstein condensation of magnons at room temperature in YIG thin films has been reported 
 in15,16 Also, BLS experiments on YIG spheres have demonstrated a large asymmetry in the red- (Stokes) and 
blue-shifted (anti-Stokes)  sidebands5,17. This asymmetry can be manipulated by controlling the polarization and 
wave vector of the light. Accordingly, energy can be effectively extracted from the magnons when more photons 
are scattered into the blue than the red-shifted sidebands. Optomagnonic scattering may be enhanced by tuning 
both the input and the scattered photon frequencies to the optical resonances of the cavity, i.e., via the triple 
resonance  condition5. The authors  in55 studied the magnon-induced BLS by considering a cavity optomagnonic 
system including the magnons and the optical WGMs. They showed that an arbitrary magnonic state (either 
classical or quantum) can be transferred to and stored in a distant long-lived mechanical resonator via a hybrid 
magnomechanical system and using optical pulses. Also, optomechanical systems with parametric coupling 
between optical and mechanical modes allow a promising platform for generating and manipulating nonclassical 
photons and phonons. For instance, the single-and two-photon blockade effects can be significantly enhanced 
in a nonlinear hybrid optomechanical system with optical parametric  amplification56.

Although the strong resonant photon-magnon coupling in microwave cavities has been reported during the 
last two decades, the coupling in the optical regime has been demonstrated recently for the first  time57. Hence, we 
are motivated to propose a theoretical scheme for generating nonclassical optomagnonic states, especially under 
the anti-Stokes scattering process. We demonstrate the nonclassical features of the particles, i.e., the photon and 
magnon antibunching and blockade phenomena under different physical conditions. Also, the cross-correlation 
between photons and magnons is studied in detail. The results show that the system undergoes the quantum-
classical transition such that both antibunched, bunched, as well as coherent photons and magnons can be 
found during the interaction. Besides, it should be noted that the particles attain thermal equilibrium with their 
environments at the steady state regime because they are enclosed by thermal reservoirs. Furthermore, we show 
that the system presents strong and stable anti-correlation between the photons and magnons especially when 
the system is initiated with one bosonic particle, e.g., a photon or a magnon. However, the particles eventually 
lose their nonclassical features and become uncorrelated as the system approaches thermal equilibrium.

It is worth mentioning that, in addition to fundamental scientific significance of generation of nonclassical 
optomagnonic states, the photon (magnon) blockade is closely related to antibunching behavior and opens up a 
way to prepare a single-photon (-magnon) source for designing a single-photon  gun58 (single-magnon  emitter59). 
Also, the optomagnonic entangled states can be generated via the dissipative coupling between magnons and 
 photons60. We show that the magnons and photons can be entangled by using anti-Stokes optical pulses. Par-
ticularly, the fast optical pulses are adopted to generate a transient optomagnonic entangled  state61. In fact, the 
hybrid optomagnonic systems open a novel window to utilize magnon-photon entanglement as a new quantum 
resource for future  technologies60.

The contents of this paper are organized as follows. In “The system and the magnon-induced BLS Hamil-
tonian” section, the system is introduced and its model Hamiltonian is derived, especially under the influence 
of the anti-Stokes scattering process. Using the Heisenberg-Langevin approach, the dissipative dynamics of the 
system including the analytical expressions of particle operators is investigated in “Dissipative dynamics of the 
system” section. In “Quantum statistics: nonclassical features, e.g., antibunching and blockade phenomena” and 
“Photon-magnon entanglement” sections , respectively, we analyze and discuss the dynamics of of nonclassical 
features, i.e., the quantum statistics of particles and intermodal photon-magnon entanglement. The experimental 
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feasibility and applications of the system can be found in “Experimental feasibility and applications” section. 
Finally, we summarize the results and briefly discuss our findings and conclusions in the last section.

The system and the magnon‑induced BLS Hamiltonian
Osada et al. experimentally implemented a cavity optomagnonic system such that a ferromagnetic sphere sup-
ports both photons and  magnons4. Cavity optomagnonics with spin-orbit coupled photons demonstrates some 
intriguing properties, i.e., the pronounced nonreciprocity and asymmetry in the sideband signals due to the 
magnon-induced BLS of  light4. The latter, e.g., magnon manipulation, has been realized by modifying the prob-
ability of the Brillouin scattering through  WGMs62. The chirality provided by the spin dynamics in the ferro-
magnetic material leads not only to magnon-induced nonreciprocal Brillouin scattering but also to the crea-
tion and annihilation of magnons in a highly selective  manner4. Since the low-frequency magnons can scatter 
the photons in a WGM, hence, it is referred to as the magnon-induced BLS. Such a physical condition can be 
achieved and governed by tuning the magnon frequency or more precisely via manipulating the strength of a 
static magnetic  field59. In practice, the WGMs coupled via an optical nanofiber allow the implementation of the 
resonant structures to enhance the Brillouin  scattering4. Let us consider a cavity optomagnonic system consist-
ing of a YIG sphere that simultaneously supports two WGMs for optical photons and a magnetostatic mode for 
magnons as shown in Fig. 1.

The magnon-induced BLS is described by the following  Hamiltonian55

where H0 is the free Hamiltonian of the magnon and two WGMs

where m̂ ( m̂† ) and ωm are the annihilation (creation) operator and frequency corresponding to magnon mode 
m. Also, Ŝ ( ̂S† ) and ωS are the annihilation (creation) operator and frequency corresponding to the WGMs 

(1)H = H0 +Hint +Hd ,

(2)H0 = ωmm̂
†m̂+ ωaâ

†â+ ωbb̂
†b̂,

TE WGM

TM WGM 

YIG

Nanofiber

(a) A YIG sphere supports two WGMs and a magnon mode. An optical nanofiber facilitates employing
the resonant structures for the enhancement of the Brillouin scattering [4]. The photons in a WGM
are scattered by the lower-frequency magnons. Consequently, the frequency-shifted sideband photons
are created, i.e., ωa ± ωm. The scattered photons are depicted by wavy arrows. The whole system is
surrounded by the thermal environment.

(b) Mode frequencies of the optomagnonic anti-Stokes BLS. Anti-Stokes scattering process occurs if the
WGM a is resonantly pumped by a strong optical field such that ∆1 = 0 and ∆2 = ωm.

Figure 1.  Schematic of a hybrid optomagnonic system and the corresponding mode frequencies.
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denoted with S = a, b , respectively. Since the magnon-induced BLS is intrinsically a three-wave process, it can 
be described by the following interaction Hamiltonian

where G0 is the single-photon coupling rate. This coupling is weak due to the large frequency difference between 
the optical modes with respect to the magnon mode, i.e. ωm ≪ |ωa − ωb| . However, the coupling strength can 
be considerably enhanced by intensely driving one of the WGMs. Besides, the driving Hamiltonian is given by

where Ea ( Eb ) is the coupling strength between the WGM a (b) and the driving field of frequency ωd . Also, 
Ej =

√

Pjκ
e
j /�ωd ≡ K

√
Pd denotes the coupling strength between the j-th WGM (with external decay rate κej  ) 

and the driving field where K = 103MHz/mW1/2 denotes the drive parameter and Pd is the drive  power59. 
Indeed, the quantities Ej can be viewed as the strengths of the classical driving fields corresponding to the j-th 
WGM j = a, b , respectively. The model Hamiltonian (1) can be recast as the following compact form if it is taken 
into the rotating frame introduced by the drive frequency ωd,

where �1 = ωa − ωd and �2 = ωb − ωd are the cavity-drive detunings.

Dissipative dynamics of the system
Recently, a great deal of attention has been paid to studying hybrid magnonic systems. There exist various meth-
ods for dealing with the dynamical evolution of such systems, e.g., the well-known quantum master equation, and 
the Heisenberg-Langevin approaches. The former usually results in a complicated set of differential equations, 
thus finding the analytical solution of master equations may be cumbersome or even impossible in some cases. 
Hence, many authors have resorted to the numerical methods and/or investigated the steady state of their con-
sidered system. In particular, some studies have focused on the nonclassical features (e.g., antibunching, blockade 
effect, entanglement) of magnonic systems at steady state  regime59,61,63. For instance, kheirabady et al. numerically 
investigated the steady state quantum statistics of a hybrid optomechanical-ferromagnet system using quatum 
master  approach64. Also, the steady-state magnon-photon entanglement in a hybrid magnet-cavity system was 
studied by Li et al.65. In contrast, here, we proceed to use the latter i.e., the Heisenberg-Langevin approach, and 
find some analytical expressions corresponding to the operators of photonic and magnonic subsystems. Then, we 
investigate the nonclassical features of photonic and magnonic states both analytically and numerically. In par-
ticular, we show how to achieve both photon and magnon antibunching and blockade phenomena as well as the 
photon-magnon entanglement. Besides, we follow the behavior of the mentioned effects at the steady state regime.

Scattering process. BLS is an established technique to study magnons. In this line, the authors  in66 theo-
retically studied the inelastic scattering of photons by a magnetic sphere that supports WGMs in a plane normal 
to the magnetization. In fact, magnons with low angular momenta scatter the light in the forward direction with 
a pronounced asymmetry in the Stokes and the anti-Stokes scattering strength. The analysis of the Brillouin scat-
tering strength for the TE and TM input signals can be found  in4. Some magnetic systems show such an asym-
metry due to the interference of  photons67–69. The ellipticity of the spin waves caused by magnetic anisotropies 
is a possible source of such  asymmetry70. Besides, the Stoke and anti-Stokes asymmetry in WGM cavities may 
occur due to the partial elliptical polarization of  WGMs4,17 or the interplay of birefringence and conservation 
 laws5. Importantly, such an asymmetry affects the generation of macroscopic quantum states of magnons in 
 optomagnonics20,71,72.

Here, it would be of interest to clarify how the selection rule affects the Brillouin scattering. Assume the states 
∣

∣g , n
〉

 and |e, n� , respectively denote the electronic ground and excited states of the optical transition, 
∣

∣g
〉

↔ |e� , 
and n is the number of magnons in the Kittel mode, |n� . When the input photons are in the TM mode, the light 
in the resonator is σ+ polarized as shown in Fig. 2. Hence, the transition 

∣

∣g , n
〉

→
∣

∣g , n+ 1
〉

 takes place via the 
excited state |e, n+ 1� by creating a magnon and a down-converted sideband photon with π polarization in the 
TE mode. In contrast, if the input photons are in the TE mode, the light in the resonator is π polarized. Therefore, 
the annihilation of a magnon and the creation of an up-converted blue-sideband photon with σ+ polarization 
in the TM mode may be expected in the reverse process. As the laser wavelength is far detuned from the transi-
tion, therefore, the excited state |e� is only virtually populated. Further details can be found  in4. Note that the 
dominant optical transition is considered to be the spin- and parity-allowed 6S(3d52p6) ↔6 P(3d62p5) charge 
transfer transition in  YIG4,73. Here, we want to focus on the effects of the anti-Stokes scattering process which is 
responsible for the optomagnonical state-swap  interaction61.

Anti‑Stokes scattering process. Due to the asymmetry nature of the BLS, both Stokes and anti-Stokes 
scattering events may occur corresponding to the process of creating and annihilating magnons, respectively. 
Such a mechanism has been applied for the manipulation of magnons and adapted for preparing nonclassical 

(3)Hint = G0

(

m̂†âb̂† + m̂â†b̂
)

,

(4)Hd = iEa
(

â†e−iωd t − âeiωd t
)

+ iEb

(

b̂†e−iωd t − b̂eiωd t
)

,

(5)

Hint =ωmm̂
†m̂+�1â

†â+�2b̂
†b̂

+ G0

(

m̂†âb̂† + m̂â†b̂
)

+ iEa
(

â† − â
)

+ iEb

(

b̂† − b̂
)
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states of magnons. In particular, the anti-Stokes scattering occurs if a TE-polarized photon converts into a TM-
polarized photon via annihilating  magnons74. Let us focus on the latter case and consider the case in which the 
WGM a is resonantly pumped by a strong optical field such that �1 = 0 and �2 = ωm . The mode frequencies 
corresponding to such a physical process are shown in Fig. 1b. Therefore, the system’s model Hamiltonian in the 
interaction picture reads as

where G = G0α is the effective photon-magnon coupling strength such that αa = 2Ea/κa and κa denotes the 
linewidth (FWHM) of the WGM a. Note that Na = |αa|2 is the corresponding intracavity photon number. This 
Hamiltonian describes the interaction between the WGM b and the magnon mode m that can be used to read 
out the magnon state by measuring the created anti-Stokes optical field b. In practice, the magnonic state can be 
read out from the output optical field via the mechanical  transduction61. The corresponding quantum Langevin 
equations by taking into account the dissipation process and input noise for each mode are given by

which is a coupled set of ordinary differential equations. In Eq. (7), we have set u = iω + κb and v = iω + κm 
where κb and κm being the linewidths and F̂b(t) = −i

∑

k gkb̂k(0)e
−iωkt and F̂m(t) = −i

∑

k gkm̂k(0)e
−iωkt denote 

the noise operators corresponding to the WGM mode b and the magnon mode m, respectively. Let us take 
the Laplace transform of the above equations and define B(s) = L[b̂(t)] , M(s) = L[m̂(t)] , Fb(s) = L[F̂b(t)] and 
Fm(s) = L[F̂m(t)] . Therefore, we arrive at

Upon inserting Eq. (9) into Eq. (8) or vice-versa and performing some straightforward calculations we obtain

where a1 = iω + κb + iG and a2 = iω + κm − iG . In what follows, we set κb = κm = Ŵ for the sake of simple 
analysis. Taking the inverse Laplace transform of Eq. (10) results in the time-dependent operator corresponding 
to the WGM b

where

(6)HAS
int =ω

(

m̂†m̂+ b̂†b̂
)

+ G
(

m̂†b̂+ m̂b̂†
)

+ iEa
(

â† − â
)

+ iEb

(

b̂† − b̂
)

,

(7)
˙̂
b(t) =− ub̂(t)− iGm̂(t)+ Eb + F̂b(t),

˙̂m(t) =− vm̂(t)− iGb̂(t)+ F̂m(t),

(8)B(s) = b̂(0)− iGM(s)+ Eb + Fb(s)

s + u
,

(9)M(s) = m̂(0)− iGB(t)+ Fm(s)

s + v
.

(10)B(s) =
(s + u)

(

b̂(0)+ Eb + Fb(s)
)

(s + a1)(s + a2)
−

iG
(

m̂(0)+ Fm(s)
)

(s + a1)(s + a2)
,

(11)M(s) = (s + v)(m̂(0)+ Fm(s))

(s + a1)(s + a2)
− iG(b̂(0)+ Fb(s))

(s + a1)(s + a2)
,

(12)b̂(t) =e−(iω+Ŵ)t [(b̂(0)+ Eb) cosGt − im̂(0) sinGt] + B̂B(t)+ M̂B(t),

Figure 2.  BLS process in an optomagnonic system. Generally, the transition 
∣

∣g , n
〉

→
∣

∣g , n+ 1
〉

 occurs via the 
excited state |e, n+ 1� by creating a magnon and a down-converted sideband photon with π polarization in the 
TE  mode4. In the Stokes scattering process, the pump (TM-polarized) photons convert into lower-frequency 
sideband (TE-polarized) photons by creating magnon excitations. By contrast, the anti-Stokes scattering occurs 
if the pump (TE-polarized) photons convert into higher-frequency (TM-polarized) photons by annihilating 
 magnons55.
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Also, the inverse Laplace transform of Eq. (11) gives the dynamical evolution of the magnon operator

where

where we have defined the following relations

It is worth noting that the operators of WGM b and the magnon mode m have similar time-dependent expres-
sions, especially for Eb = 0 . One can check that m̂(t) can be obtained from b̂(t) by replacing m̂(0) with b̂(0) and 
vice-versa which is due to the symmetry of the Hamiltonian (6) with respect to both WGM b and the magnon 
mode m. In what follows we set b̂ ≡ b̂(0) and m̂ ≡ b̂(0) for convinience.

Quantum statistics: nonclassical features, e.g., antibunching and blockade 
phenomena
In this section, we want to evaluate the quantum statistics of the particles, i.e., photons and magnons. At first, we 
proceed to study the auto-correlation of these particles and then investigate their cross-correlation.

Auto‑correlation. In order to find under what conditions the nonclassical features of the photons and mag-
nons, i.e., antibunching and blockade phenomena can be observed, let us begin with their auto-correlations. The 
zero-delay second-order auto-correlation function yields the auto-correlation among the bosons, i.e., photons 
or  magnons75

The quantum state or more precisely the nonclassical features of these bosonic particles can be identified based 
on the value of g (2)(0)75,76. Generally, three different cases are characterized as follows.

• g (2)(0) > 1 implies that the particles are bunched without nonclassical features, i.e., the particle distribution 
is super-Poissonian.

• g (2)(0) = 1 indicates that the particles show Poissonian distribution with coherent properties.
• g (2)(0) < 1 demonstrates the nonclassical features, i.e., the antibunched particles with the sub-Poissonian 

distribution. In this case, the particles possess pure quantum-mechanical states that cannot be captured 
by classical  statistics77. Besides, g (2)(0) = 0 indicates a perfect particle blockade effect, i.e., a signature of 
a single-magnon (single-photon) source. In what follows, we theoretically demonstrate the feasibility of 
using our hybrid optomagnonic system for preparing the single-particle sources based on blockade effects. 
Physically, the magnon (photon) blockade phenomenon implies that the excitation of multiple magnons 
(photons) is blocked at the same  time59. Besides its fundamental scientific significance, the magnon blockade 
effect is crucial for the exploration of magnon at the quantum level and opens up a pathway for designing a 
single-magnon  emitter78–80. Now, we derive the analytical expressions corresponding to the auto-correlation 
functions of photons in the WGM b and the magnon mode m. The auto-correlation function of the WGM b 
can be obtained as 

(13)

B̂B(t) =− i
∑

k

gkb̂k(0)B(t),

M̂B(t) =− G
∑

k

gkm̂k(0)M(t).

(14)m̂(t) =e−(iω+Ŵ)t
[

m̂(0) cosGt − i
(

b̂(0)+ Eb

)

sinGt
]

+ B̂m(t)+ M̂m(t),

(15)

B̂m(t) =− i
∑

k

gkm̂k(0)B(t),

M̂m(t) =− G
∑

k

gkb̂k(0)M(t),

(16)
B(t) = e−(iω+Ŵ+iG)t

2[iωk − (iω + Ŵ + iG)] +
e−(iω+Ŵ−iG)t

2[iωk − (iω + Ŵ − iG)]

+ (iω + Ŵ − iωk)e
−iωkt

(iω + Ŵ + iG − iωk)(iω + Ŵ − iG − iωk)
,

(17)
M(t) = e−(iω+Ŵ+iG)t

−2iG[iωk − (iω + Ŵ + iG)] +
e−(iω+Ŵ−iG)t

2iG[iωk − (iω + Ŵ − iG)]

+ e−iωkt

(iω + Ŵ + iG − iωk)(iω + Ŵ − iG − iωk)
.

(18)g (2)x (0) =
〈

x̂†(t)x̂†(t)x̂(t)x̂(t)
〉

〈

x̂†(t)x̂(t)
〉2

, x = b,m.
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where

and

Similarly, the auto-correlation function of the magnon mode m read as

where

and

Since various physical contexts are characterized by different forms of environmental spectra, which in turn 
identifies how fast the system decays. Therefore, in order to numerically analyze the auto-correlation functions, 
one should define the environments’ spectra. Here, we consider the same parametrized spectral density function 
for both photons and magnons  as81

where η stands for the so-called Kondo parameter which denotes the dimensionless strength of the system-bath 
coupling and ωc is the cut-off frequency of the environment (bath). Typically, three types of environments are 
identified, i.e., the super-Ohmic ( s > 1 ), Ohmic ( s = 1 ), and sub-Ohmic ( s < 1 ) environments. When the bath 
spectral density changes from super-Ohmic to sub-Ohmic, a notable transition from coherent to incoherent 
dynamics takes place, especially in the spin-boson model. Therefore, a localization transition may be expected at 
high values of η in the limit ωc → ∞ and low temperature T → 0 , for the sub-Ohmic and Ohmic  cases82. There 
exists no such a transition for the super-Ohmic dissipation. In the sub-Ohmic regime, the dissipative dynamics 
strongly depends on the initial preparation, particularly, at low temperatures. In the Ohmic regime, the reported 
Kondo parameter reads as 0.5 < η < 183. Generally speaking, the lower values of the Kondo parameter may 
be expected for the super-Ohmic dissipation process, e.g., η = 0.184. It is worth noting that ferromagnetic and 
antiferromagnetic materials in noisy environments may qualitatively present similar behavior in the Ohmic, but 
they show fundamentally different behaviors in the super-Ohmic environments. In particular, in super-Ohmic 
noisy environments, the antiferromagnet (in contrast to the ferromagnet) shows a magnon decay rate that goes 
to zero at the largest values of the wave vectors in the Brillouin zone. Hence, it would be of fundamental interest 
for magnonics and quantum information  transport81. Let us proceed to compute the expectation values of the 
auto-correlation functions corresponding to the time evolution of the WGM operator b under the influence of 
the anti-Stokes scattering process. Considering a super-Ohmic spectral density function ( s = 3 ), one can obtain 
the system-bath expectation values as follows (further details can be found in the Appendix)

where we have set the integer p = ωc/kBT for convenience. Also, we have defined
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With the same approach, one can obtain the following relations

where

Other expectation values can be obtained straightforwardly.

Cross‑corrlation. Another interesting statistical property of a hybrid optomagnonic system is the cross-
correlation between its components. This quantity is a measure of the coincidence counting of the photons 
and magnons at time t. In practice, it would be measured by a Hanbury-Brown and Twiss type of experiment 
for interference between two different beams (one for each mode)75,85. The cross-correlation function can be 
obtained as

Based on the value of this quantity the particles are characterized such that g (2)mb(0) = 1 implies that the two modes 
(photons and magnons) are uncorrelated. Also, g (2)mb(0) > 1 demonstrates that the photons and magnons are cor-
related. By contrast, g (2)mb(0) < 1 indicates that the photonic mode and the magnonic mode are anit-correlated. 
The latter implies that there is no tendency for them to appear simultaneously. Anti-correlations between pairs 
of modes have been observed in other contexts such as light scattering by non-spherical  particles86 and also in 
ring  lasers87 when one mode is coherent and the other mode is chaotic above the threshold. Correlation effects 
between the two modes are also encountered in quantum optic  systems88. The analytical expression of the cross-
correlation between the photons and magnons in our considered system reads as

where

and

where in Eq. (33) we have used the following decorrelation  approximation89

Numerical results. Let us now numerically examine the time evolution of quantum statistics of the com-
ponents of the system, i.e., photons and magnons. To do so, we try to use the experimentally feasible param-
eters reported in the relevant literature. For instance, the damping rate, Ŵ ≃ 1.4   MHz59, the scaled driving 
field strength, Ea = 2π × 0.1 MHz ( Pd = 0.037µW59,61), and the effective magnon-photon coupling strength, 
G = 2π × 3.2 MHz at low temperatures T = 10  mK65 have been used in numerical simulations. Here, we exam-
ine the nonclassical features of particles by considering long-range parameters. However, a specific parameter 
range may be selected to achieve nonclassical features depending on the structure of the system and its com-
ponents. Also, it should be noted that the cut off frequency strongly depends on the temperature. For super-
Ohmic dissipation, this parameter may take different values ωc = 100, 500 cm−1 even at zero  temperature81. So 
it is reasonable to consider ωc ≫ kbT for numerical calculations. Besides, generally, the spectral density of the 
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environment in the super-Ohmic regime ( s > 1 ) reads as J(ω) ∝ ωs for ω ≪ ωc . For instance �ωc ≃ 1000 kbT 
can be found  in90.

In the following, we discuss the dependence of the nonclassical features on the system parameters, i.e., the 
driving strength, the effective photon-magnon coupling strength, the initial particles’ numbers, etc. Also, we 
demonstrate how the system must be initiated to achieve strong anti-bunching and blockade phenomena.

Photon statistics. Figure 3 shows the dynamical evolution of g (2)b (0) for different values of the driving field 
strength corresponding to the WGM b indicated by Eb . One can see that the photons show coherent properties 
in the beginning of the interaction, i.e., g (2)b (0) = 1 because there is no photon in the WGM b. The initial coher-
ent feature is contributed to the classical driving field. As time passes both photons and magnons are generated 
and then the photons scattered by the low-frequency magnons. The scattered photons may go into the WGM 
(via the so-called triple-resonance condition)55 and acquire nonclassical properties and finally attain thermal 
equilibrium with the thermal environment. In particular, the time evolution of photon statistics with relatively 
weak driving field Eb = 0.1Ŵ , shown in Fig. 3a, demonstrates a periodic manner after the onset of interaction 
such that at most times the perfect photon blockade takes place, i.e., g (2)b (0) = 0 . However, some fast transitions 
from pure quantum to classical properties occur at some moments of time, i.e., g (2)b (0) = 0 → g

(2)
b (0) > 1 . 

Naturally, the photons lose their nonclassical features as they approach thermal equilibrium in the steady state 
regime. Note that limt→∞ g

(2)
b (0) = 2 is a signature of the appearence of thermal photons. By increasing the 

strength of the driving field, e.g., Eb = 1.0Ŵ , the same behavior can be found in Fig. 3b. In this case, the perfect 
photon blockade phenomenon occurs in shorter time intervals with respect to the previous case. In other words, 
the effect of photon blockade is limited by growing the strength of the driving field. Accordingly, Fig. 3c,d show 
that classical photons prevail by further increasing the strength of the driving field such that for Eb = 30Ŵ the 
perfect photon blockade effect can be observed just at some moments of time. In other words, sub-Poissonian 
(super-Poissonian) photons may be found in longer times by considering a relatively weak (strong) driving field.

The contours of photon auto-correlation function are plotted in Fig. 4. The patterns indicate that the values of 
the auto-correlation function separate the nonclassical regime g (2)b (0) < 1 from the classical regime g (2)b (0) > 1 . 
Also, the photon blockade effect can be observed in all cases, especially when g (2)b (0) → 0 . Generally, the results 

(a) Eb = 0.1Γ (b) Eb = 1.0Γ

(c) Eb = 5.0Γ (d) Eb = 30Γ

Figure 3.  The effect of driving field strength (Eb) on the photon statistics against the scaled time τ = Ŵt for 
n = 0 , m = 1 and G = 5Ŵ with Ŵ = 1.0γ . Note that we have set γ = 2π × 1.0 MHz to scale all the frequencies 
throughout the article. The other parameters are chosen as ωc = 100Ŵ , η = 0.1 , kBT = 0.001ωc for all numerical 
results. The results show that the desired nonclassical features such as the photon antibunching ( g (2)b (0) < 1 ) 
and photon blockade ( g (2)(0) → 0 ) take place during the interaction. However, the photons become thermal 
particles ( g (2)b (0) = 2 ) as the system approches steady state.
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presented in Fig. 4 demonstrate that the generation of nonclassical photons strongly depends on the driving field 
strength Eb such that by increasing this quantity the photons get more classical features as previously described 
in Fig. 3. In particular, a simple comparison between Fig. 4a,d reveals that the photon blockade phenomenon is 
more plausible in the weak driving field regime.

Besides, the photon statistics has a periodic behavior with respect to both scaled time and the damping rate Ŵ . 
In fact, at the onset of the interaction, the photnos show sub-Poissonian statistics for small values of damping rate. 
During the interaction (at the moderate time), the photon statistics periodically changes from sub-Poissonian 
to super-Poissonian, i.e., implying the quantum-classical transition. Also, the coherent (Poissonian) photons 
may be observed during the interaction, especially by applying a strong driving field. Note that the quantum-
classical transitions become faster for larger values of damping rates. Indeed, the photons sooner attain thermal 
equilibrium, i.e., steady state regime, by increasing the amount of damping rate.

The so-called photon antibunching may arise from various mechanisms, and implies that finding two or more 
photons is not plausible at the same time. The potential applications of single-photon states for optical processing 
of quantum information have been extensively discussed in relevant  literature58,91. A reliable and bright source 
of single-photons would be of interest for spectroscopy and quantum optics. One of the essential features of a 
single-photon emitter is that they never emit two or more photons (with the same wavelength) simultaneously 
and consequently present strong antibunching. The single-photon sources (photon guns) have been realized 
from recent progress in the optical detection, characterization, and manipulation of single quantum objects and 
may be exploited for producing intensity-squeezed  light92.

The significance of the photon blockade effect is mainly motivated by the considerable applications of single-
photons to the foundations of quantum theory as well as in quantum information science. It ensures a reliable 
single-photon source which is an essential ingredient for quantum simulation, and optomechanical system as a 
quantum non-linear  device93. We show that the nonclassical features of photons,i.e., photon antibunching and 
blockade effects are limited by the thermal noise. Therefore, to ensure the realization of the photon blockade, 
and provide single-photon sources the thermal noise needs to be  suppressed94.

(a) Eb = 0.01Γ. (b) Eb = 5.0Γ

(c) Eb = 10Γ (d) Eb = 30Γ

Figure 4.  The effect of driving field strength on the dynamics of photons’ auto-correlation function against 
the scaled time τ = Ŵt for n = 1 , m = 1 , G = 2Ŵ . The other parameters are the same as in Fig. 3. The desired 
nonclassical features such as the photon antibunching ( g (2)b (0) < 1 ) and photon blockade ( g (2)b (0) → 0 ) can be 
realized.
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Magnon statistics. Now, we want to evaluate the time evolution of the magnon auto-correlation function. Let us 
start with the effect of the number of particles on the magnon statistics as depicted in Fig. 5. When the system is 
initiated with vacuum state |n,m� = |0, 0� which implies that there is no photon in the WGM b and no magnon 
in the onset of interaction. The results show that the generated magnons do not obtain nonclassical properties as 
can be found in Fig. 5a. In this case, the magnons always are classical particles. When the system is initiated with 
only one photon in the WGM b, i.e., |n,m� = |1, 0� , the magnon antibunching may be realized for a relatively 
long time as is seen in Fig. 5b. Indeed, the photon in the WGM is annihilated and a magnon is created due to 
the scattering process. Also, the stability of nonclassical features, e.g., the magnon antibunching and blockade 
effects can be observed after the beginning of the interaction. As time passes, the number of magnons increases 
and they lose their nonclassical features (the bunched magnons may be realized) due to their interaction with 
the thermal environment. In this case, the magnons undergo some fast quantum-classical transitions during the 
interaction, i.e., g (2)m (0) < 1 → g

(2)
m (0) > 1 . Let us now consider the case in which the system is initiated with 

just one magnon, i.e., |n,m� = |0, 1� which implies there is no photon in the WGM b. Generally, the patterns 
of magnon statistics in both Figs. 5b,c are similar, however, the quantum-classical transitions start sooner in 
the latter case. When the system is initiated with one photon and one magnon, the results are more interest-
ing. Figure 5d reveals that the magnons statistics oscillate between sub-Poissonian (antibunched magnons) and 
Poissonian (coherent magnons) for a relatively long time, but finally, the magnons become thermal particles, i.e., 
g
(2)
m (0) = 2 . Generally, we can state that the magnon statistics strongly depends on the number of initial particle 

in the system, especially before approaching the steady state. As is expected the classical magnons prevail in the 
steady state regime because the thermal environment imposes its feature on the whole system.

The time evolution of magnon statistics in the weak and strong coupling regimes is studied in Fig. 6. In the 
weak coupling regime where the enhanced optomagnonic coupling rate is much smaller than the decay rate of 
the WGM, i.e., G ≪ κb = Ŵ , the results show that the nonclassical magnons’ features such as antibunching and 
blockade are seen in a relatively large window as shown in Fig. 6a. However, the magnons gradually become 
thermalized with their environment such that the bunched magnons remain in the steady state regime. Let us 
gradually increase the coupling strength to follow its influence on the magnon statistics. In Fig. 6b which is 
plotted for G = 1.0Ŵ , one can see that the magnons statistics shows an oscillatory manner in such a way that the 
magnons lose and re-acquire their nonclassical features several times after the onset of interaction. However, they 
finally become classical particles due to the presence of the thermal environment. Interestingly, the comparison 

(a) n = m = 0 (b) n = 1 and m = 0

(c) n = 0 and m = 1 (d) n = m = 1

Figure 5.  The effect of initial particles’ numbers on the time evolution of the magnon auto-correlation function 
for Eb = 0.1Ŵ , G = 5Ŵ . The other parameters are the same as in Fig. 3. The results demonstrate both magnon 
antibunching and magnon blockade as the desired nonclassical features.
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between the minimum values of g (2)m (0) in Fig. 6a,b reveals that the magnon blockade becomes more probable in 
the moderate coupling regime, e.g., G = 1.0Ŵ . Further increasing the amount of coupling strength demonstrates 
that the magnon statistics undergoes faster oscillations. Indeed, the quantum-classical transitions become faster 
by increasing the effective coupling strength G such that both classical and nonclassical magnons can be periodi-
cally realized during the interaction. Besides, it should be noted that the classical magnons are seen in larger time 
intervals by increasing the coupling strength. In fact, the magnon antibunching and magnon blockade gradually 
disappear in relatively strong coupling regime G ≫ Ŵ and instead coherent magnons appear during the interac-
tion which results in the transition from Poissonian to super-Poissonian statistics, i.e., g (2)m (0) < 1 → g

(2)
m (0) ≃ 1 . 

Note that all cases demonstrate a relatively large window in which the magnons possess thermal properties, 
especially for large damping rates and near the steady state regime.

It is worthwhile noting that a closer look at Fig. 3a,c reveals that it is possible to observe the perfect photon 
and magnon blockade phenomena, simultaneously, due to the fact that g (2)b(m)(0) → 0 can be obtained at the 
same relatively long time interval.

In quantum science and technology, the study of nonclassical states of magnons is meaningful for the inte-
gration of magnons with other quantum platforms. Nonclassical magnons have attracted the interests of very 
diverse communities, from spintronics to quantum optics, from magnonics to CV quantum information, from 
condensed matter physics to astrophysics, from theorists to experimentalists and  engineers95. Also, the coherent 
magnons allow the design of interference-based spin-wave devices and facilitate the implementation of wave-
based computing devices. Some novel coherent states of matter, such as magnon Bose-Einstein condensates, 
provide a broad range of additional  applications96. Besides, the thermally excited magnons have been intensively 
investigated thanks to their potential in computing devices and thermoelectric conversion technologies. A ther-
mal magnon current mediated by coherent magnons via nitrogen-vacancy spin states may be exploited for the 
implementation of a device platform that hybridizes spin caloritronics and spin  qubits97.

Furthermore, the magnon blockade as a pure quantum phenomenon opens up a pathway for designing a 
single magnon  emitter78,98. The implementation and manipulation of single magnon sources will help to develop 
novel technologies with significant practical relevance for precision metrology, quantum information processing, 
and quantum  simulation59.

(a) G = 0.1Γ (b) G = 1.0Γ

(c) G = 2.0Γ (d) G = 5.0Γ

Figure 6.  The effect of photon-magnon coupling constant on the time evolution of magnon statistics for n = 1 , 
m = 1 , and Eb = 0.1Ŵ . Note that g (2)m (0) < 1 implies the magnon antibunching. Also, the phenomenon of 
magnon blockade is realized when g (2)m (0) → 0.
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Magnon‑photon statistics: cross‑correlation. Now, we study the dynamics of the cross-correlation between pho-
tons and magnons. Figure 7 shows that the initial values of the cross-correlation strongly depend on the num-
ber of initial particles in the system. However, as time goes on this quantity undergoes an irregular oscillatory 
manner for a relatively long time and finally reaches its steady state. The oscillatory manner can be referred 
to the exchange of excitations between the magnons and photons. Generally, we can state that after the onset 
of interaction, the photons and magnons acquire nonclassical features, anti-correlation, i.e., g (2)mb(0) < 1 , but 
then they gradually lose their anti-correlation and finally become uncorrelated in the steady state regime, i.e., 
g
(2)
mb(0) = 1 . Let us take a look at each plot of Fig. 7. When the system is initiated with vacuum state n = m = 0 , 

the initial cross-correlation reads as g (2)mb(0) = 1 and the driving field governs the behavior of photon-magnon 
correlation as depicted in Fig. 7a. Especially for Eb = 0 , the system components always remain uncorrelated 
because there is no driving field to generate photonic or magnonic excitation, while the presence of the driving 
field, i.e., Eb = 1.0Ŵ , results in the anti-correlated particles. Besides, the phenomenon of perfect (strong) anti-
correlation is expected in some moments of time, i.e., g (2)mb(0) → 0 . If the system is initiated with one photon in 
the WGM b, i.e., n = 1 and m = 0 as shown in Fig. 7b, the amount of initial cross-correlation reads as g (2)mb(0) = 0 
which confirms the initial anti-correlation in the system in the absence of the driving field Eb = 0 . As time 
goes further, the magnons may be generated due to the scattering process. Therefore, the photon-magnon anti-
correlation appears, however, the two modes eventually become uncorrelated as a result of the dissipation pro-
cess. By contrast in the presence of the driving field, i.e., Eb = 1.0Ŵ , the system shows initial correlation, i.e., 
g
(2)
mb(0) > 1 . Nevertheless, the photon-magnon correlation disappears and anti-correlated particles are generated 

which recalls a classical-quantum phase transition, i.e., g (2)mb(0) > 1 → g
(2)
mb(0) ≤ 1 . Let us consider the case in 

which the system initially contains equal numbers of photons and magnons, i.e., n = m = 1 . As can be seen in 
Fig. 7c, the system quantum statistics undergoes the same behavior in the absence and presence of the driving 
field. However, the amplitude of cross-correlation is considerably decreased in the presence of the driving field. 
Indeed, the perfect photon-magnon blockade may take place in some moments of time in the absence of the 
driving field. Note that in this case the photon and magnon are uncorrelated in the onset of interaction and 
steady state regime. Now, let us increase the number of initial particles, e.g., n = 5 and m = 2 , and investigate the 
dynamics of cross-correlation. The same patterns as in Fig. 7c are seen in Fig. 7d. However, it should be noted 
that the amplitude of cross-correlation considerably decreases with respect to the latter case. Therefore, the num-
ber of initial particles limits the strength of the anti-correlation and blockade effect.

(a) n = m = 0 (b) n = 1 and m = 0

(c) n = m = 1 (d) n = 5 and m = 2

Figure 7.  The time evolution of photon-magnon cross-correlation function for different initial particle 
numbers and driving field strengths with G = 2Ŵ . The phenomenon of strong anti-correlation can be found in 
all plots, i.e., g (2)mb(0) < 1.
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Now let us survey the 2D contours of the cross-correlation function of the system. Figure 8 shows the effect 
of particle number and the driving field strength on the time evolution of hybrid magnon-photon statistics. The 
periodic manner of cross-correlation is clearly seen in all plots. Also, both the number of particles, as well as 
the driving field, strongly affect the particles’ quantum statistics. Let us begin with the case in which the system 
is initiated by one photon in the WGM b. Figure 8a shows that after the beginning of interaction and for the 
relatively weak driving field, the system demonstrates strong anti-correlation between photons and magnons 
g
(2)
mb(0) ≃ 0 . However, the particles become uncorrelated as time passes due to the effect of the dissipation 

process. Note that there is no initial magnon in the system, however, by increasing the strength of the driving 
field and thus the generation of magnons due to the scattering process, the uncorrelated magnons and photons 
gradually appear g (2)mb(0) ≃ 1 by applying the moderate driving fields. By further increasing the strength of the 
driving field, the particles may obtain correlation g (2)mb(0) > 1 . It should be mentioned that the transitions from 
anti-correlated to uncorrelated and finally correlated particles can be controlled via tuning the strength of the 
driving field, especially for a relatively long time interval after the onset of interaction, i.e., τ < 50 , but as time 
passes the particles become uncorrelated disregarding the strength of the driving field. Such a behavior can be 
found in Fig. 8c wherein the system is initiated with a larger number of photons, i.e., n = 5 and m = 0 . However, 
in the latter case, there is no strong anti-correlation between the particles. Indeed, the anti-correlated particles 
are generated after passing enough time, especially, in the time interval τ ∈ (45, 55) . Let us consider the cases 
in which the system is initialized with equal numbers of photons and magnons. Both Fig. 8b,d reveal that the 
particles are uncorrelated at the beginning of the interaction, i.e., g (2)mb(0) ≃ 1 . Besides, the transition from cor-
relation to anti-correlation takes place in a regular oscillatory manner. The major difference between these cases 
is that in Fig. 8b the particles demonstrate stronger anti-correlation with respect to Fig. 8d.

Finally, it should be noted that when the system is pumped with a weak enough driving field, the system can 
not provide photon-magnon correlation as seen, particularly, in the right plots and generally in all plots of Fig. 8 
because we always arrive at g (2)mb(0) � 1 . In contrast, the generation of the anti-correlated particles is more plau-
sible when the system is initiated with a weak enough driving field. More interestingly, the right plots of Fig. 8 
clearly show that the driving field does not considerably influence the cross-correlation between the photon and 
magnons when the interaction begins with equal numbers of photons and magnons.

(a) n = 1 and m = 0 (b) n = m = 1

(c) n = 5 and m = 0 (d) n = m = 5

Figure 8.  The contour plots of cross-correlation between photons and magnons for different initial particle 
numbers with Eb = 0.1Ŵ , and G = 5Ŵ . The results show that the system may generate the correlated 
( g (2)mb(0) > 1 ), uncorrelated ( g (2)mb(0) = 1 ), and anti-correlated particles ( g (2)mb(0) < 1 ). Indeed, the system 
undergoes the quantum-classical transitions.
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Physically, anti-correlation, i.e., g (2)mb(0) < 1 manifests clearly that both photon and magnons release their 
energies in the form of antibunched magnon-photon pairs. Besides, g (2)mb(0) → 0 indicates that our considered 
system approaches a perfect photon-magnon emitter.

Finally, it should be emphasized that the interpretation of the auto-correlation function, i.e., g (2)(0) as a 
witness of successfully heralding a magnon Fock state depends on the temperature of the magnon mode as 
well as the mean number of thermal magnons. An important part of engineering quantum devices is quantum 
state preparation. The generation of nonclassical magnons allows the realizations of single-magnon detectors 
which are important to make use of magnonic states for quantum information  processing95. Bittencourt et al. 
proposed a heralding protocol based on cavity optomagnonics in which a magnon Fock state is created by the 
measurement of an optical photon. Indeed, preparing Fock states in such platforms is an essential step toward 
the implementation of quantum information schemes. Also, the cross-correlation function can be used to detect 
the generation of photonic and magnonic Fock  states71.

Photon‑magnon entanglement
Recalling that the magnons may be coupled with the optical photons through optomagnonic interaction to 
generate photon-magnon  entanglement99. As mentioned, the YIG sphere supports two optical modes, namely 
the WGMs and one magnon mode. The two optical modes are driven by two laser pulses, respectively. The 
photon-magnon entanglement may be realized between the magnon mode and one of the two optical modes by 
applying the first pulse, and the state of the magnon mode is subsequently mapped into another optical mode 
via the second  pulse100. Physically, the magnons can interact coherently with microwave photons via magnetic 
dipole  interaction101. Moreover, the magnons and phonons may be coupled via the magnetostrictive interaction. 
The strong coupling between magnons and microwave photons has been demonstrated experimentally with 
magnetic YIG  sphere1,10. This coupling not only facilitates magnon-photon  entanglement100, but also allow an 
effective interaction between magnons and superconducting  qubit36.

Now, we examine the photon-magnon entanglement as a measure of nonclassicality in our hybrid optomag-
nonic system. Some criteria have been proposed to determine the sufficient conditions for the characterization 
of intermodal  entanglement102–104. Here, we restrict ourselves to one of these criteria which may be successfully 
used in detecting intermodal entanglement in bosonic systems, e.g., the photon-magnon entanglement. The 
inseparability criterion introduced by Hillary and Zubairy reads as

The negative value of the quantity E gives us the signature of the intermodal photon-magnon  entanglement102,105. 
In what follows, we evaluate the photon-magnon entanglement by considering a two-mode cat state as the initial 
state of the system. The Schrödinger cat states not only play a key role in distinguishing the difference between 
classical and quantum  physics106, but also are an indispensable resource for quantum  computing107,108, quantum 
 teleportation109 and high-precision  measurements110. Under a strong driving field, e.g., microwaves, the magnons 
will reach a coherent state, where the mean magnon number is equal to its  variance95.

Magnon cat state as a macroscopic quantum superposition of collective magnetic excitations not only provides 
fundamental tests of macroscopic quantum effects but also allows quantum metrology and quantum computa-
tion. Interestingly, both even and odd magnonic cat states can be remotely generated by performing local non-
Gaussian operations on the optical mode that is entangled with magnon mode through pulsed optomagnonic 
 interaction99. Besides, the magnonic cat states could be prepared by pulsed sideband driving, in the optical 
domain. Recently, the analog quantum control of magnonic cat states by a superconducting qubit was reported 
 in111. So, it is worthwhile to investigate the photon-magnon entanglement when the system initiated with even 
and odd Schrödinger cat states denoted by |�(α)�+ and |�(α)�− , respectively. These states are defined below

where we assume that α takes real values for convenience. It should be noted that the odd (even) magnon cat 
state can be remotely generated by performing a single-photon subtraction (addition) operation. Indeed, the 
initial magnon coherent state turns into a non-Gaussian state by applying a single-photon operation on the opti-
cal mode. After a projective measurement on the optical mode, the magnon state collapses into a Schrödinger 
cat  state99.

These states possess some interesting features. For instance, the even cat states show super-Poissonian (classi-
cal) statistics and provide squeezing properties. In contrast, the odd cat states present sub-Poissonians (nonclas-
sical) statistics and no squeezing evidence. The reversal role between the even and odd coherent states regarding 
quadrature squeezing and sub-Poissonian statistics can be readily checked. Also, the even and odd cat states result 
in positive and negative amplitude at the symmetry center in the Wigner  functions99. All these characteristics 
may rise due to the difference in parity of even and odd cat states. In practice, it is possible to prepare different 
magnon cat states by choosing suitable single-photon operations.

Besides, the generation of the optical Schrödinger cat states has been both theoretically and experimen-
tally demonstrated using homodyne detection and photon number states as  resources112. Both even and odd 
Schröndiger cat states have been successfully generated experimentally in various physical systems such as 
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optic  system112,113, superconducting quantum inference  device114, and trapped ion  system115. Considering these 
Schrödinger cat states and using Eq. (35), we arrive at

where

where αb and αm stand for the intensities of the initial coherent photons and magnons, respectively. Now, let us 
numerically investigate the photon-magnon entanglement. Figure 9 shows the dynamics of photon-magnon 
entanglement criterion for both even and odd coherent cat states in a long-range coupling strength G. The first 
three plots correspond to the even cat state, e.g., |�(αb),�(αm)�+ with different initial intensities, while the 
last plot is obtained when the system is initiated with the odd cat states |�(αb),�(αm)�− . For the considered 
conditions, the entanglement can be only observed with even cat states. However, it should be noticed that the 
dynamics of entanglement depends on the initial particle intensities as well as the photon-magnon coupling 
strength. For instance, Fig. 9a shows that the entanglement exists between photons and magnons for G > 2.2 
just after the onset of interaction. By increasing the mean number of initial particles, one can observe that the 
photons and magnons are initially separable, but fastly become entangled after the onset of interaction as can 
be found in Fig. 9b,c. We can state that by increasing the intensity of cat states, the particles obtain further clas-
sical properties and therefore the system loses its entanglement, particularly in the relatively weak interaction 
regime. On the other hand, when the system is initialized with odd cat state, there is no entanglement between 
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(a) Even cat state αb = 0.5, αm = 0.0 (b) Even cat state αb = 0.5, αm = 1.0

(c) Even cat state αb = 2.0, αm = 1.0 (d) Odd cat state αb = αm = 0.5

Figure 9.  The photon-magnon entanglement dynamics against τ = Ŵt for Ŵ = 1.4γ , Eb = 0.1γ ( Pd ≃ 0.037µ

W). The regions with negative values indicate photon-magnon entanglement.
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the photons and magnons. Generally, our results show that the intermodal entanglement may be observed in 
the strong coupling regime, especially when the system is initiated with lower intensity (population) even cat 
states. Furthermore, the numerical analyses show that there is no entanglement between photons and magnons 
when the system is initialized with odd cat states. In fact, the parity of Schrödinger cat states may influence the 
dynamics of photon-magnon entanglement. Since we evaluate the photon-magnon entanglement criterion for 
both even and odd coherent states with the same parameters, therefore, the odd parity of initial photons and 
magnons may result in no photon-magnon entanglement. Also, the state |�(α)�+ ( |�(α)�− ) contains only even 
(odd) energy eigenfunctions, due to the quantum interference between the two coherent states |±α�116. So, the 
photons and magnons may become entangled or disentangled due to the quantum interference between their 
wave pockets. The realization of Schrödinger cat superposition was verified by the detection of the quantum 
mechanical interference between the localized wave packets. Interestingly, it was shown that the vanishing 
interference signal is a signature of an odd Schrödinger cat  state115. Also, the entanglement-interference com-
plementarity relation was experimentally demonstrated, particularly, via a superconducting circuit. Both the 
interference and the entanglement originate from the original coherence of the interfering system. In contrast, 
the coherence, as a resource can be converted to entanglement or used for  interference117.

Also, the effect of the dissipation rate on the entanglement dynamics shows the same behavior as the coupling 
strength. The results presented in Fig. 10 confirm that the entanglement may be observed when the system is 
initiated with even cat states. Also, when the system initially contains a larger number of particles, there is no 
initial intermodal entanglement, but the components of the system become entangled after the onset of interac-
tion. Generally, as may be expected, the entanglement experiences a decaying behavior as time goes on. It is 
worth mentioning that the phenomenon of disentanglement may stem from the dissipative process, independent 
of the coupling with the environment, and is sensitive to the initial  conditions118. Besides, a rough comparison 
between Fig. 10a,c reveals that for even cat states with lower initial mean particle number, the entangled state 
may be generated in a larger window as shown in Fig. 10a. Once again, we see that the system with initial odd 
cat states shows no photon-magnon entanglement. Note that the energy transfer may affect the dynamics of 
entanglement. It was suggested that the concurrence as a measure of entanglement may be expressed as a func-
tion of energy transfer. Hence, one can define a critical energy Ec such that below which (E < Ec) the system 
must be non-entangled, and above which (E > Ec) the system must be  entangled118. Consequently, depending on 
the chosen initial state of the system, e.g., the even and odd Schrödinger cat states, the energy transfer between 
photons and magnons may result in the non-entangled states. However, it should be noted that finding the 

(a) Even cat state αb = αm = 0.1 (b) Even cat state αb = αm = 0.5

(c) Even cat state αb = αm = 1.0 (d) Odd cat state αb = αm = 0.5

Figure 10.  The photon-magnon entanglement dynamics against τ = Ŵt for G = 3.2γ and Eb = 0.1γ 
( Pd ≃ 0.037µW). The negative values of this quantity indicate that the hybrid optomagnonic state is entangled.
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prpoer critical energy may be complicated due to its dependence on the state of system that prevents further 
 investigations118. Finally, it should be emphasized that we have here used one of the criteria introduced by Hillery 
and Zubairy to detect intermodel entanglement by considering initial coherent cat states. Further investigations 
may demonstrate intermodel entanglement when the system is initiated with other possible physical conditions, 
e.g., by considering different initial states for the system and interaction regimes.

Experimental feasibility and applications
As mentioned, Osada et al. experimentally implemented a system of cavity optomagnonics where a sphere of 
ferromagnetic material supports WGMs for photons and the magnetostatic mode for magnons. They utilized 
the WGM resonator with a 750 µ m diameter YIG sphere which is highly transparent at the optical wavelength of 
1.5 µ m and has a refractive index of 2.19. The light source with wavelength 1.5 µ m originated from an external-
cavity diode laser is introduced through a fiber polarization controller and then coupled to the WGM resonator 
via a tapered silica optical nanofiber. Further details can be found  in4.

In such a system, the WGM photons are scattered by the GHz magnons. Indeed, the high-quality WGM 
cavity drastically enhances magnon-induced BLS. The asymmetry nature of the BLS allows one to govern and 
manipulate the Stokes or anti-Stokes scattering  events74. One can create or annihilate magnons in a highly con-
trolled manner by changing the polarization of the input  laser4. The BLS is a well-established technique to study 
and manipulate magnons. Such a mechanism has been adopted for preparing nonclassical states of  magnons55,74.

Quantum information and its resources such as squeezing and entanglement have been pursued for discrete 
variables (DV), and continuous-variables (CV) systems. The squeezed and entangled photons or magnons dem-
onstrate sub-shot noise and are fruitful for quantum  teleportation119,120. The generation of CV nonclassical states 
paves the way for future quantum computation  protocols121. Notably, CV quantum information gives us more 
opportunities than DV formalism due to the larger accessible Hilbert  space122.

Although, the generation and coherent control of quantum states in a macroscopic spin system still remains 
an outstanding challenge, the nonclassical states of the magnon, including the single-magnon state and the 
equal amplitude superposition state of a single magnon and vacuum has been deterministically generated and 
 benchmarked123. Indeed, the precise and deterministic quantum control of a single-magnon introduces the YIG 
spin system as one of the largest quantum systems that can generate macroscopic quantum states. The authors 
 in123 explored the possibility of utilizing quantum states of the magnon in a ferrimagnetic YIG system to imple-
ment quantum information processing. Besides, the quantum control of a single-magnon enables us to explore 
promising applications in quantum engineering such as the quantum  transducer124 and quantum  network125. The 
hybrid optomechanical-magnetic system may be used as a quantum device. Hence, the single-excitation level and 
the simultaneous blockade of a photon, phonon, and magnon are of fundamental interest and deserve further 
investigations. As a pure quantum phenomenon, the magnon blockade manifests some intriguing quantum 
properties and its manipulation is necessary for the preparation of single-magnon  sources126.

The intermodal magnon-photon entanglement is an interesting quantum resource because of its fundamental 
importance to understand macroscopic quantum phenomena and the classical-quantum transition in magnetic 
systems, and their potential applications in CV quantum information. For instance, the photon-magnon entangle-
ment can be realized by activating the optomagnonic and optomechanical anti-Stokes processes, which transfer 
the magnonic and mechanical states to their respective anti-Stokes photons. Interestingly, the magnon state can 
be read out by using the anti-Stokes process of the  BLS74. Also, the magnon cat states that allow fundamental tests 
of macroscopic quantum effects are promising in quantum metrology and quantum computation. The magnon-
photon entanglement can be used for the remote generation of magnon Schrödinger cat  states99.

Briefly, our results address how to generate the nonclassical states in a hybrid optomagnonic system and pave 
the way to explore its promising applications in quantum information processing and quantum engineering. 
Finally, it is worth mentioning that a hybrid optomagnonics system provides a promising platform to study both 
fundamental quantum physics and fruitful applications such as quantum transducers, quantum memories, high 
precision measurements, and logic  gates95. Even though some of the proposals have been experimentally bench-
marked, the state-of-art design of such systems needs further investigation. Developing the current proposals 
to the quantum limit may result in new physics and present various paths towards interesting phenomena and 
novel technologies.

Summary and discussion
We propose a theoretical model to study the nonclassical features of a hybrid optomagnonic system under the 
influence of the anti-Stokes scattering process. Indeed, we assume a YIG sphere that simultaneously supports a 
magnetostatic mode of magnons and two WGMs of optical photons. The system undergoes the magnon-induced 
BLS, i.e., the photons in the WGMs are scattered by lower-frequency magnons. Consequently, the sideband 
photons are generated such that their frequency is shifted by the magnons’ frequency. The verified sideband 
asymmetry in magnon-induced BLS facilitates the selective creation or annihilation of magnons in the Kittel 
mode with optical  photons4. These unique features of the system allow it to serve as an interesting test bed for 
investigating diverse quantum contexts, including quantum optics and spintronics.

To achieve our goal, based on the context of the open quantum system, we derive the analytical expressions 
of the time-dependent operators corresponding to the photonic and magnonic subsystems and then proceed to 
deal with the nonclassical features of the photons and magnons. In particular, we investigate the auto-correlation 
and cross-correlation among the components of the system as well as their intermodal entanglement.

Generally, the results show that the particles, e.g., both photons and magnons acquire nonclassical character-
istics such as antibunching, anti-correlation, and blockade phenomena. Also, the phenomenon of simultaneous 
photon-magnon blockade may take place during the interaction. Besides, the system provides the potential for 
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tracking the quantum-classical transition because the particles present sub-Poissonian (pure quantum), Pois-
sonian (semi quantum-classical; coherent), and super-Poisssonian (pure classical) statistics, particularly, before 
approaching the steady state regime. However, it should be mentioned that both photons and magnons lose 
their nonclassical features and become thermal particles due to their interaction with thermal environments. 
Although the nonclassical features eventually disappear due to the dissipation process, we demonstrate that the 
system can maintain strong antibunching and anti-correlation for a relatively long time before the thermalization.

It is noteworthy that the nonclassical features of the particles may be manipulated by tuning the system and 
bath parameters. In particular, the system obtains strong antibunching and anti-correlation in the presence of 
the weak driving field. Also, the nonclassical characteristics may be empowered if the system is initiated with 
small numbers of particles. For instance, when the system is initialized with just one particle (photon or mag-
non), both antibunching and anti-correlation may be realized for a relatively long time. Furthermore, the results 
reveal that the coupling strength between photons and magnons strongly affects the quantum statistics of the 
particles. For instance, the magnons gradually lose their antibunching effects in the weak coupling regime, but 
they periodically lose and re-obtain antibunching in the moderate coupling regime. Note that the oscillatory 
manner of the magnon statistics maintains even in the strong coupling regime, however, the magnons mostly 
acquire coherent properties in this regime. In other words, the photon-magnon coupling strength may be used 
to control the period of the quantum-classical transitions.

Finally, it should be noted that the unique nonclassical features of such a system, e.g., antibunching and 
anti-correlation, may provide interesting applications at the crossroad between quantum optics and spintronics.

On the other hand, the intermodal photon-magnon entanglement may be observed in the strong coupling 
regime, especially when the system is initiated with the even cat states. Although the dissipation process plagues 
the intermodal entanglement, the entangled optomagnonic states may be generated in a larger window with 
lower initial particle mean numbers. Briefly, our model offers a promising vision for the realization of realistic 
hybrid optomagnonic systems, and finds potential applications in quantum information processing based on 
the generation of single-particle sources.

Data availibility
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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