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Compact localized states 
in magnonic Lieb lattices
Grzegorz Centała 1,2 & Jarosław W. Kłos 1,2*

Lieb lattice is one of the simplest bipartite lattices, where compact localized states (CLS) are observed. 
This type of localization is induced by the peculiar topology of the unit cell, where the modes are 
localized only on selected sublattices due to the destructive interference of partial waves. We 
demonstrate the possibility of magnonic Lieb lattice realization, where flat bands and CLS can be 
observed in the planar structure of sub-micron in-plane sizes. Using forward volume configuration, 
the Ga-doped YIG layer with cylindrical inclusions (without Ga content) arranged in a Lieb lattice with 
250 nm period was investigated numerically (finite-element method). The structure was tailored to 
observe, for a lowest magnonic bands, the oscillatory and evanescent spin waves in inclusions and 
matrix, respectively. Such a design reproduces the Lieb lattice of nodes (inclusions) coupled to each 
other by the matrix with the CLS in flat bands.

There are many mechanisms leading to wave localization in systems with long-range order, i.e. in crystals or 
quasicrystals. The most typical of these require (i) the local introduction of defects, including the defects in 
the form of surfaces or  interfaces1 (ii) the presence of global  disorder2, (iii) the presence of external  fields3 or 
(iv) the existence of many-body  phenomena4. However, since at least the late 1980s, it has been known that 
localization can occur in unperturbed periodic systems in the absence of fields and many-body effects, and is 
manifested by the presence of flat, i.e., dispersion-free bands in the dispersion relation. The pioneering works 
are often considered to be the publications of  Sutherland5 and  Lieb6, who found the flat bands of zero  energy7 for 
bipartite lattices with the use of tight-binding model with the hoppings occurring only between sites of different 
sublattices. The Lieb lattice is regarded as the simplest realization of this type of  systems6,8. The Lieb lattice is a 
complex lattice, where the nodes of minority (square) sublattice, connect to each other only via the nodes from 
other two majority (square) sublattices (Fig. 1a). In the case of extended Lieb  lattices9–11, the nodes from minority 
form chains: dimmers, trimmers, etc. (Fig. 1c). An intuitive explanation for the presence of the flat bands is the 
internal isolation of excitations located in one of the sublattices. The canceling of excitations at one sublattice is 
the result of destructive interference and local symmetry within the complex unit  cell12. When only one of the 
sublattices is excited, the other sublattice does not mediate the coupling between neighboring elementary cells, 
and the phase difference between the cells is irrelevant to the energy (or the frequency) of the eigenmode on the 
whole lattice—i.e. the Bloch function. The Bloch functions for flat band are then degenerated for every value of 
wave number k . The linear combination of Bloch functions differing in k (with a coefficients f (k)eR·k , where 
f (k) is arbitrary continuous function) are localized around lattice vector R , similarly like Wannier functions. 
Such kinds eigenmodes are called compact localized states (CLS)13–17 and show a certain resistance to the intro-
duction of  defects18,19. The flat bands with CLS are the platform for the studies of Anderson  localization20, and 
unusual properties of electric  conductivity21. A similar localization is observed in the quasicrystals where the 
arrangements of the elements composing the structure are replicated aperiodically and self-similarly through-
out the  system22,23. Then, the excitation can be localized on such patterns. The CLS in Lieb lattices have a form 
of loops (plaquettes) occupying the majority nodes and that kind of states do not form a complete base for the 
flat band (due to singularity at M point in Brillouin zone). However, the set of CLS can be supplemented by the 
states occupying only one sublattice of majority nodes. Such states are localized at lines of nodes, and are called 
noncontractible loop states (NLS)15,16,24.

The topic of Lieb lattices and other periodic structures with compact localization and flat bands was  renewed8 
about 10 years ago when physical realizations of synthetic Lieb lattices began to be considered for electronic 
 systems25,26, optical  lattices27,28, superconducting  systems29,30, in  phononics31, and  photonics15,32. In a real system, 
where the interaction cannot be strictly limited to the nearest elements of the structure, the bands are not per-
fectly flat. Therefore, some authors use the extended definition of the flat band to consider the bands that are flat 
only along particular directions or in the proximity of high-symmetry Brillouin zone  points33. In tight-binding 
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models, this effect can be included by considering the hopping to at least next-nearest  neighbors34,35. Similarly, 
the crossing of the flat band by Dirac cones can be transformed into anti-crossing and lead to opening of the 
gaps, separating the flat band from dispersive bands. This effect can be induced by the introduction of spin-orbit 
term to tight-binding Hamiltonian (manifested by the introduction of Peierls phase factor to the hopping) or by 
dimerization of the lattice (by alternative changes of hoppings or site energies)34–38. The latter scenario can be eas-
ily observed in real systems where the position of rods or wells (mimicking the sites of Lieb lattice) and contrast 
between them can be easily  altered39. Opening the narrow gap between flat band and dispersive bands for Lieb 
lattice is also fundamentally interesting because it leads to the appearance of so-called Landau–Zener  tunneling40.

The isolated and perfectly flat bands for Lieb lattices are topologically trivial—their Chern number is equal 
to  zero41. For weakly dispersive (i.e. almost flat) bands the Chern numbers can be different then  zero42. However, 
when the flat band is intersected by dispersive bands, then it can exhibit the discontinuity of Hilbert–Schmidt 
distance between eigenmodes corresponding to the wave vectors just before and just after the crossing. Such 
an effect is called singular band  touching17. This limiting value of Hilbert–Schmidt distance is bulk invariant, 
different from the Chern number.

One of the motivations for the photonic implementation of systems with flat, or actually nearly flat  bands43, 
was the desire to reduce the group velocity of light in order to compress light in space, which leads to the con-
centration of the optical signal and an increase in the light-matter interaction, or the enhancement of non-linear 
effects. Another, more obvious application is the possibility of realizing delay lines that can buffer the signal to 
adjust the timing of optical  signals44. A promising alternative to photonic circuits are magnonic systems, which 
allow signals of much shorter wavelengths to be processed in devices several orders of magnitude  smaller45,46. 
For this reason, it seems natural to seek a magnonic realization of Lieb lattices.

Lieb lattices have also been studied in the context of magnetic properties, mainly due to the possibility of 
enhancing ferromagnetism in systems of correlated  electrons47, where the occurrence of flat bands with zero 
kinetic energy was used to expose the interactions. There are also known single works where the spin waves have 
been studied in the Heisenberg model in an atomic Lieb lattice, such as the work on the magnon Hall  effect48. 
However, the comprehensive studies of spin waves in nanostructures that realize magnonic Lieb lattices and 
focus on wave effects in a continuous model have not been carried out so far.

Results
In this paper, we propose the realization of such lattices based on a magnonic structure (Fig. 1a,c) in the form of 
a perpendicularly magnetized magnetic layer with spatially modulated material parameters or spatially varying 
static internal field.

We consider planar magnonic  crystals49 (MCs) to design the magnonic Lieb lattice, owing to the relative 
ease of fabrication of such structures and their experimental  characterization50–52. We propose realistic systems 
that mimic the main features of the tight-binding model of Lieb  lattice17,34. Investigated MCs consist of yttrium-
iron-garnet (YIG) doped with gallium (Ga:YIG) matrix and YIG cylindrical inclusions arranged in Lieb lattice 
(Fig. 1). Doping YIG with Gallium is a procedure where magnetic Fe3+ ions are replaced by non-magnetic Ga3+ 
ions. This method not only decreases saturation magnetization MS but, simultaneously, arises uniaxial out-of-
plane anisotropy, that ensures the out-of-plane orientation of static magnetization in Ga:YIG layer at a relatively 
low external field applied perpendicularly to the layer. Discussed geometry, i.e. forward volume magnetostatic 
spin-wave configuration, does not introduce an additional anisotropy in the propagation of spin waves related 
to the orientation of static magnetization.

Figure 1.  Basic (a,b) and extended (c,d) magnonic Lieb lattices. Both planar magnonic structures consist of 
YIG cylindrical nanoelements embedded within Ga:YIG matrix. Dimensions of the ferromagnetic unit cell 
for the basic Lieb lattice are equal to 250 × 250 × 59 nm whereas for the extended Lieb lattice dimensions are 
375 × 375 × 59 nm. The unit cell contains three and five inclusions of 50 nm in diameter for basic and extended 
Lieb lattice (Lieb-5), respectively. In both cases, the separation between centers of inclusions is equal to 125 nm. 
The structure of basic (a) and extended (c) Lieb lattice, and top view of basic (b) and extended (d) Lieb lattice 
unit cell. Both structures are consisted of one node (inclusion) from minority sublattice A and two (four) nodes 
(inclusions) from majority sublattice for basic Lieb lattice (extended Lieb lattice).
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The design of the Lieb lattice requires the partial localization of spin-wave in inclusions, which can be treated 
as an approximation of the nodes from the tight-binding model. Furthermore, the neighboring inclusions in 
the lattice have to be coupled strongly enough to sustain the collective spin-wave dynamics, and weakly enough 
to minimize the coupling between further neighbors. Therefore, the geometrical and material parameters were 
selected to ensure the occurrence of oscillatory excitations in the YIG inclusions and exponentially evanescent 
spin waves in the Ga:YIG matrix. The size of inclusions was chosen small enough to separate the three lowest 
magnonic bands with almost uniform magnetization precession inside the inclusion from the bands of higher 
frequency, where the spin waves are quantized inside the inclusions. Also, the thickness of the matrix and inclu-
sion was chosen in a way that there are no nodal lines inside the inclusion. The condition which guarantees the 
focusing of magnetization dynamics inside the inclusions is fulfilled in the frequency range below the ferro-
magnetic resonance (FMR) frequency of the out-of-plane magnetized layer made of Ga:YIG (matrix material): 
fFMR,Ga:YIG =4.95 GHz and above the FMR frequency of out-of-plane magnetized layer made of YIG (inclusions 
material): fFMR,YIG = 2.42 GHz. These limiting values were obtained using the Kittel formula for out-of-plane 
magnetized film: fFMR = (|γ |/2π)|µ0H0 + µ0Hani − µ0MS| , where we used the following values of material 
 parameters53 for YIG: gyromagnetic ratio |γ | = 177 rad T−1ns−1 , magnetization saturation µ0MS = 182.4 mT, 
exchange stiffness constant A = 3.68 pJ m−1 , (first-order) uniaxial anisotropy field µ0Hani = −3.5mT, and for 
Ga:YiG: |γ | = 179 rad T−1ns−1 , µ0MS = 20.2 mT, A = 1.37 pJ m−1 , µ0Hani = 94.1 mT. Due to the greatest 
impact of the first-order uniaxial anisotropy field ( µ0Hani ), we decided to neglect higher-order terms of uniaxial 
anisotropy and cubic anisotropy of both YIG and Ga:YIG. Due to the presence of out-of-plane anisotropy and 
relatively low saturation magnetization, we could consider a small external magnetic field µ0H0 = 100 mT to 
reach saturation state. It is worth noticing that without the evanescent spin waves in the ferromagnetic matrix, 
the appropriate coupling between inclusions would not be possible. Therefore, the realization of the Lieb lattice 
in form of the array of ferromagnetic nanoelemets embedded in air/vacuum seems to be very challenging (see 
the exemplary results in Supplementary Note 3).

We also tested the possibility of other realizations of magnonic Lieb lattices. One solution seemed to be the 
design of a structure in which the concentration of the spin-wave amplitude in the Lieb lattice nodes would be 
achieved through an appropriately-shaped profile of the static demagnetizing field (see Supplementary Note 2). 
However, the obtained results were not as promising as for YIG/Ga:YIG system. In the following part of the 
manuscript, we present the results for the basic Lieb lattice (showed in Fig. 1a,b) and extended Lieb-5 lattice 
(showed in Fig. 1c,d), based on YIG/Ga:YIG structures. The further extension of the Lieb lattice may be realized 
by increasing the number of B nodes between neighboring A nodes. Supplementary Note 1 presents the results 
for Lieb-7 lattice, where for each site (inclusion) from minority sublattice A, we have six nodes (inclusions), 
grouped in three-element chains, from majority sublattices B.

The tight-binding model of the basic Lieb lattice with hopping restricted to next-neighbors gives three bands 
in the dispersion relation. The top and bottom bands are symmetric with respect to the second, perfectly flat 
band, and intersect with this dispersionless band at M point of 1 st Brillouin zone, with constant slope forming 
two Dirac  cones8,28. In a realistic magnonic system, the spin-wave spectrum showing the particle-hole symmetry 
with a zero-energy flat band is difficult to reproduce because (i) the dipolarly-dominated spin waves, propagating 
in magnetic film, experience a significant reduction of the group velocity with an increase of the wave vector 
(this tendency is reversed for much larger wave vectors were the exchange interaction starts to dominate)54, (ii) 
the dipolar interaction is long-range. The first effect makes the lowest band wider than the third band, and the 
latter one induces the finite width of the second  band34. We are going to show that this weakly dispersive band 
supports the existence of CLS. Therefore, we will still refer to it as flat band, which is a common practice for dif-
ferent kinds of realization of Lieb lattices in  electronics26,  photonics55 or optical  lattices28.

The results obtained for the basic magnonic Lieb lattice (which is presented in Fig. 1a), are shown in Fig. 2. 
As we predicted, three lowest bands form a band structure that is similar to the dispersion relation known from 
the tight-binding  model11. However, in a considered realistic system there is an infinite number of higher bands, 
not shown in Fig. 2a. For higher bands, spin waves can propagate in an oscillatory manner in the matrix, hence 
the system does not mimic the Lieb lattice where the excitations should be associated with the nodes (inclu-
sions) of the lattice.

Due to the fourfold symmetry of the system, the dispersion relation could be inspected along the high-
symmetry path Ŵ-X-M-Ŵ . Frequencies of the first three bands are in the range fFMR,YIG − fFMR,Ga:YIG . Their total 
width is about 0.78 GHz. The first and third band form Dirac cones at M point, separated by a tiny gap of about 
15 MHz. The possible mechanism responsible for opening the gap is a small difference in the demagnetizing field 
in the areas of inclusions A (from the minority lattice) and inclusions B (from two majority sublattices)—see 
Supplementary Note 4. Inclusions A (B) have four (two) neighbors of type B (A). Although inclusions A and 
B have the same size and are made of the same material, the static field of demagnetization inside them differs 
slightly due to the different vicinity. This effect is equivalent to the dimerization of the Lieb lattice by varying the 
energy of the nodes in the tight-binding model, which leads to the opening of a gap between Dirac cones and 
parabolic flattening of them in very close proximity to the M point. It is worth noting that in the investigated 
system, the gap opens between the first and second bands, while the second and third bands remain degenerated 
at point M, with numerical accuracy.

The middle band can be described as weakly dispersive. The band is more flat on the X-M path and, in par-
ticular, in the vicinity of M point—see Fig. 2b. The small width of the second band can be attributed to long-range 
dipolar interactions which govern the magnetization dynamics in a considered range of sizes and wave vectors. 
It is known that even the extension of the range of interactions to next-nearest neighbors in the tight-binding 
model induces the finite width of the flat band for the Lieb lattice.

To prove that the second band supports the CLS regardless of its finite width, we plotted the profiles of spin-
wave eigenmodes (Bloch functions) at M point and in its close vicinity. The results are presented in Fig. 3. The 
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profiles were shown for infinite lattice and are presented in the form of square arrays containing 3 × 3 unit cells, 
where the dashed lines mark their edges. It is visible that spin waves are concentrated in the cylindrical inclu-
sions, where the amplitude and phase of precession is quite homogeneous. In calculations, we used the Bloch 
boundary conditions applied for a single unit cell, which means that at M point the Bloch function is flipped after 
translation by lattice period, in both principal directions of the lattice and we will not see the single closed loops 
of CLS or lines of NLS. Exactly at M point, all three bands have zero group velocity. Therefore, the corresponding 
modes (left column) are not propagating. The lowest band (M1 ) occupies only inclusions A from the minority 
sublattice where the static demagnetizing field is slightly lower than inside inclusions B (see Supplementary Note 
4), which justifies its lower frequency and lifting the degeneracy with two higher modes M 2 and M 3 of the same 
frequency. Each of the modes M 2 and M 3 occupy only one of two sublattices B, therefore they can be interpreted 
as NLS. To observe the pattern typical for CLS, we need to move slightly away from M point. The first and third 
modes have then linear dispersion with high group velocity and the second band remains flat. We selected the 
point M ← shifted from M point toward Ŵ point by 5% of M-Ŵ distance (right column). We can see that the first 
and third modes M ←1  , M ←3  occupy now all inclusions and the mode M ←2  from the flat band has a profile typical 
for CLS, predicted by tight-binding models:8,10,11,56,57:

where |mk� is the set of complex amplitudes of the Bloch function in the base of unit cell, i.e. on one inclusion A 
from minority sublattice and two inclusions B from majority sublattices ( Bx—shifted by (a/2)x̂ form site A and 
By—shifted by (a/2)ŷ form site A). The symbol k = [kx , ky] denotes wave vector. From Eq. (1) we can see that 
(i) CLS (constructed from Bloch functions) will do occupy the minority nodes A and (ii) close to M point the 
phases at two nodes B, from different majority sublattices, are opposite. These two features are reproduced for 
M ←2  mode in investigated magnonic Lieb lattice. In the profile of this mode, we marked (by a gray patch) the 
elementary loop of CLS which is easily identified in finite systems. Here, in an infinite lattice with Bloch bound-
ary conditions, the loops are infinitely replicated with π phase shift after each translation x- and y-direction. The 
localization at the inclusions B and the absence of the spin-wave dynamics in inclusions A is observed regardless 
of the wave vector. Therefore, the coupling can take place only between the next neighbors (inclusions B), i.e. 
on larger distances and mostly due to dipolar interactions, that makes the second band not perfectly flat. It is 
worth noting that eigenmode (1) corresponds to the “zero-energy mode” ( �ω = ω − ω0 = 0 ) of the magnonic 
eigenvalue problem in the NN tight-binding formulation (see Supplementary Note 5):

The symbol ω0 is the (angular) frequency of spin wave mode in a single inclusion embedded in the matrix, 
or the degenerated frequency of the Lieb lattice in the limit of infinitely large lattice constant a → ∞ , 
where coupling between NN inclusions go to zero κ → 0 . The parameter ωM is the magnetization satura-
tion for the inclusions MS , expressed in the units of angular frequency: ωM = |γ |µ0MS . The phase factors: 
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Figure 2.  Dispersion relation for the basic magnonic Lieb lattice containing three inclusions in the unit cell: 
one inclusion A from minority sublattice and two inclusions B from majority sublattices (see Fig. 1a,b). (a) The 
dispersion relation is plotted along the high-symmetry path Ŵ-X-M-Ŵ (see the inset). The lowest band (blue) 
and the highest band (red) create Dirac cones almost touching (b) in the M point. The middle band (green) is 
relatively flat in the vicinity of the M point.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12676  | https://doi.org/10.1038/s41598-023-39816-w

www.nature.com/scientificreports/

φx(k) = φ∗
x (k) = 2cos(kxa/2) and φy(k) = φ∗

y (k) = 2cos(kya/2) are related to the hoppings between NN inclu-
sions in x− and y−direction, respectively. It can be also show that the first and third eigenmode have the eigen-
frequencies which depends linearly on k , in the vicinity of M point ( k = [π/a,π/a]) and form the Dirac cone: 
ω(k) = ω0 ± |κωM |a

∣
∣k − [π/a,π/a]

∣
∣—see Fig. 2b for illustration and Supplementary Note 5 for derivation.

Let us discuss now the presence of flat bands and CLS in an extended magnonic Lieb lattice (Lieb-5), contain-
ing five inclusions in the unit cell: one inclusion A form minority sublattice and four inclusions B from majority 
sublattices, as it is presented in Fig. 1c,d. In the considered structure, we add two additional inclusions B into 
the unit cell in such a way that neighboring inclusions A are linked by the doublets of inclusions B. The sizes 
of inclusions, distances between them, the thickness of the layer, and the material composition of the structure 
remained the same as for the basic Lieb lattice, discussed earlier (Fig. 1a,b).

The dispersion relation obtained for the magnonic Lieb-5 lattice can be found in Fig. 4a. The properties of the 
extended Lieb lattices are well described in the  literature11,58–60. The tight-binding model description of Lieb-5 
lattices, with information about their dispersion relation and the profiles of the eigenmodes, are presented in 
numerous  papers11,17,56. Therefore, it is possible to compare the obtained results with the theoretical predictions 
of the tight-binding model.

The tight-binding model of Lieb-5 lattice predicts two flat bands with CLS: the second (green) and fourth 
(magenta) band in the spectrum. The flat bands in the tight-binding model are not intersected by Dirac cones but 
they are degenerated at Ŵ and M point with the third band (red). These features are reproduced in the investigated 
magnonic Lieb-5 lattice (Fig. 1c,d). The dispersion relation for this system is presented in the Fig. 4a. Also, we 
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M2
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M3
←

CLSNLS
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-
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NLS

+
+

-
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Figure 3.  The profiles of the Bloch functions obtained for the basic magnonic Lieb lattice, composed of 
three inclusions in the unit cell (see Fig. 1a,b). a—denotes lattice constant. The modes are presented for each 
band exactly at M (left column) and in its proximity (M← ) on the path M-Ŵ (right column). In the presented 
profiles, the saturation and the color denote the amplitude and phase of the dynamic in-plane component of 
magnetization. The patterns characteristic for compact localized states (CLS) are presented at the point M ← for 
the second band (right column). The CLS do not occupy minority sublattice A. The inclusions B, in which the 
magnetization dynamics is focused, are quite well isolated from each other. One can easily notice that the lattice 
is decorated by loops (marked by gray patches) where the phase of the precessing magnetization flips between 
inclusions ( + and − signs). Exactly at point M (left column), we observe the degeneracy of the second and third 
bands. The spin waves occupy B inclusions only in one majority sublattice, i.e. along vertical or horizontal lines, 
flipping the phase from inclusion to inclusion which gives the pattern characteristic to noncontractible loop 
states (NLS) marked by gray stripes.
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have marked, with two rectangles (dark green and violet), the vicinities of Ŵ and M points, where the flat bands 
(the fourth and second bands) become degenerated with the third, dispersive band—Fig. 4b. It is easy to notice 
the essential frequency gaps ( ≈ 33 MHz and ≈ 84MHz at Ŵ and M points, respectively), which qualitatively cor-
responds to the prediction of the tight-binding model. It is worth noting that although the low dispersion bands 
(the second and fourth band) are in general not perfectly flat, around Ŵ and M points the bands are flattened and 
the Ŵ -X and X-M sections are very flat for the fourth and second band, respectively.

The spin-wave profiles of Bloch functions at the high-symmetry points: Ŵ and M, exhibiting the CLS patterns, 
are presented in Fig. 5. Exactly at Ŵ and M (the first and third column), we can see the pairs of degenerated mods 
Ŵ3 , Ŵ4 and M 2 , M 3 which exhibit features of CLS predicted by the tight-binding model (see the loops of sites on 
gray patches): (i) modes occupy only the inclusions B from majority sublattices, (ii) doublets of inclusions B in 
the loops of CLS have opposite (the same) phases at Ŵ (M) point. The significant difference is that once we switch 
one to another B-B doublet, circulating the CLS loop the phase of precession charges by ±π/2 not by 0 or π . 
However, when we make combinations of degenerated modes: Ŵ3 ± iŴ4 or M 2 ± iM3 , then we obtain the NLS 
occupying the horizontal or vertical lines, where the precession at excited B inclusion will be in- or out-of-phase. 
The patterns of CLS modes are clearly visible when we move slightly away from the high-symmetry point where 
the degeneracy occurs. In the proximity of Ŵ and M point, one can see the CLS modes for Bloch functions Ŵ←

4  
and M ←2  for which the phase of precession takes the relative values close to 0 or π . The small discrepancies are 
visible as a slight change in the colors representing the phase, resulting from the fact that we are not exactly in 
high-symmetry points but shifted by 5% on the path Ŵ-M.

The extension of the presented analysis to magnonic Lieb-7 lattice, where the inclusions A are linked by the 
chains composed of three inclusions B, is presented in Supplementary Note 1.

Discussion
We proposed a possible realization of the magnonic Lieb lattices where the compact localized spin-wave modes 
can be observed in flat bands. The presented system qualitatively reproduces the spectral properties and the 
localization features of the modes, predicted by the tight-binding model and observed for photonic and electronic 
counterparts. The magnonic platform for the experimental studies of Lieb lattices seems to be attractive due to 
the larger flexibility in designing magnonic systems and the steering of its magnetic configuration by external 
biases. The idea of the magnonic Lieb lattices allows considering many problems related to dynamics, localization, 
and interactions in flat-band systems taking the advantage of the magnonic systems: presence and possibility of 
tailoring of long-range interactions, intrinsic non-linearity, etc.

Methods
The spectra of spin waves and the spatial profiles of their eigenmodes were obtained numerically in a semi-clas-
sical model, where the dynamics of magnetization vector M(r, t) is described by the Landau–Lifshitz  equation54:

(3)
dM

dt
= −|γ |µ0[M×Heff +

α

MS
M× (M×Heff)].

a) b)

BA

Figure 4.  Dispersion relation for the extended magnonic Lieb lattice Lieb-5 containing five inclusions in the 
unit cell: one inclusion A from minority sublattice and four inclusions B from majority sublattices (see Fig. 1c,d). 
(a) The dispersion relation is plotted along the high-symmetry path Ŵ-X-M-Ŵ (see the inset). The first, third, and 
fifth bands (dark blue, red, and cyan) are strongly dispersive bands, while the second and fourth bands (green 
and magenta) are less dispersive and related to the presence of CLS. The system does not support the appearance 
of Dirac cones, even in case when the interaction is fictitiously limited only to inclusions, according to the 
tight-binding model. (b) The zoomed regions in the vicinity of Ŵ (in a dark green frame) and M points show the 
essential gaps with relatively low parabolic-like curvatures for top and bottom bands.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12676  | https://doi.org/10.1038/s41598-023-39816-w

www.nature.com/scientificreports/

The symbol Heff(r, t) denotes effective magnetic field.
In numerical calculations, we neglected the damping term since α is small both for YIG and for YIG with 

Fe substituted partially by Ga (for αGa:YIG = 6.1× 10−4 and αYIG = 1.3× 10−453). The effective magnetic field 
Heff(r, t) is calculated as functional derivative of the free energy density F(r, t) with respect to the magnetiza-
tion M(r, t):

and contains the following components (related to the corresponding terms of the F(r, t) ): the external field 
H0 (Zeeman energy), exchange field Hex (energy of exchange interactions), bulk uniaxial anisotropy field Hani 
(energy of uniaxial magnetocrystalline anisotropy) and dipolar field Hd (energy of dipolar interactions):

where the z-direction is normal to the plane of the magnonic crystal. We assume that the sample is saturated in 
z-direction and magnetization vector precesses around this direction. The material parameters ( MS , A and γ ) are 
constant within matrix and inclusions. Using the magnetostatic approximation, the dipolar term of the effective 
magnetic field may be expressed as a gradient of magnetic scalar  potential54:

(4)Heff (r, t) = −
1

µ0

δF(r, t)

δM(r, t)
,

(5)Heff(r, t) = H0 ẑ +
2A

µ0M
2
S

�M(r, t)+Hani(r) ẑ +Hd(r, t),

(6)Hd(r, t) = −∇ϕ(r, t)
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Figure 5.  The profiles of Bloch functions obtained for the extended Lieb lattice consisted of 5 inclusions in 
the unit cell. The modes are presented for bands no. 3–5 in Ŵ point and its proximity Ŵ← (the first and second 
column). In the third and fourth columns, we presented the profiles for bands no. 1–3 at M point and its vicinity 
M ← . Each profile of eigenmode is presented on a grid composed of 3 × 3 unit cells—dashed lines mark the edges 
of unit cells. The scheme of the unit cell is presented in top-left corner. Exactly at Ŵ (and M) point the bands 
no. 3 and 4 (no. 2 and 3) are degenerated and profiles: Ŵ3 and Ŵ4 (M2 and M 3 ) have non-standard (for CLS) 
complementary form—i.e. their combinations Ŵ3 ± iŴ4 (M2 ± iM3 ) gives NLS. To obtain proper profiles of 
CLS, where the phase of procession flips around CLS loop, we need to explore the vicinity of Ŵ (M) point—see 
the gray patches for the mode Ŵ←

4
 (M←

2
 ) with + and − signs.
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By using the Gauss equation, magnetic scalar potential may be associated with magnetization as follows:

We used the COMSOL  Multiphysics61 to implement the Landau–Lifshitz equation Eq. (3) and performed finite 
element method computation for the defined geometry of magnonic Lieb lattices. All the equations were imple-
mented in the Mathematics module which contains different forms of partial differential equations. To obtain 
the static demagnetization field we solved Eq. (7) using stationary study. Then using the eigenfrequency study 
for each wave vector we solved Eq. (7) (obtaining a dynamic demagnetization field) and then Eq. (3) (solving 
the Landau–Lifshitz equation). To obtain free decay of magnetic scalar potential in the model, we applied 5 µ m 
of a vacuum above and underneath the structure. At the bottom and top surface of the model with vacuum, we 
applied the Dirichlet boundary condition for zeroing of magnetic scalar potential. We use the Bloch theorem 
for each variable (magnetic scalar potential and components of magnetization vector) at the lateral surfaces of a 
unit cell. We selected the symmetric unit cell with minority node A in the centers to generate a symmetric mesh 
that does not perturb the four-fold symmetry of the system. This approach is of particular importance for the 
reproduction of the eigenmodes profiles in high-symmetry points. In our numerical studies, we used 2D wave 
vector k = kx x̂ + ky ŷ as a parameter for eigenvalue problem which was selected along the high-symmetry path 
Ŵ-X-M-Ŵ to plot the dispersion relation.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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