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A pilot radiometabolomics 
integration study 
for the characterization of renal 
oncocytic neoplasia
Michail E. Klontzas 1,2,3,4, Emmanouil Koltsakis 5, Georgios Kalarakis 4,6,7, Kiril Trpkov 8,  
Thomas Papathomas 9,10, Na Sun 11, Axel Walch 11, Apostolos H. Karantanas 1,2,3 & 
Antonios Tzortzakakis 4,12*

Differentiating benign renal oncocytic tumors and malignant renal cell carcinoma (RCC) on imaging 
and histopathology is a critical problem that presents an everyday clinical challenge. This manuscript 
aims to demonstrate a novel methodology integrating metabolomics with radiomics features (RF) 
to differentiate between benign oncocytic neoplasia and malignant renal tumors. For this purpose, 
thirty-three renal tumors (14 renal oncocytic tumors and 19 RCC) were prospectively collected and 
histopathologically characterised. Matrix-assisted laser desorption/ionisation mass spectrometry 
imaging (MALDI-MSI) was used to extract metabolomics data, while RF were extracted from CT scans 
of the same tumors. Statistical integration was used to generate multilevel network communities 
of -omics features. Metabolites and RF critical for the differentiation between the two groups (delta 
centrality > 0.1) were used for pathway enrichment analysis and machine learning classifier (XGboost) 
development. Receiver operating characteristics (ROC) curves and areas under the curve (AUC) 
were used to assess classifier performance. Radiometabolomics analysis demonstrated differential 
network node configuration between benign and malignant renal tumors. Fourteen nodes (6 RF and 8 
metabolites) were crucial in distinguishing between the two groups. The combined radiometabolomics 
model achieved an AUC of 86.4%, whereas metabolomics-only and radiomics-only classifiers 
achieved AUC of 72.7% and 68.2%, respectively. Analysis of significant metabolite nodes identified 
three distinct tumour clusters (malignant, benign, and mixed) and differentially enriched metabolic 
pathways. In conclusion, radiometabolomics integration has been presented as an approach to 
evaluate disease entities. In our case study, the method identified RF and metabolites important 
in differentiating between benign oncocytic neoplasia and malignant renal tumors, highlighting 
pathways differentially expressed between the two groups. Key metabolites and RF identified by 
radiometabolomics can be used to improve the identification and differentiation between renal 
neoplasms.

Renal cell carcinoma (RCC) represents approximately 2% of tumors in  adults1. Differentiating benign from 
malignant renal neoplasia is a critical clinical problem in the evolving landscape of renal  neoplasia2,3. Modern 
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examination methods have been applied to solve this differential dilemma because several oncocytic tumors may 
share common imaging and morphologic characteristics with RCC 4,5, potentially resulting in surgical overtreat-
ment of benign kidney tumors. For example, angiomyolipoma (AML) and renal oncocytoma (RO), both consid-
ered benign renal neoplasms, contribute to 10% of unnecessary nephrectomies due to the overlapping imaging 
and morphologic characteristics with RCC 2,6–8. The general category of “oncocytic renal neoplasia” includes 
tumors such as benign renal oncocytoma (RO), a newly recognised low-grade oncocytic tumour (LOT)2,8,9, an 
eosinophilic variant of chromophobe RCC (chRCC), as well as tumors sharing common characteristics between 
RO and chRCC, known as hybrid oncocytic-chromophobe tumour (HOCT), typically seen in hereditary syn-
dromes, such as Birt Hogg-Dubé (BHD)10. Some tumors in the last “hybrid” category, particularly if sporadic, 
generally include mostly indolent with or low malignant potential renal  neoplasms11. The percentage of renal 
oncocytic tumors pre-operatively misclassified as malignant has been reported to be up to 27%12. Imaging can 
assist in the differential diagnosis between renal oncocytic tumors and RCC but traditional MRI or multiphasic 
CT imaging does not provide a definite diagnosis in most cases, even in the eyes of experienced urogenital 
 radiologists13–15. Therefore, in order to optimize the differentiation between the two types of lesions, -omics 
analyses have been employed including  metabolomics16,17,  transcriptomics18, and  radiomics19–22 with variable 
success. As highlighted in a systematic review and meta-analysis of radiomics/AI methods for RCC diagnosis, 
the results of existing radiomics manuscripts do not offer a clear advantage in diagnosis compared to human 
reader  evaluation19. Since LOT is a newly recognised entity the majority of studies have disregarded  LOT23–30. 
In these studies, radiomics analysis has been shown to have a pooled sensitivity and specificity of 83% and 92% 
respectively for the differentiation between RO and RCC, according to a meta-analysis of all relevant  studies31. 
Nonetheless, given the rapidly changing landscape in the pathological diagnosis of renal tumors and the recog-
nition of LOT and HOCT as important  entities8, results that have been published with outdated pathological 
classifications of renal tumors need to be taken with caution.

Integrating biological and image-based -omics has been introduced by combining transcriptomics, proteom-
ics, and genomics with radiomics data. Such  radiotranscriptomics32,33,  radioproteomics34, and  radiogenomics35–38 
signatures have provided novel biomarkers for the detection of cardiac disease, prediction of cancer aggressive-
ness, and the distinction between tumour subtypes, as well as for image-assisted distinction between molecular 
subtypes of tumors. The utilisation of global -omics signatures provides a holistic analysis of the layers of cellular 
function (genome, proteome, transcriptome)39, and a comprehensive characterisation of imaging appearances 
of a lesion (radiomics)40. Such an approach enables the identification of correlates between biological processes 
and computed tomography (CT) or magnetic resonance (MR) imaging appearances of a specific lesion.

To our knowledge, no integration between metabolic and radiomics signatures has been previously published. 
In this pilot study, we aimed to present a methodology for the integration of metabolomics and radiomics data 
using as a case study the evaluation of renal tumors, in an attempt develop novel radiometabolomics signatures 
highlighting the correlations between metabolic and imaging phenotypes of various renal neoplasms. We per-
formed a global radiometabolomics analysis of a well-characterised tumour cohort to identify novel potential 
biomarkers (metabolites and radiomics features) that may play an important role in determining a malignant 
versus benign phenotype (Fig. 1). Ultimately, we sought to demonstrate how a radiometabolomics-based machine 
learning classifier can distinguish between benign renal oncocytic tumors (RO, LOT and HOCT) and malignant 
RCC types.

Methods
Patient recruitment and ground truth establishment. A cohort of 33 renal tumors from n = 28 
patients (22 male and 6 female) with an average age of 65.3 years (range 45–87 years) were included prospec-
tively included in this study between September 2016 and September 2018, following the Declaration of Helsinki 
and approved by the Karolinska University Hospital (Huddinge) Regional Ethical Review Board and Radiation 
Safety Committee (2018/1626). All patients recruited in the study provided an informed consent. Renal tumors 
in this study represent the same cohort we used to perform in situ metabolomic analysis  previously17 and are part 
of the larger MIDOR cohort that has been used to extract quantitative imaging data for other (to date unpub-
lished) projects. To establish the ground truth diagnosis used in further analyses, all histology specimens were 
analysed in a blinded fashion by two subspecialist histopathologists. Haematoxylin and eosin (H-E) slides and 
routine immunohistochemistry stains were utilised to establish a final diagnosis, using the contemporary criteria 
that were subsequently used as the ground truth for metabolomics, radiomics and machine learning analysis. 
The study sample included 14 renal oncocytic tumors (“benign oncocytic renal tumour group”): 9 RO, 3 HOCT, 
2 LOT; and 19 RCC (“malignant renal tumour group”) 6 clear cell RCCs (ccRCC), 8 papillary RCCs (pRCC), 4 
chRCC, (3 classic chRCC and 1 eosinophilic chRCC), and 1 oncocytic unclassified  tumour2,9,41,42. Of note, the 3 
HOCT cases were from one female patient with verified BHD syndrome.

CT image acquisition and radiomics data extraction. CT examinations of all patients were retrieved 
from the institutional RIS-PACS system  for43 radiomics analysis. Examinations were performed in multiple CT 
scanners, and a minimum of 64-slices and images were obtained with spiral acquisition at 120 kV at the portal 
venous phase, with an average slice thickness of 4 mm. Voxel size was resized to 1 × 1 × 4 mm, and a uniform bin 
width of 32 was used across examinations to ensure robust radiomics feature calculation. Data was subjected to 
z-score normalization prior to radiomics analysis, to ensure feature  reproducibility43,44.

Two senior radiology residents (GK, EK) with 5 years of experience in segmentation, manually segmented 
all tumors using 3D Slicer v4.11.20 (https:// slicer. org), blinded to the final diagnosis. Radiomics features were 
extracted using the PyRadiomics  module45 of 3DSlicer, and the coefficient of variation (CV) of each radiomics 
feature was calculated between the two readers. Only features with a CV ≤ 10% were used in further analysis to 

https://slicer.org
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eliminate variability related to manual segmentation. A total of 944 radiomics features were initially extracted 
from each tumour; 700 were found stable across multiple segmentations and used for further analysis. These 
included first-order features, grey level co-occurrence matrix (GLCM), grey level run length matrix (GLRLM), 
grey level dependence matrix (GLDM), neighbouring grey-tone difference matrix (NGTDM), grey level size 
zone matrix (GLSZM), 2D and 3D shape features as well as their Laplacian of Gaussian (LoG) and wavelet 
transformations.

Metabolomics data acquisition. To investigate in situ metabolomic status, tumour samples from biopsy 
and resection specimens were arranged in a tissue microarray analysis (TMA) using a semiautomated tissue 
arrayer MiniCore, as previously  described17. In brief, representative areas were selected for each case and were 
marked on H-E-stained slides. We used three cores for resection specimens and usually one core for biopsies, 
with a diameter of 1 mm. These were extracted from the “donor” block and were arrayed in the “recipient” paraf-
fin block. To validate the data, we used part of a previously published cohort comprising 117 tumors: 59 ROs and 
58 chRCCs. Sections of 4 μm were subsequently cut from the TMA blocks.

Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry imaging (MSI) analysis was per-
formed at the Research Unit Analytical Pathology (Helmholtz Zentrum München), as described previously by 
Ly et al.46. MALDI time of flight (TOF) MSI measurements were carried out on an Ultraflex III MALDI-TOF/
TOF MS (Bruker Daltonic, Bremen, Germany) with 60 μm lateral resolution over the analysed mass range of 
m/z 100–1000 in the negative reflector ion mode. A Smartbeam-II Nd:YAG laser was equipped with a frequency 
of 100 Hz. The sampling rate of 2.0 GS/s and 200 laser shots were used for each measurement position. MALDI 
Fourier transforms ion cyclotron resonance (FT-ICR) MSI measurements were performed on a Bruker Solarix 7T 
FT-ICR-MS (Bruker Daltonic, Bremen, Germany) over the mass range of m/z 50–1000 in the negative ion mode. 
For each measurement position, 100 laser shots were accumulated using a Smartbeam-II Nd:YAG (355 nm) laser 
operating at a frequency of 500 Hz.

Following MALDI MSI analysis, the matrix was removed with 70% ethanol and stained with H-E using 
a fully automated tissue stainer (Tissue Stainer TST 44C; MEDITE, Leica, Nussloch, Germany). Slides were 
scanned using a MIRAX DESK digital slide-scanning system (Carl Zeiss MicroImaging, Gottingen, Germany). 
To spatially relate the signal intensities to histopathological features of individual tissue spots, digital images 
were coregistered to respective MSI data using FlexImaging v. 4.2 and SCiLS Lab version 2017 (Bruker Daltonic, 
Bremen, Germany). Only the signals that were co-localised with the neoplastic cells were classified.

Figure 1.  Flowchart describing the radiometabolomics integration pipeline (created with BioRender.com).
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Radiometabolomics data integration. Integration of radiomics and metabolomics data was performed 
systematically in a data-driven manner, as described by Uppal et al.47, using the xMWAS package as previously 
 described47,48. xMWAS combines  Partial Least Squares (PLS), sparse PLS and multilevel sparse PLS methods to 
achieve systematic integration between any type of -omics datasets. This approach identifies associations between 
metabolomics and radiomics data, enabling network visualisation and characterising multilevel network com-
munities of functionally/conceptually related features in each dataset. Importantly, it allows the characterisation 
of network node importance (i.e., the importance of unique metabolites or radiomics features) at each examined 
condition using the eigenvector centrality metric and enables the identification of nodes essential for the dif-
ferentiation between two conditions (e.g., RO/LOT/HOCT vs RCC), based on delta centrality measurements. 
Ultimately, data-driven integration leads to identifying features in each dataset that may play an important role 
in determining a phenotype of multiple phenotypic layers (e.g., metabolism and gross image appearance on CT) 
rather than using a single -omics approach. xMWAS analysis was performed in R Studio v 2022.02.3 with R 
v.4.03 (https:// www.R- proje ct. org/). Integration network nodes (metabolites or radiomics features) with a Delta 
Centrality (Eigenvector  centralitybenign−Eignenvector  centralitymalignant) > 0.1 were considered essential for the 
differentiation between renal oncocytic and RCC tumors. Metabolite pathway enrichment analysis was per-
formed on nodes highlighted as necessary by radiometabolomics integration using MetaboAnalyst v 5.049.

Machine learning model development and statistical analysis. Radiomics features and metabolite 
compounds identified as important by radiometabolomics integration were used to develop a machine learning 
model to differentiate between benign renal oncocytic tumors and malignant RCC. To reduce machine learn-
ing bias related to a class imbalance between benign oncocytic renal tumors and malignant RCC, the Synthetic 
Minority Oversampling Technique (SMOTE) was used as previously  described37,50 to produce a final dataset with 
20 benign and 20 malignant lesions. Machine learning classifiers were built using an advanced gradient boosting 
XGboost model implemented in the ‘xgboost’ R package with a linear kernel. Data were split 60:40 in the train-
ing sessions; in the validation sets, a random seed and model hyperparameter optimisation was performed with 
random search (n = 1000 rounds), using a ten-fold cross-validation in the training step. Hyperparameter tuning 
was performed by random search generating 1000 consecutive random models which yielded the following 
hyperparameters: eta = 0.104, gamma = 0, max_depth = 6, min_child_weight = 5.31, subsample = 0.654, colsam-
ple_bytree = 0.564. Model overfitting was avoided by monitoring the model’s accuracy, loss, and early stopping. 
Model performance in the validation set was assessed using the Area Under the Curve (AUC) metric. The cor-
responding 95% Confidence Interval was calculated with bootstrapping (n = 2000 rounds) using the pROC R 
package. For comparison purposes a Support Vector Machines and a Random Forests classifier were build for 
the combined radiometabolomics datasets using the “e1071” and “randomForests” packages in R. Sensitivity, 
specificity, positive and negative predictive values and the receiver operating characteristics (ROC) curves were 
calculated for XGboost models containing all nodes (metabolites and radiomics features) with Delta Centrality 
(DC) > 0.1, metabolites with DC > 0.1, or radiomics features with DC > 0.1. Differences between ROC curves 
were compared with DeLong’s  method51. Statistical significance was defined with a P-value less than 0.05.

Results
Radiometabolomics integration. A set of 700 radiomics features were integrated with 771 metabolite 
features from each tumour to identify the molecules pivotal in determining a “benign” or “malignant” renal 
phenotype. Network integration of the two datasets revealed three distinct node communities (i.e., metabolites 
and radiomics features) that characterise RCC. Seventy-one nodes were shown to have an eigenvector central-
ity > 0, indicating an important role in determining a malignant phenotype. These nodes included 12 radiomics 
features (wavelet transformations of first order and glszm features) and 59 metabolites (Fig. 2A, B). RO, LOT 
and HOCT tumors demonstrated a different network configuration with 3 distinct node communities, which 
included 49 nodes (12 wavelet radiomics and 37 metabolite features) (Fig. 2C, D). DC was calculated to identify 
features that enable differentiation between two tumour categories, and nodes with DC > 0.1 were considered 
essential in the distinction between the two conditions. Fourteen nodes were found to have a DC > 0.1, including 
6 radiomics and 8 metabolite features (Fig. 3). Radiomics nodes found to be significant were characteristically 
wavelet decompositions of first order and glszm features. These nodes were used for further pathway analysis 
and machine learning model building.

Integration-based metabolic pathway analysis. Significant metabolites highlighted by radiometabo-
lomics integration were analysed to identify differentially affected pathways in both categories, which correlated 
to the tumors’ imaging (radiomics) phenotype. Unsupervised clustering of these 8 metabolites revealed three 
major clusters, one containing majority of malignant tumors (Fig. 4A—red shaded dendrogram), a second con-
taining the majority of benign tumors (Fig. 4A—green shaded dendrogram), and a third cluster with a com-
bination of benign and malignant tumors (Fig. 4A—blue shaded dendrogram and zoomed insert). Metabolic 
pathway analysis revealed that the top-5-enriched pathways differentially expressed in the two groups included: 
pyrimidine metabolism, nicotinate metabolism, glycine-serine-threonine metabolism, cysteine-methionine 
metabolism, and pentose phosphate pathway. In addition, other pathways differentially expressed between the 
two groups included: aminoacid-related pathways such as alanine-aspartate-glutamine, taurine-hypotaurine, 
glutathione and thiamine metabolism, pantothenate and CoA pathway, and aminonacyl-tRNA biosynthesis 
(Fig. 4B).

Machine learning model performance. Nodes with DC > 0.1 (n = 14) were used for subsequent XGboost 
model training and validation. A linear kernel XGboost model combining all identified radiomics and metabo-

https://www.R-project.org/
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lomics nodes was built, which achieved an AUC of 86.4% (95% CI from 72.6–100%) (Fig. 5A). Models contain-
ing only the radiomics or only the metabolomics nodes achieved significantly lower performance (P < 0.05) 
with an AUC of 68.2% (95%CI 50.4–86%) for the radiomics-only model and 72.7% (95%CI 53.2–92.2%) for 
the metabolomics-only model. Sensitivity and specificity values were also different between the radiomics and 
metabolomics-only models (Figs. 5B, C and Table 1). Both radiomics and metabolomics features were necessary 
for the performance of the combined XGboost model, with metabolites being more critical than radiomics for 
the accurate classification into the benign oncocytic (RO/HOCT/LOT) or the malignant RCC group (Fig. 5D). 
A Support Vector Machines and a Random Forests classifier were also built with radiometabolomics data, dem-
onstrating inferior performance to the XGboost classifier (Supplementary Fig. 1).

Discussion
This pilot study presents a novel radiometabolomics integration approach that can be used for the evaluation of 
disease states. The potential value of our approach has been demonstrated in a small-scale case study attempt-
ing to differentiate between a group of indolent renal oncocytic tumors (RO, LOT and HOCT) and malignant 
RCCs. These signatures were used to develop an accurate machine learning classifier to distinguish benign versus 
malignant tumour phenotypes. They could potentially pave the way for developing novel radiometabolomics-
based biomarkers for imaging diagnosis and precision drug targeting.

Differentiating between benign oncocytic renal neoplasms and common RCC types is a challenging task, 
particularly before the surgical treatment. It has been previously attempted using  radiomics19–22,  metabolomics17, 
99mTc-Sestamibi SPECT/CT52,  proteomics53,  transcriptomics54, and  genomics55. Figure 4A highlights this complex 
differential of oncocytic neoplasia since 3 HOCT derived from the same BHD patient do not cluster together in 
the same benign group as expected. Of note is that the two newly recognised benign renal tumors, namely LOT, 
subcluster in the mixed group of benign and malignant renal tumors. The last-mentioned mixed group contains 
the only oncocytic unclassified tumour in this cohort, which probably underlines the unclassified nature of this 
tumour type.

Figure 2.  Multilevel detection of metabolite–radiomics feature communities in (A, B) malignant and (C, D) 
benign renal tumours. Eigenvector centrality graphs denote nodes (radiomics features, metabolites) that play a 
crucial role in maintaining the malignant (A) or benign (C) phenotype. The respective multi-level community 
networks demonstrate different node configurations in each group. Radiomics features are indicated by square-
shaped nodes, while metabolites are indicated by circular nodes in multi-level community networks (B, D). 
Different colours indicate membership in distinct communities. Eigenvector centrality indicates the importance 
of each radiomics feature and metabolite in network formation. Radiomics features and metabolites with 
nonzero eigenvector values are displayed.
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Detection of benign renal tumors using radiomics has achieved AUC that in most cases did not exceed 
83% by multiphase CT and well-selected examination conditions, typically based solely on resected surgical 
 specimens19–22. The performance of combined radiometabolomics signatures presented herein approached 
90%, using only portal phase CT from multiple scanners with a combination of surgical and biopsy specimens. 
Metabolomics alone could not differentiate between various renal tumour  types17 and 99mTc-Sestamibi SPECT/
CT is an additional tool that may aid the differential diagnosis between RO/HOCT versus RCC 31. However, 
99mTc-Sestamibi SPECT/CT also carries additional radiation exposure, with an effective dose of about 9.5  msV56, 
which is not the case in the currently proposed approach.

Importantly, our strategy highlighted a set of metabolites and pathways that appear to be differentially regu-
lated in oncocytic and RCC tumors. For example, nucleotide (pyrimidine) metabolism significantly differed 
between the benign renal oncocytic tumors and RCCs. This finding further confirms the network analysis 
results indicating that purine metabolism is upregulated in RCC 54. Importantly, nicotinate and nicotinamide 
metabolism was the second most important differentially regulated pathway between benign oncocytic tumors 
and malignant RCC. This is in line with current knowledge that nicotinamide N-methyltransferase (NNMT) is 
upregulated in ccRCC and pRCC through the PI3K/Akt/SP1/MMP-2 pathway. This may represent an attempt 
of the malignant cells to increase acetyl-CoA production for subsequent lipid synthesis by reducing S-adeno-
sylmethionine production and suppressing  NAD+-expensive mitochondrial  functions57. This is corroborated by 
our finding that CoA biosynthesis represents one of the key enriched pathways. In fact, drug-targeting of NNMT 
has been proposed as a promising treatment strategy of ccRCC 58. Other important pathways that emerged from 
our radiometabolomics analysis include serine-glycine-threonine metabolism, which plays a role in feeding the 
folate cycle with one carbon molecule, cysteine and methionine metabolism, and the pentose phosphate pathway. 
These pathways have been previously implicated in renal cancer metabolism using genomics-proteomics network 
 integration54. For example, an upregulation of the pentose phosphate pathway intermediates is characteristic of 
the renal tumour cells because it feeds the nucleotide synthesis and the energy production through  NADPH59 
Cysteine-methionine biosynthesis, which is also represented in the differentially regulated pathways, is known 
to play a role in glutathione metabolism, by increasing the capacity of renal cell carcinoma to tolerate oxidative 

Figure 3.  Integration of radiomics and metabolomics data reveals novel features crucial for distinguishing 
between malignant and benign renal tumours. (A) Schematic explaining the concept of radiometabolomics data 
integration (created with BioRender.com). (B) Delta centrality for individual metabolites and radiomics features 
indicates nodes significant for the distinction between the benign and malignant phenotype. Blue and orange 
bars represent metabolites and radiomics features, respectively, significant in the distinction between malignant 
and benign renal tumours. The dashed green line denotes DC > 0.1, which is the threshold of significance for 
node centrality; DC, delta centrality.
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 stress60. All these differentially regulated pathways illustrate the power of radiometabolomics analysis to identify 
relevant biomarkers, even in limited samples of relatively rare tumors, while pinpointing potential novel drug 
targets for cancer treatment.

Wavelet transformations of first order radiomics features also played a vital role in differentiating the two 
groups. This may be attributed to the imaging features of the neoplastic lesions, such as exophytic margins, 
line of heterogeneous enhancement, or central stellate scar that may be more common in RO, although it is 
not specific. Such features include lines and edges, which become more evident when the image undergoes 
a wavelet  transformation61,62. In addition, it has been shown that wavelet decomposition of images is not as 
sensitive to differences arising from a heterogeneous dataset from several CT scanners with variable contrast 
and noise profiles because they essentially represent bandpass filters that reduce noise  effectively63,64. Therefore, 
wavelet decomposition in our dataset could have served as a filter to compensate for the dataset heterogeneity 
by eliminating external batch effects, highlighting lines and edges, and identifying more robust features for the 
differential diagnosis between RO and HOCT versus RCC.

Several studies have been published with CT based radiomics analyses of kidney  tumors65. Some of them have 
attempted the differentiation between malignant and benign lesions with variable success. One of the biggest 
studies available, has extracted texture radiomics features from 501 renal tumors achieving an AUC < 65% in 
distinguishing between benign and malignant  ones28. Radiomics were better at diagnosing cysts with an AUC 
reaching 92% in a cohort of 192  patients66, however the majority of benign lesions do not have a cystic appear-
ance. This is important since radiomics did not achieve more than 80% AUC for the differentiation between 
benign and malignant cystic  lesions67. It is also important to note that most studies consider RO as the only tumor 
in the benign group which is not in accordance to recent WHO guidelines where RO are grouped together with 
LOT and  HOCT42, as done in our study. The results of these studies are therefore, due to different group compo-
sition, not comparable to ours. To the best of our knowledge no metabolomics-based machine learning models 
have been published for the differentiation between benign and malignant renal lesions. Our results confirmed 
the findings of published literature with a radiomics-only performance of approximately 70%, while presenting 

Figure 4.  Analysis of metabolite nodes highlighted by radiometabolomics integration. Unsupervised 
hierarchical clustering of significant nodes (DC > 0.1) (A). Columns represent tumour samples, and lines 
represent metabolite compounds named with the respective KEGG id, clustered with the Euclidean distance 
metric. Sample clustering revealed three distinct clusters, one predominantly including benign tumours 
(green shaded), a second predominantly including malignant tumours (red shaded) and a third including a 
combination of malignant and benign tumours (blue shaded). The zoomed-in insert provides an insight into 
the tumour types included in the mixed cluster. Metabolic pathway enrichment analysis of the top 25 enriched 
metabolic pathways (B). Red colour intensity indicates the significance of enrichment, whereas the dot size 
indicates the enrichment ratio. RO, renal oncocytoma; ccRCC, clear cell renal cell carcinoma; pRCC, papillary 
renal cell carcinoma; chRCC, chromophobe renal cell carcinoma; LOT, low-grade oncocytic tumour; HOCT, 
hybrid oncocytic/chromophobe tumour; Onc. Uncl., Oncocytic unclassified tumour. Suffixes s stands for 
synthetic tumour.
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a novel methodology where the integration of radiomics and metabolomics increased the performance in dif-
ferentiating malignant lesions (solid, cystic or mixed) to at least 86%.

Our study has certain strengths and limitations. Strengths include the first demonstration of radio-metab-
olomics data integration, the establishment of the ground truth by two pathologist subspecialist readings, and 
using combined biological and imaging data for complete characterisation of the examined tumors. Limitations 
of our study include the relatively small sample size, comparable to other seminal studies in the  literature20. 
However, using high-dimensional data affords high-fidelity tumour characterisation, reducing the need for a 
larger sample size. Nonetheless, a follow-up study with a bigger sample size is required to confirm the results 
of our work on RCC. Another limitation is the lack of an external validation dataset for the evaluated machine 
learning model. However, using a diverse CT dataset from multiple scanners and combining biopsy and surgical 
samples for metabolomics ensures that the model has been trained to recognise a diverse dataset and is potentially 
applicable to external data sets.

Everyday clinical diagnostic dilemmas like the accurate preoperative differentiation of renal oncocytic neo-
plasia versus malignant RCC subtypes lead to continuous research approaches that add value in the specific 
research field. In summary, in this pilot study, we present a novel radiometabolomics integration and machine 
learning pipeline. Differentiation between benign renal oncocytic tumors and RCCs has been used to demon-
strate potential applications of the method. This resulted in a highly accurate classifier between the two tumour 
groups, using a combined set of imaging and metabolic biomarkers. An integrated radiometabolomics approach 
may provide a tool for preoperative diagnostic differentiation between renal neoplasms and highlight relevant 
target pathways that may be used for future drug development.

Figure 5.  Receiver operating characteristics (ROC) curves for the XGboost classifier developed with radiomics 
& metabolomics (A), radiomics (B) and metabolite (C) features as identified by radiometabolomics integration 
analysis. Features with a DC > 0.1 were used for classifier development. Features essential for the classification 
results of the combined metabolomics & radiomics classifier are presented in (D). Features are automatically 
clustered in five distinct clusters (radiomics vs metabolomics), and the importance of each feature is indicated. 
AUC, Area Under the Curve; 95%CI, 95% Confidence Interval of the AUC.

Table 1.  Performance metrics of XGboost classifiers built with integration results: radio-metabolomics, 
radiomics features or metabolites. AUC, area under the curve; PPV, positive predictive value; NPV, negative 
predictive value; features with a delta centrality (DC) > 0.1 have been used for classifier development.

AUC (%) Sensitivity (Recall) (%) Specificity (%) PPV (Precision) (%) NPV (%) F1-score (%)

Radio-metabolomics 86.4 72.7 100 100 78.6 84.2

Radiomics features 68.2 45.5 90.9 83.33 62.5 58.9

Metabolites 72.7 72.7 72.7 72.7 72.7 72.7
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The datasets generated during and/or analysed during the current study are available from the corresponding 
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