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Modeling the dynamics 
of COVID‑19 with real data 
from Thailand
Alhassan Ibrahim 1,2, Usa Wannasingha Humphries 1*, Parinya Sa Ngiamsunthorn 1, 
Isa Abdullahi Baba 1,2, Sania Qureshi 3,4 & Amir Khan 5

In recent years, COVID‑19 has evolved into many variants, posing new challenges for disease 
control and prevention. The Omicron variant, in particular, has been found to be highly contagious. 
In this study, we constructed and analyzed a mathematical model of COVID‑19 transmission that 
incorporates vaccination and three different compartments of the infected population: asymptomatic 
(I
a
) , symptomatic (I

s
) , and Omicron (I

m
) . The model is formulated in the Caputo sense, which allows 

for fractional derivatives that capture the memory effects of the disease dynamics. We proved the 
existence and uniqueness of the solution of the model, obtained the effective reproduction number, 
showed that the model exhibits both endemic and disease‑free equilibrium points, and showed that 
backward bifurcation can occur. Furthermore, we documented the effects of asymptomatic infected 
individuals on the disease transmission. We validated the model using real data from Thailand and 
found that vaccination alone is insufficient to completely eradicate the disease. We also found that 
Thailand must monitor asymptomatic individuals through stringent testing to halt and subsequently 
eradicate the disease. Our study provides novel insights into the behavior and impact of the Omicron 
variant and suggests possible strategies to mitigate its spread.

COVID-19 has been a global pandemic that has persisted for over three years, with no signs of slowing. The 
continuous mutation and evolution of the virus poses challenges in containing its  spread1. In addition, social 
distancing and other mitigation measures are becoming increasingly difficult to maintain as people grow  tired2. 
Therefore, it is likely that COVID-19 will remain a major concern in the near future, bearing major implications 
for both individuals and businesses alike. On an individual level, this means continuing to take precautions, such 
as wearing masks and avoiding large gatherings. This means that businesses must remain adaptable and undergo 
operational changes to remain viable.

The newly discovered COVID-19 variants are causing considerable concern. The so-called “Omicron” vari-
ant, which was first discovered in November 2021 in South Africa, was listed as a variant of concern (VOC) by 
November  26th3. This variant is thought to be more contagious than the original virus, and may also be more 
resistant to existing  vaccines4. This is a major cause of concern as it could potentially lead to another wave of 
infection.

Thailand has suffered from COVID-19 since the outbreak of the  pandemic5. During the last couple of years, 
the country has experienced a number of outbreaks, and owing to the emergence of new variants of this virus, 
the situation has been made even  worsened6. Although the government has imposed strict measures to eliminate 
the threat, these measures have not been very effective in eradicating the  virus7. Many people are now concerned 
about the possibility of further outbreaks owing to the current situation, and there is a great deal of public anxi-
ety regarding the situation.

Although COVID-19 drugs are not currently  available8, there are a number of vaccines available that can help 
prevent COVID-19 infection. The first one is the RNA-based (mRNA) vaccines which have some advantages over 
conventional vaccines. The mRNA vaccines are not infectious since they are not created using pathogen particles 
or inactivated pathogens, unlike the conventional vaccines that rely on the production of pathogens, which can 
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cause outbreaks of the disease if done in enormous  quantities9. Some representatives of the RNA-based vac-
cines are reported as Moderna COVID-19 vaccine or mRNA-127310, Comirnaty or BNT162b211, and CVnCoV12.

Next is the DNA vaccine which is a new type of vaccine that uses DNA plasmids to trigger an immune 
response in the host, this allows the body to create its own immunity against the disease. DNA vaccines are 
often produced rapidly and at a low cost, which is one of the advantages of using  them13. Additionally, there is 
no chance that this vaccine causes infection. Some representative of the DNA vaccines are AG0301-COVID1914 
and Covigenix VAX-00115.

Another form of COVID-19 vaccine is the viral vector vaccine which allows a weakened form of the virus to 
be used in vaccine  development16. There are several factors that hinder the efficacy of this vaccine, including the 
pre-existing immunity of the  host17. Sputnik V, Janssen COVID-19 vaccine, and COVID-19 vaccine AstraZeneca, 
are some representatives of viral vector vaccines. These vaccines have various levels of efficacy associated with 
 them18.

In November 2022, World Health Organization (WHO) reported that at least one dose of the COVID-19 vac-
cine was given to a total of 57, 376, 849 people, and about 53, 923, 816 have been fully vaccinated in  Thailand19. 
The country’s vaccination program began in February 2021, using Sinovac and AstraZeneca  vaccines20. With 
this measure, Thailand was a step closer to achieving herd immunity against this virus, which is essential to the 
prevention of any future outbreaks. However, some challenges occur that slow the process, firstly, there was a 
vaccine shortage in the country. As a result, many people are unable to get vaccinated, hampering the efforts to 
vaccinate as many people as  possible21. The second problem is that there is a lack of awareness about the impor-
tance of vaccination and how to get  it22. Due to misinformation and conspiracy theories regarding the vaccine’s 
effectiveness and safety, there are still a lot of people who are hesitant to get the vaccine.

To understand the method of propagation of COVID-19 and in order to contribute to its eradication, many 
researchers developed mathematical models in the literature (see for  instance23–25). The COVID-19 infection 
has several unique characteristics that make it difficult to control. Firstly, the COVID-19 asymptomatic infected 
individuals, and the disease incubation period, which is two to fourteen days, implies that individuals can be 
infected with COVID-19 and infect others before they even realize they have it. Secondly, COVID-19 resem-
bles other respiratory illnesses in terms of symptoms, making it very difficult to diagnose. Due to these factors, 
numerous models that consider the symptomatic and asymptomatic infected population have been developed, 
and some other models considered control measures like testing, face masks, etc. See the following papers and 
the references  therein26–30.

Photphanloet et al.  in31 considered a COVID-19 epidemic model using nonlinear ordinary differential equa-
tions. The model divides the Thailand population into 7 compartments that are used for predicting the potential 
effect of non-pharmaceutical interventions and vaccination in the transmission dynamics of COVID-19. Vac-
cination, however, was shown to play a critical role in halting the virus spread, and that non-pharmaceutical 
interventions, like wearing recommended face masks, social distancing, and hand washing, can also help in 
reducing the transmission. The authors neglected the asymptomatic individuals which pose a significant chal-
lenge in the infection control of COVID-19. Some other features of COVID-19 that are not considered are the 
immunity development by vaccinated individuals and the immunity loss by the recovered people. It has been 
observed that this phenomenon occurs in many epidemic models as well (see, for  instance26,27,32,).

COVID-19 is a disease with partial immunity; after recovery, one can get reinfected. Hence, memory plays a 
vital role in the study of disease  dynamics33. Fractional-order differential equations can be used to model systems 
using  memory34. This allows for a more accurate modeling of the system because the current state of a system is 
influenced not only by the immediate past but also by the distant past, which makes it possible to better predict 
its future. Fractional differential equations are used to improve the accuracy of epidemiological  predictions35. For 
example, Khan and  Atangana26 considered a fractional model with six compartments susceptible (S), exposed 
(E), asymptomatic infected (Ia) , symptomatic infected (Is) , omicron-infected (Io) , and recovered (R) individuals 
to analyze the dynamics of COVID-19 using Omicron features. An analysis of the fractional model and numeri-
cal simulations are presented. In the course of their research, they were able to show that those infected with 
omicrons and asymptomatic individuals can spread the infection and develop further infections in South Africa 
if they encounter healthy individuals.

The COVID-19 pandemic has posed a serious threat to public health and socio-economic stability worldwide. 
In Thailand, the situation has been exacerbated by the emergence of new variants, such as the Omicron variant, 
which have increased the transmissibility and severity of the disease. To understand and control the spread of the 
virus, mathematical models can provide useful insights and predictions based on available data and assumptions. 
However, most existing models do not account for some important factors that may affect the dynamics of the 
infection, such as the role of asymptomatic individuals, the immune response, and the impact of vaccination. 
Therefore, in this study, we aim to fill this gap by developing a fractional-order model that incorporates these 
factors and captures the essential features of the COVID-19 epidemic in Thailand. Our model is motivated by 
the work of Photphanloet et al.31, who proposed a fractional-order model for COVID-19 with memory and an 
asymptomatic population. We extended their model by adding a vaccine compartment and allowing transitions 
from the asymptomatic compartment to either the symptomatic or Omicron compartment. We also consider 
the possibility of Omicron-induced death in our model. By doing so, we hope to provide a more realistic and 
comprehensive description of the COVID-19 situation in Thailand and offer some useful recommendations for 
disease control and prevention.

As a result of this paper, the following conclusions can be drawn: 
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1. We propose an SVEIsIaImR model by including a parameter that represents immunity development in vacci-
nated individuals. This will help determine how well the vaccine works and help in the control of COVID-19 
spread.

2. The model is further extended to fractional order in the Caputo sense.
3. Theoretical results are established
4. A global sensitivity analysis was performed.
5. Numerical illustrations were also performed.

The fractional-order framework for conceptualizing COVID-19 offers several epidemiological advantages over 
classical integer-order models. The implementation offers several epidemiological advantages. First, it acknowl-
edges the intricate dynamics of the virus, including super-spreading events, variable transmission rates, and 
the occurrence of multiple waves of  infection36,37. Second, fractional-order models capture the persistence of 
memory, accounting for the past trajectory of an epidemic, thereby providing a more accurate representation of 
its  dynamics38–44. These models also enable the evaluation of intervention effectiveness by considering the time-
dependent impact of measures, such as NPIs and vaccination campaigns. Moreover, fractional-order models 
enable multiscale analysis, capturing interactions at different levels, which enhances their reliability for informed 
decision-making in public health interventions and resource  allocation45.

The remainder of this paper is arranged as follows: “Model formulation” section develops our model and 
provides mathematical preliminaries, as well as extending the model to fractional order. “Qualitative properties 
of the model” section presents a qualitative analysis of the proposed model, including its stability and bifurca-
tion properties. “Numerical simulations of the model” section conducts numerical simulations of the Caputo 
fractional-order model and performs global sensitivity analysis to identify the key parameters affecting the 
dynamics. “Discussion” section discusses the results and their implications for disease control and prevention. 
“Conclusions” section concludes the paper with some remarks and future directions.

Model formulation
Here, we present a compartmental model that studies the spread of coronavirus in Thailand. The model is con-
structed as follows: we divide the infected class into three sub-classes Ia, Is , Im that are asymptomatic infected, 
symptomatic infected (infected individuals showing clinical symptoms of COVID-19 most commonly: fever or 
chills, cough, shortness of breath, sore throat, loss of taste or smell), and infected individuals showing clinical 
symptoms unique to omicrons (sore throat, particularly a ”scratchy” throat, persistent  cough46). Thus, the total 
population N is defined as

At rate � , susceptible individuals are recruited into the population, and recovered individuals lose immunity 
and move to this population at rate ρ . When certain people receive vaccination, the population decreases at rate 
ω(0< ω ≤ 1) . This population further decreases when some individuals are exposed to the force of infection, 
as follows:

where ν1 and ν2 are the probability of infectiousness of Is and Im respectively, and β is the effective contact rate.
τ indicates the rate of incubation of the exposed individuals that are infected with the virus without showing 

symptoms at the rate ̟  , showing symptoms of other variants at the rate σ or showing unique symptoms of Omi-
cron at a rate of (1− σ −̟) . Parameters α1,α2 and α3 provide information on the recovery of asymptomatic, 
symptomatic, and omicron-infected individuals, respectively. δ1 and δ2 are the rates at which symptomatic people 
and those in the omicron class die due to the disease, respectively.

Figure 1 depicts the schematic diagram of the model, whereas Tables 1 and 2 provide the meanings of the 
variables and parameters, respectively.

(1)N = S + V + E + Is + Ia + Im + R.

(2)ηs =
β(Ia + ν1Is + ν2Im)

N
,

(3)



































































































dS

dt
= �+ ρR − (ηs + ω + µ)S,

dV

dt
= ωS − (ηs + µ)V ,

dE

dt
= ηsS + (1− ǫ)ηsV − (τ + µ)E,

dIs

dt
= στE + γ1Ia − (α2 + δ1 + µ)Is ,

dIa

dt
= ̟τE − (γ1 + γ2 + α1 + µ)Ia,

dIm

dt
= (1− σ −̟)τE + γ2Ia − (α3 + δ2 + µ)Im,

dR

dt
= ǫηsV + α1Ia + α2Is + α3Im − (ρ + µ)R,
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Figure 1.  Schematic diagram of (3).

Table 1.  Meaning of variables.

Variable Meaning

S Susceptible individuals

V Vaccinated individuals

E Exposed individuals

Ia Asymptomatic infected individuals

Is Symptomatic infected individuals

Im Individuals with omicron symptoms

R Recovered individuals

Table 2.  Meanings of parameters and their units.

Parameter Meaning and units

� Recruitment rate (day−1)

β Effective contact rate (per person · day −1)

ω Vaccination rate (day−1)

ǫ Infection reduction of vaccinated individuals (day−1)

ν1 Probability of infectiousness of symptomatic individuals Is
ν2 Probability of infectiousness of omicron infected individuals Im
µ Natural death rate (day−1)

τ Disease incubation period (day−1)

̟ Rate of progression from exposed individuals to asymptomatic infected individuals (person · day −1)

σ Rate of progression from exposed individuals to symptomatic infected individuals (person · day −1)

γ1 Rate at which asymptomatic infected person start showing symptoms of other variants (person · day −1)

γ2 Rate at which asymptomatic infected start showing symptoms attributed to omicron (person · day −1)

δ1 COVID-19 induced mortality rate on Is (day−1)

δ2 COVID-19 Omicron induced mortality rate on Im (day−1)

α1,α2,α3 Rate of recovery of Ia , Is and Im respectively (day−1)

ρ The rate at which recovered individuals lost immunity (day−1)
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Parameter estimation and model fitting. Obtaining optimal parameter values and performing model 
validations are crucial when working with mathematical models that utilize real data. This is primarily because 
the accurate identification of parameter values from obtained data is often challenging. It is essential to obtain 
well-fitted parameter values for a specific model. Certain parameters associated with the epidemic can be com-
puted by considering both the initial behavior of the epidemic and demographic factors linked to the disease. 
Additionally, the parameter values can be obtained from the existing literature and guided estimations. However, 
relying solely on this approach can occasionally result in erratic behavior.

Figure 2.  The curve fitting of model (3) simulations with the real cases of the disease.

Figure 3.  Various types of residuals for the curve fitting of (3) with the real cases of the disease.

Table 3.  Parameters values.

Parameters Value Source

� 5 28

β 0.6886 50

ω 0.0220 51

ǫ 0.5000 51

ν1 0.0880 51

ν2 0.4074 Fitted

µ 1
74.2×365

52

τ 0.8999 26

̟ 0.8600 Estimated

σ 0.01216 Fitted

γ1 0.1900 53

γ2 0.1900 Estimated

δ1 0.5068 Fitted

δ2 0.0839 Fitted

α1
1
10

54

α2 0.0625 55,56

α3 0.1516 Fitted

ρ 1.5095 Fitted
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To collect authentic and reliable cases from the population infected with COVID-19, it is essential to deter-
mine the appropriate biological characteristics that characterize these cases. These types of real-life examples can 
be offered for a period ranging from days to weeks to months to even years. Due to uncertainties in data analysis, 
there is a possibility that the conclusion could be inaccurate. Although there are numerous methods in the litera-
ture that can be used to estimate parameter values, the least-squares method is the most frequently employed. 
The method uses the idea of minimizing residuals between available infections for real data ȳj = 0, 1, . . . , n and 
the discrete points obtained with the suggested set of simulation equations f (tj , yj) as given below:

The aforementioned objective has been accomplished by utilizing the built-in routines of NonlinearModelFit 
and ParametricNDSolve that are included in the programming language known as Wolfram Mathematica 12.1. 
These fitted parameters are displayed in Table 3

Using real data from Thailand, which ranges from 1st July 2022 to 30th September 2022 
 (see19,47), the parameters of (3) were estimated. Thailand’s initial population was estimated to be 
N(0) ≃ 70, 000, 00048,49. The initial populations of reported vaccinated and infectious individuals are 
given by V(0) = 107, 912, and Is(0)+ Im(0) = 2354 respectively. The initial susceptible population was 
S(0) = 69, 688, 560 . We assume the initial population of the exposed, asymptomatic infected, and recovered 
individuals to be E(0) = 100, 000, Ia(0) = 1177, and R(0) = 100, 000 . With the help of these conditions and 
the parameters listed in Table 3, the fitted curve is obtained in Fig. 2 where the statistical R2 value is computed 
as ≈ 0.97 showing that the regression line perfectly fits the data. Moreover, the residuals in Fig. 3 are randomly 
distributed around a mean of zero, indicating a good fit.

SVEI
s
I
a
I
m
R model in Caputo fractional operator form. In this section, we transform model (3) using 

the Caputo fractional derivatives in a similar  manner57. First, we recall some preliminaries.

Definition 1 (See58) Let g(t) be a function that satisfies some smoothness condition and α > 0 s.t α, t ∈ R , the 
derivative in Caputo form is define as:

and

for n = 1 and α ∈ (0, 1] . Also, α > 0 the corresponding fractional integral is defined as

Definition 2 [Mittag-Leffler59] This is defined as:

and its general form

Therefore, (3) in Caputo sense is defined as:

where

(4)Residual =
1

N

N
∑

j=0

∣

∣

∣

∣

ȳj − yj

ȳj

∣

∣

∣

∣

,

(5)c
D

α
t g(t) =

1

Ŵ(n− α)

∫ t

0
(t − ξ)n−α−1 d

ng(ξ)

dξn
dξ , where n− 1 < α, n ∈ N.

(6)c
D

α
t g(t) =

1

Ŵ(1− α)

∫ t

0
(t − ξ)−αg ′(ξ)dξ ,

(7)c
I
α
t g(t) =

1

Ŵ(α)

∫ t

0
(t − ξ)α−1g(ξ)dξ .

(8)Eα(x) =

∞
∑

k=0

xk

Ŵ(αk + 1)
,

(9)Eα,β(x) =

∞
∑

k=0

xk

Ŵ(αk + β)
.

(10)















































c
0D

α
t S(t) = �α + ραR − (ηαs + ωα + µα)S,

c
0D

α
t V(t) = ωαS − (ηαs + µα)V ,

c
0D

α
t E(t) = ηαs S + (1− ǫα)ηαs V − (τα + µα)E,

c
0D

α
t Is(t) = σαταE + γ α

1 Ia − (αα
2 + δα1 + µα)Is ,

c
0D

α
t Ia(t) = ̟αταE − (γ α

1 + γ α
2 + αα

1 + µα)Ia,
c
0D

α
t Im(t) = (1− σα −̟α)ταE + γ α

2 Ia − (αα
3 + δα2 + µα)Im,

c
0D

α
t R(t) = ǫαηαs V + αα

1 Ia + αα
2 Is + αα

3 Im − (ρα + µα)R,

ηαs =
βα(Ia + να1 Is + να2 Im)

N
,
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subject to initial conditions

By incorporating an auxiliary parameter κ > 0 , we adeptly modify the fractional operator, effectively eliminating 
any concerns of dimensional  mismatching60, thus

where

subject to initial conditions

Qualitative properties of the model
Analysis of (11) is carried out in this section.

Boundedness and positivity of the model system (11). The fractional-order system (11) must be 
positive because the solutions represent the densities of the populations that interact with each other, and from 
a biological perspective, the lowest possible value for each population in the model system is zero, which is rel-
evant to establishing an upper bound. This is assured by the following outcomes:

Theorem 3 Consider (11) with S(0) > 0,V(0) > 0,E(0) ≥ 0, Is(0) ≥ 0, Ia(0) ≥ 0, Im(0) ≥ 0 and R(0) ≥ 0 as an 
initial condition, then all solutions are uniformly bounded and positive.

Proof First, we start by adding the population states which is possible by the linearity property of the Caputo 
fractional derivative:

By using Laplace transform and its inverse on (12), after simplifying we obtain,

where Eα,1(−µαtα) and Eα,k+1(−µαtα) are Mittag-Leffler  functions61. Hence, solutions of the Caputo (11) con-
fined in the region D , where

Secondly, we show that the solutions of (11) are positive in the feasible region D . In order to show this, we begin 
by examining the first equation of the model (11)

S0(t) = S(0), V0(t) = V(0), E0(t) = E(0), Is0(t) = Is(0), Ia0(t) = Ia(0),

Im0(t) = Im(0), R0(t) = R(0).

(11)



























































κ
α−1 c

0D
α
t S(t) = �α + ραR −

�

ηαs + ωα + µα
�

S,

κ
α−1 c

0D
α
t V(t) = ωαS −

�

ηαs + µα
�

V ,

κ
α−1 c

0D
α
t E(t) = ηαs S +

�

1− ǫα
�

ηαs V −
�

τα + µα
�

E,

κ
α−1 c

0D
α
t Is(t) = σαταE + γ α

1 Ia −
�

αα
2 + δα1 + µα

�

Is ,

κ
α−1 c

0D
α
t Ia(t) = ̟αταE −

�

γ α
1 + γ α

2 + αα
1 + µα

�

Ia,

κ
α−1 c

0D
α
t Im(t) =

�

1− σα −̟α
�

ταE + γ α
2 Ia −

�

αα
3 + δα2 + µα

�

Im,

κ
α−1 c

0D
α
t R(t) = ǫαηαs V + αα

1 Ia + αα
2 Is + αα

3 Im −
�

ρα + µα
�

R,

ηαs =
βα

(

Ia + να1 Is + να2 Im
)

N
,

S0(t) = S(0), V0(t) = V(0), E0(t) = E(0), Is0(t) = Is(0), Ia0(t) = Ia(0),

Im0(t) = Im(0), R0(t) = R(0).

(12)

c
0D

α
t N(t) = c

0D
α
t S(t)+

c
0 D

α
t V(t)+c

0 D
α
t E(t)+

c
0 D

α
t Is(t)+

c
0 D

α
t Ia(t)+

c
0 D

α
t Im(t)+

c
0 D

α
t R(t),

= �α − δα1 Is − δα2 Im − µαN ,

≤ �α − µαN .

(13)N(t) ≤
�α

µα

[

1− Eα,1
(

−µαtα
)]

+

n−1
∑

k=0

Eα,k+1

(

−µαtα
)

tkN (k)(t0),

(14)

D =

{

(S,V ,E, Is , Ia, Im,R) ∈ R
7 : N(t) ≤

�α

µα

[

1− Eα,1
(

−µαtα
)]

+

n−1
∑

k=0

Eα,k+1

(

−µαtα
)

tkN (k)(t0)

}

.
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where b =
βα(Ia+να1 Is+να2 Im)

N + (ωα + µα) . Using the Laplace transform method and the positivity of the Mittag-
Leffler  function62 we have

In a similar manner, V(t),E(t), Is , Ia, Im,R ≥ 0, ∀t ≥ 0 . 

Existence and uniqueness of solutions of (11). Consider a Banach space on J = [0,T] of all continu-
ous real-valued functions denoted as B(J ,R) with the following norm:

such as

Applying (7) on both sides of (11) we obtain:

The definition (7) then directs us to the following:

with the respective kernels

(15)

c
0D

α
t S(t) = �α + ραR −

βα
(

Ia + να1 Is + να2 Im
)

S

N
−

(

ωα + µα
)

S

≥ −
βα

(

Ia + να1 Is + να2 Im
)

S

N
−

(

ωα + µα
)

S

= −bS,

S(t) ≥ S(0)

n−1
∑

k=0

Eα,k+1(−btα)tk =⇒ S ≥ 0.

||(S,V ,E, Is , Ia, Im,R)|| = ||S(t)|| + ||V(t)|| + ||E(t)|| + ||Is(t)|| + ||Ia(t)|| + ||Im(t)|| + ||R(t)||,

||S(t)|| = sup
t∈[0,T]

|S(t)|, ||V(t)|| = sup
t∈[0,T]

|V(t)|, ||E(t)|| = sup
t∈[0,T]

|E(t)|, ||Is(t)|| = sup
t∈[0,T]

|Is(t)|,

||Ia(t)|| = sup
t∈[0,T]

|Ia(t)|, ||Im(t)|| = sup
t∈[0,T]

|Im(t)| and ||R(t)|| = sup
t∈[0,T]

|R(t)|.

(16)

S(t)− S(0) =c
I
α
t

{

�α + ραR −
(

ηαs + ωα + µα
)

S
}

,

V(t)− V(0) =c
I
α
t

{

ωαS − (ηαs + µα)V
}

,

E(t)− E(0) =c
I
α
t {η

α
s

(

S +
(

1− ǫα
)

V
)

−
(

τα + µα
)

E
}

,

Is(t)− Is(0) =
c
I
α
t

{

σαταE + γ α
1 Ia −

(

αα
2 + δα1 + µα

)

Is
}

,

Ia(t)− Ia(0) =
c
I
α
t

{

̟αταE −
(

γ α
1 + γ α

2 + αα
1 + µα

)

Ia
}

,

Im(t)− Im(0) =
c
I
α
t

{(

1− σα −̟α
)

ταE + γ α
2 Ia −

(

αα
3 + δα2 + µα

)

Im
}

,

R(t)− R(0) =c
I
α
t

{

ǫαηαs + αα
1 Ia + αα

2 Is + αα
3 Im −

(

ρα + µα
)

R
}

,

(17)

S(t) = S(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G1(ξ , S(ξ))dξ ,

V(t) = V(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G2(ξ ,V(ξ))dξ ,

E(t) = E(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G3(ξ ,E(ξ))dξ ,

Is(t) = Is(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G4(ξ , Is(ξ))dξ ,

Ia(t) = Ia(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G5(ξ , Ia(ξ))dξ ,

Im(t) = Im(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G6(ξ , Im(ξ))dξ ,

R(t) = R(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G7(ξ ,R(ξ))dξ .
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An upper bound on S(t),V(t),E(t), Is(t), Ia(t), Im(t), and R(t) is needed for the Lipschitz condition to be satis-
fied by the kernels (Gi , i = 1, 2, . . . , 7) in (18). Consider two distinct function S and S , then

If we consider

we have

In a similar manner, we also have that for the remaining state variables

where

The Lipschitz constants for each kernel Gi , i = 1, 2, . . . , 7 are asserted by ζ1, ζ2, . . . , ζ7 respectively. As a result, 
the Lipschitz condition is satisfied.

Using (17) the following recursive formulae can now be used in order to establish the uniqueness:

In recursive formulas, the difference between the consecutive terms can be written as follows:

(18)

G1(t, S(t)) = �α + ραR −
(

ηαs + ωα + µα
)

S,

G2(t,V(t)) = ωαS −
(

ηαs + µα
)

V ,

G3(t,E(t)) = ηαs
(

S +
(

1− ǫα
)

V
)

−
(

τα + µα
)

E,

G4

(

t, Is(t)
)

= σαταE + γ α
1 Ia −

(

αα
2 + δα1 + µα

)

Is ,

G5

(

t, Ia(t)
)

= ̟αταE −
(

γ α
1 + γ α

2 + αα
1 + µα

)

Ia,

G6

(

t, Im(t)
)

=
(

1− σα −̟α
)

ταE + γ α
2 Ia −

(

αα
3 + δα2 + µα

)

Im,

G7(t,R(t)) = ǫαηαs + αα
1 Ia + αα

2 Is + αα
3 Im −

(

ρα + µα
)

R.

(19)
∣

∣

∣

∣G1(t, S(t))− G1

(

t, S(t)
)∣

∣

∣

∣ =
∣

∣

∣

∣−
(

ηαs + ωα + µα
)(

S(t)− S(t)
)∣

∣

∣

∣.

ζ1 =
∣

∣

∣

∣−
(

ηαs + ωα + µα
)∣

∣

∣

∣

∣

∣

∣

∣G1(t, S(t))− G1

(

t, S(t)
)∣

∣

∣

∣ ≤ ζ1
∣

∣

∣

∣S(t)− S(t)
∣

∣

∣

∣.

(20)

∣

∣

∣

∣G2(t,V(t))− G2

(

t,V(t)
)∣

∣

∣

∣ ≤ ζ2
∣

∣

∣

∣V(t)− V(t)
∣

∣

∣

∣,
∣

∣

∣

∣G3(t,E(t))− G3

(

t,E(t)
)∣

∣

∣

∣ ≤ ζ3
∣

∣

∣

∣E(t)− E(t)
∣

∣

∣

∣,
∣

∣

∣

∣G4

(

t, Is(t)
)

− G4

(

t, Is(t)
)∣

∣

∣

∣ ≤ ζ4
∣

∣

∣

∣Is(t)− Is(t)
∣

∣

∣

∣,
∣

∣

∣

∣G5

(

t, Ia(t)
)

− G5

(

t, Ia(t)
)∣

∣

∣

∣ ≤ ζ5
∣

∣

∣

∣Ia(t)− Ia(t)
∣

∣

∣

∣,
∣

∣

∣

∣G6

(

t, Im(t)
)

− G6

(

t, Im(t)
)∣

∣

∣

∣ ≤ ζ6
∣

∣

∣

∣Im(t)− Im(t)
∣

∣

∣

∣,
∣

∣

∣

∣G7(t,R(t))− G7

(

t,R(t)
)∣

∣

∣

∣ ≤ ζ7
∣

∣

∣

∣R(t)− R(t)
∣

∣

∣

∣,

(21)

ζ2 =
∣

∣

∣

∣−
(

ηαs + µα
)∣

∣

∣

∣,

ζ3 =
∣

∣

∣

∣−
(

τα + µα
)∣

∣

∣

∣,

ζ4 =
∣

∣

∣

∣−
(

αα
2 + δα1 + µα

)∣

∣

∣

∣,

ζ5 =
∣

∣

∣

∣−
(

γ α
1 + γ α

2 + αα
1 + µα

)∣

∣

∣

∣,

ζ6 =
∣

∣

∣

∣−
(

αα
3 + δα2 + µα

)∣

∣

∣

∣,

ζ7 =
∣

∣

∣

∣−
(

ρα + µα
)∣

∣

∣

∣.

(22)

Sn(t) = S(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G1(ξ , Sn−1(ξ))dξ ,

Vn(t) = V(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G2(ξ ,Vn−1(ξ))dξ ,

En(t) = E(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G3(ξ ,En−1(ξ))dξ ,

Isn(t) = Is(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G4(ξ , Is(n−1) (ξ))dξ ,

Ian(t) = Ia(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G5(ξ , Ia(n−1) (ξ))dξ ,

Imn(t) = Im(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G6(ξ , Im(n−1) (ξ))dξ ,

Rn(t) = R(0)+
1

Ŵ(α)

∫ t

0
(t − ξ)α−1G7(ξ ,Rn−1(ξ))dξ .
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Note that

Applying the norm, for each of the differences in (23) we formulate the recursive inequalities as follows:

Since the kernel G1 satisfies the Lipschitz condition with constant ζ1 , then we can see that

Thus, we obtain

As a result, we can obtain the following:

Theorem 4 Suppose for t ∈ [0, b] the following inequalities hold:

Then the model (11) has a unique solution

(23)

ϒ1
n(t) = Sn(t)− Sn−1(t) =

1

Ŵ(α)

∫ t

0
(t − ξ)α−1(G1(ξ , Sn−1(ξ))− G1(ξ , Sn−2(ξ)))dξ ,

ϒ2
n(t) = Vn(t)− Vn−1(t) =

1

Ŵ(α)

∫ t

0
(t − ξ)α−1(G2(ξ ,Vn−1(ξ))− G2(ξ ,Vn−2(ξ)))dξ ,

ϒ3
n(t) = En(t)− En−1(t) =

1

Ŵ(α)

∫ t

0
(t − ξ)α−1(G3(ξ ,En−1(ξ))− G3(ξ ,En−2(ξ)))dξ ,

ϒ4
n(t) = Isn(t)− Isn−1 (t) =

1

Ŵ(α)

∫ t

0
(t − ξ)α−1(G4(ξ , Is(n−1) (ξ))− G4(ξ , Is(n−2) (ξ)))dξ ,

ϒ5
n(t) = Ian(t)− Ian−1 (t) =

1

Ŵ(α)

∫ t

0
(t − ξ)α−1(G5(ξ , Ia(n−1) (ξ))− G5(ξ , Ia(n−2) (ξ)))dξ ,

ϒ6
n(t) = Imn(t)− Imn−1 (t) =

1

Ŵ(α)

∫ t

0
(t − ξ)α−1(G6(ξ , Im(n−1) (ξ))− G6(ξ , Im(n−2) (ξ)))dξ ,

ϒ7
n(t) = Rn(t)− Rn−1(t) =

1

Ŵ(α)

∫ t

0
(t − ξ)α−1(G7(ξ ,Rn−1(ξ))− G7(ξ ,Rn−2(ξ)))dξ .

Sn(t) =

n
∑

i=0

ϒ1
i (t),Vn(t) =

n
∑

i=0

ϒ2
i (t),En(t) =

n
∑

i=0

ϒ3
i (t), Isn(t) =

n
∑

i=0

ϒ4
i (t),

Ian(t) =

n
∑

i=0

ϒ5
i (t), Imn(t) =

n
∑

i=0

ϒ6
i (t),Rn(t) =

n
∑

i=0

ϒ7
i (t).

(24)
||ϒ1

n(t)|| = ||Sn(t)− Sn−1(t)||

=
1

Ŵ(α)

∫ t

0
(t − ξ)α−1||(G1(ξ , Sn−1(ξ))− G1(ξ , Sn−2(ξ)))||dξ .

||Sn(t)− Sn−1(t)|| =
1

Ŵ(α)

∫ t

0
(t − ξ)α−1ζ1||Sn−1(ξ)− Sn−2(ξ)||dξ .

(25)||ϒ1
n(t)|| =

ζ1

Ŵ(α)

∫ t

0
(t − ξ)α−1||ϒ1

n−1(ξ)||dξ .

(26)

∣

∣

∣

∣ϒ2
n(t)

∣

∣

∣

∣ =
ζ2

Ŵ(α)

∫ t

0
(t − ξ)α−1

∣

∣

∣

∣ϒ2
n−1(ξ)

∣

∣

∣

∣dξ .

∣

∣

∣

∣ϒ3
n(t)

∣

∣

∣

∣ =
ζ3

Ŵ(α)

∫ t

0
(t − ξ)α−1

∣

∣

∣

∣ϒ3
n−1(ξ)

∣

∣

∣

∣dξ .

∣

∣

∣

∣ϒ4
n(t)

∣

∣

∣

∣ =
ζ4

Ŵ(α)

∫ t

0
(t − ξ)α−1

∣

∣

∣

∣ϒ4
n−1(ξ)

∣

∣

∣

∣dξ .

∣

∣

∣

∣ϒ5
n(t)

∣

∣

∣

∣ =
ζ5

Ŵ(α)

∫ t

0
(t − ξ)α−1

∣

∣

∣

∣ϒ5
n−1(ξ)

∣

∣

∣

∣dξ .

∣

∣

∣

∣ϒ6
n(t)

∣

∣

∣

∣ =
ζ6

Ŵ(α)

∫ t

0
(t − ξ)α−1

∣

∣

∣

∣ϒ6
n−1(ξ)

∣

∣

∣

∣dξ .

∣

∣

∣

∣ϒ7
n(t)

∣

∣

∣

∣ =
ζ7

Ŵ(α)

∫ t

0
(t − ξ)α−1

∣

∣

∣

∣ϒ7
n−1(ξ)

∣

∣

∣

∣dξ .

ζib
α

Ŵ(α)
< 1, i = 1, 2, . . . , 7.
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Proof Recursively solving Eqs.  (25)–(26) yields the following relations when the functions 
S(t),V(t),E(t), Is(t), Ia(t), Im(t), and R(t) are assumed to be bounded and each kernel satisfies a Lipschitz 
condition:

Thus, it can be observed that the sequence (27) satisfy ||ϒ i
n(t)|| =⇒ 0 , for i = 1, 2, . . . , 7 as n =⇒ ∞ . Further, 

by applying the triangular inequality to equation (27) and for any k, we are able to find:

where q′is are by hypothesis q′is =
ζib

α

Ŵ(α)
< 1 ,for i = 1, 2, . . . 7 . Thus, by (27), a Cauchy sequence in B is formed 

by Sn,Vn,En, Isn , Ian , Imn , and Rn . Hence as n =⇒ ∞ , the unique solution of (11) is obtained.

Equilibrium point and stability analysis. In this section, we find the disease-free equilibrium point 
(DFE) and the endemic equilibria (EE). The next-generation matrix is used to calculate the effective reproduc-
tion number Reff  . Lyapunov functions were constructed and used to establish the global stability of the equilibria.

Disease free equilibrium (DFE). First setting (11) to 0 we get the following distinct DFE solutions

Effective reproduction number ( Reff ). We use the method  in63 similarly  to64,65 to compute Reff  . Let F represent 
non-negative matrix of the new infection, V is the transmission matrix, then:

(27)

||ϒ1
n(t)|| ≤ ||S0(t)||

[

ζ1b
α

Ŵ(α)

]n

,

||ϒ2
n(t)|| ≤ ||V0(t)||

[

ζ2b
α

Ŵ(α)

]n

,

||ϒ3
n(t)|| ≤ ||E0(t)||

[

ζ3b
α

Ŵ(α)

]n

,

||ϒ4
n(t)|| ≤ ||Is0(t)||

[

ζ4b
α

Ŵ(α)

]n

,

||ϒ5
n(t)|| ≤ ||Ia0(t)||

[

ζ5b
α

Ŵ(α)

]n

,

||ϒ6
n(t)|| ≤ ||Im0(t)||

[

ζ6b
α

Ŵ(α)

]n

,

||ϒ7
n(t)|| ≤ ||R0(t)||

[

ζ7b
α

Ŵ(α)

]n

.

(28)

||Sn+k(t)− Sn(t)|| ≤

n+k
∑

j=n+1

q
j
1 =

qn+1
1 + qn+k+1

1

1− q1
,

||Vn+k(t)− Vn(t)|| ≤

n+k
∑

j=n+1

q
j
2 =

qn+1
2 + qn+k+1

2

1− q2
,

||En+k(t)− En(t)|| ≤

n+k
∑

j=n+1

q
j
3 =

qn+1
3 + qn+k+1

3

1− q3
,

||Isn+k
(t)− Isn(t)|| ≤

n+k
∑

j=n+1

q
j
4 =

qn+1
4 + qn+k+1

4

1− q4
,

||Ian+k
(t)− Ian(t)|| ≤

n+k
∑

j=n+1

q
j
5 =

qn+1
5 + qn+k+1

5

1− q5
,

||Imn+k
(t)− Imn+k

(t)|| ≤

n+k
∑

j=n+1

q
j
6 =

qn+1
6 + qn+k+1

6

1− q6
,

||Rn+k(t)− Rn(t)|| ≤

n+k
∑

j=n+1

q
j
7 =

qn+1
7 + qn+k+1

7

1− q7
,

(29)DFE =
(

S0,V0,E0, I0s , I
0
a , I

0
m,R

0
)

=

(

�α

ωα + µα
,

ωα�α

µα(ωα + µα)
, 0, 0, 0, 0, 0

)

.
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where

Therefore,

Thus, Reff  can be expressed as:

where

 Hence, we have the following lemma:

Lemma 5 The DFE is locally asymptotically stable if Reff < 1 , and unstable otherwise.

For global stability, consider the following theorem:

Theorem 6 The DFE is globally asymptotically stable if Reff ≤ 1.

Proof Consider the Lyapunov function:

where L1 =
τα(να1 k7(̟

αγ α
1 +σαk5)+k4(̟

αk7+να2 (̟
αγ α

2 +k5k6)))
k3k4k5k7

, L2 =
να1
k4
, L3 =

k4γ
α
2 ν

α
2 +k7γ

α
1 ν

α
1 +k4k7

k4k5k7
, L4 =

να2
k7
.

The Lyapunov derivative is calculated as

Hence

Existence of endemic equilibrium point (EE) and Bifurcation Analysis. The endemic equilibrium point (EE) 
represents the situation in which the disease continue to exist across the population.

(30)F =









0
k1β

ανα1
k2

k1β
α

k2

k1β
ανα2
k2

0 0 0 0
0 0 0 0
0 0 0 0









,V =







k3 0 0 0
−σατα k4 − γ α

1 0
−ϕατα 0 k5 0
−k6τ

α 0 − γ α
2 k7






.

k1 = (1− ǫα)ωα + µα , k2 = ωα + µα , k3 = τα + µα , k4 = αα
2 + δα1 + µα , k5 = γ α

1 + γ α
2 + αα

1 + µα ,

k6 = 1− σα −̟α , k7 = αα
3 + δα2 + µα , andk8 = ρα + µα .

(31)Reff =
k1β

ατα((̟αk7 + να2 (̟
αγ α

2 + k5k6))k4 + k7ν
α
1 (σ

αk5 +̟αγ α
1 ))

k2k3k4k5k7
.

(32)Reff = Rea + Res + Rem

Rea =
k1β

ατα̟α

k2k3k5
, Res =

k1β
ατα(̟αγ α

1 + σαk5)ν
α
1

k2k3k4k5
, and Rem =

k1β
ατα(̟αγ α

2 + k5k6)ν2

k2k3k5k7
.

(33)F1 = L1E + L2Is + L3Ia + L4Im,

Ḟ1 =
τα

(

να1 k7
(

̟αγ α
1 + σαk5

)

+ k4
(

̟αk7 + να2
(

̟αγ α
2 + k5k6

)))

k3k4k5k7

(

ηαs S +
(

1− ǫα
)

ηαs V − k3E
)

+
να1

k4

(

σαταE + γ α
1 Ia − k4Is

)

+
k4γ

α
2 ν

α
2 + k7γ

α
1 ν

α
1 + k4k7

k4k5k7

(

̟αταE − k5Ia
)

+
να2

k7

(

k6τ
αE + γ α

2 Ia − k7Im
)

=
τανα1̟

αγ α
1 η

α
s S

k3k4k5
+

τανα2̟
αγ α

2 η
α
s S

k3k5k7
+

τανα1 σ
αηαs S

k3k4
+

τανα2 k5η
α
s S

k3k7
+

ταϕαηαs S

k3k5

+
τανα1̟

αγ α
1 η

α
s (1− ǫα)V

k3k4k5
+

τανα2̟
αγ α

2 η
α
s (1− ǫα)V

k3k5k7
+

τανα1 σ
αηαs (1− ǫα)V

k3k4

+
τανα2 k5η

α
s (1− ǫα)V

k3k7
+

τα̟αηαs (1− ǫα)V

k3k5
− Ia − να1 Is − να2 Im

=

(

να1 k7
(

σαk5 +̟αγ α
1

)

+ k4
(

̟αk7 + να2
(

̟αγ α
2 + k5k6

)))

τα(S + (1− ǫα)V)ηαs

k3k4k5k7
−

(

Ia + να1 Is + να2 Im
)

≤
k1β

ατα
(

να1 k7
(

σαk5 +̟αγ α
1

)

+ k4
(

̟αk7 + να2
(

̟αγ α
2 + k5k6

)))(

Ia + να1 Is + να2 Im
)

k2k3k4k5k7

−
(

Ia + να1 Is + να2 Im
)

.

(34)Ḟ1 ≤
(

Ia + να1 Is + να2 Im
)

(Reff − 1).

(35)EE = (S∗,V∗,E∗, I∗s , I
∗
a , I

∗
m,R)
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where

and

Equation (37) can now be written as

After simplifying (39), we obtained the following: (ηαs )∗ = 0 as one of the solutions (which corresponds to the 
DFE and the quadratic equation):

where

 Therefore, by simplifying (40) and substituting into EE, we then obtain a positive EE: Hence, we get the follow-
ing result:

Theorem 7 From (3): 

1. Reff > 1 or a2 < 0 implies a unique endemic equilibrium,
2. Also a1 < 0 and Reff = 1 or � = a21 − 4a0a2 = 0 implies a unique endemic equilibrium,
3. a1 < 0,Reff < 1 and � > 0 implies two endemic equilibrium, and
4. no endemic equilibrium otherwise.

Since all the model parameters are positive it is obvious that a0 > 0 and the proof complies with the charac-
teristics of quadratic equation roots. a2 is either positive or negative depending on whether Reff < 1 or Reff > 1 . 
Clearly, from the case (i) of Theorem 7 whenever Reff > 1 , (3) has a unique EE. From case (iii) of Theorem 7, we 
get a backward bifurcation, this is a scenario where stable DFE and stable EE coexist whenever Reff < 1 (see,66–68 
and references therein for discussions on bifurcation analysis). We verify the backward bifurcation (BB) in a 
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similar manner  in69,70 by first letting discriminant a21 − 4a0a2 = 0 and simplifying for the critical value of Reff  , 
denoted by Rc

eff  and given by

The BB would then occur for the values of Rc
eff  such that Rc

eff < Reff < 1 . It can be seen in Fig. 4, this is illustrated 
by simulating the model with the following set of parameter values. It is important to note that the parameters 
used in this illustration are chosen for just demonstration purposes. The parameters used are given in Table 3, 
w i t h  β = 0.3888, ω = 0.01202643, ǫ = 0.3, ν1 = 0.3, ν2 = 0.1,̟ = 0.2, σ = 0.899, γ1 = 0.3, γ2 = 0.2,

δ1 = 0.028, δ2 = 0.025, α3 = 0.1203, ρ = 0.5, and α ∈ (0, 1] . So that, a0 = 0.4849076636× 10
−1

, a1 = −0.1013622972

×10−2, a2 = 5.647464170×10−7,Rc
eff = 0.8764132312, and Reff = 0.9868237565(that is,Rc

eff < Reff < 1).

Global stability analysis of the endemic equilibrium. From71–73, we have the following results:

Theorem 8 The unique endemic equilibrium is globally asymptomatically stable in D when Reff > 1 , provided that

and

are true.

See “Appendix” section for the proof.

Numerical simulations of the model
Using COVID-19 data obtained from Thailand, we carried out various simulations to show the transmission 
dynamics of the disease, considering many scenarios.

Numerical results. Figure 5 shows the time-series simulation results for (3).
Next, using the Caputo operator (α) , numerical simulations based on the fractional model are presented. As 

a result, (11) is numerically solved as described  in74 using the biological parameter values presented in Table 3. 
Figure 6 shows the simulation results for varying α values of the state variables over time.

Figure 6a shows that the number of people who are susceptible (i.e., the number of people who are not 
immune to COVID-19) decreases over time. This is because as more people become infected or vaccinated, 
they become immune and reduce the pool of susceptible people. Figure 6b shows the exposed population for 
various values of α . The graph shows that this population reached a maximum peak and then began to decline. 

(42)Rc
eff = 1−

a21
4a0k2k3k4k5k7k8

.

(43)
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(ηαs )
∗
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α
s )

∗

I∗mη
α
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≥ 0

Figure 4.  Bifurcation diagram of the model (3). So that, a0 = 0.4849076636× 10
−1

, a1 = −0.1013622972× 10
−2

,

a2 = 5.647464170×10−7,Rc
eff = 0.8764132312, and Reff = 0.9868237565(that is,Rc

eff < Reff < 1).
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The peak in the graph suggests a high level of transmission, where the virus rapidly spreads among susceptible 
people. However, as more people are vaccinated or recover from the infection, the exposed population starts to 
decline. This decline indicates that vaccination programs and other interventions are effective in reducing viral 
transmissions. Figure 6c–e show the populations of infected symptomatic, asymptomatic, and Omicron groups, 
respectively, for different values of α . The graphs indicate that the interventions implemented in the model, such 
as NPIs and vaccines, were effective in reducing the number of infections in all three groups. This suggests that 
these measures can control the spread of the virus and mitigate the severity of the disease, regardless of whether 
individuals show symptoms or are infected with the Omicron variant. However, it is important to note that the 
asymptomatic group can still transmit the virus to others; therefore, they should be considered as a potential 
source of transmission.

Figure 7 compares the three infected populations (symptomatic, asymptomatic, and Omicron-infected) and 
provides a comprehensive visual representation of the simulations. The graph enables for direct comparison 
of the trends and magnitudes of the three populations. These observations signal that the Omicron variant is 
more contagious and spreads the disease more rapidly than the other COVID-19 variants. It is also important to 
acknowledge that the asymptomatic infected population can contribute to the transmission of the virus despite 
the absence of symptoms. Consequently, controlling the spread of both symptomatic and asymptomatic infec-
tions is crucial for preventing further propagation of the virus.

Figure 8 shows the global stability of the disease-free equilibrium (DFE), where no one is infected and the 
disease cannot spread. The figure shows that the infected population always stays at zero over time, whereas the 
susceptible population increases to attain a steady state. Figure 9 illustrates the dynamic shifts in the susceptible 
and exposed populations as time progressed, specifically when the infection became endemic within the popula-
tion. This captures fluctuating levels of susceptibility and exposure, highlighting the evolving nature of the impact 
of the disease on the population over time.

Vaccine intervention and global sensitivity analysis. The use of the COVID-19 vaccine helps reduce 
the spread of the  virus51. In this section, we evaluate the impact of the vaccine and its effectiveness on the repro-
duction number. We define the reproduction number in the absence of a vaccine as a basic reproduction number

 Using Eqs. (31) and (45), we get:

Note that k1 − k2 = −ωαǫα , hence Reff − R0 is strictly negative. The implication of this is that using the vaccine 
effectively will have a strong impact on the reduction of the spread of all COVID-19 variants including Omicron. 
Using the fitted and estimated parameters from Table 3, we can also estimate the basic reproduction number and 
effective reproduction number as R0 = 1.828794173 and Reff = 0.9159273511 respectively.

Global sensitivity analysis using partial rank correlation coefficients. In epidemic modeling, errors occur when 
attempting to estimate parameter values for the model. Often there is a tendency for these parameters to be 
based on incomplete or limited data, which can lead to estimates that are inaccurately reflective of the actual 
population. In addition, the precise value of several parameters that are being evaluated is frequently uncertain. 
Variations between groups or areas, as well as personal circumstances that could not be considered, may lead 
to inaccuracies. Even with sufficient data and accuracy checks built in, parameter uncertainty is still probably 
caused by time-changing conditions within a given population or abrupt alterations because of unforeseeable 
occurrences like natural disasters or civil unrest. For these reasons, it’s crucial to carry out sampling and sensitiv-
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Figure 5.  Dynamics of the whole population.
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ity analysis to identify the variables that significantly affect model output. The Sampling and Sensitivity Analysis 
Tool (SaSAT) is a software tool developed for such purposes  (see75). In our model, 18 different COVID-19 
epidemiological parameters, whose values varied from other research and model fitting to data were used to 
regulate the effective reproduction number. Each of these parameters had baseline values and ranges assigned 
to them  following66. In order to create a 1000 by 18 matrix with each row defining a different parameter set, we 
utilized Latin hypercube sampling (LHS) to draw 1000 samples for each of the parameters. The effective repro-
duction numbers were calculated using the parameter sets, and the statistical contribution of each parameter to 

Figure 6.  Graphs for the nature of each state variable for the Caputo version of the fractional model at different 
values of α.
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Figure 7.  Comparing the three Infected population classes.

Figure 8.  DFE of Susceptible (S) and Infected (Is , Ia, Im) population.

Figure 9.  (a) Endemic equilibrium for susceptible population S(t). (b) Endemic equilibrium for exposed 
population E(t).
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the reproduction numbers was then described using the partial rank correlation coefficient (PRCC). Figure 10 
shows the tornado plot of the results.

The top five most sensitive parameters affecting the Reff  are β ,̟ , ǫ,α1, and ν2 in that order, as shown in 
Figure 10. To reduce the value of Reff  , we need to reduce β ,̟ , and ν2 or increase the values of ǫ and α1 . It is 
important to note that a faster decline in the value of Reff  will result from simultaneously increasing the values 
of parameters with negative PRCC values and decreasing the values of parameters with positive PRCC values.

Vaccines with a high level of efficacy have the potential to reduce the number of secondary infections in the 
community to a considerable extent. The graphical representation (response surface plot) of Reff  in the parameter 
space (ǫ,α1) see Fig. 11, which tends to suggest that the impact of the vaccine effectiveness is similar to the effect 
of recovery of the asymptomatic infected individuals.

Figure 12 depicts the impact of the effective contact rate β vs. vaccination rate of the susceptible individuals 
ω on the effective reproduction number. Figure 13 depicts the impact of the rate in progression from exposed 
individuals ̟  vs. infection reduction of the vaccinated individuals due to the vaccine effectiveness ǫ.

Discussion
Mathematical models provide efficient techniques for investigating how COVID-19 works and its potential 
behavior over time. Researchers and governments are using these models to predict how the virus will spread 
and help them make decisions about mitigation strategies, resource allocation, vaccine development, public 
health messaging, and other aspects of dealing with the virus.

In this study, we modeled the transmission and spread of COVID-19 by considering vaccination and vac-
cine effectiveness. Our model indicated that vaccination (a successful vaccine against COVID-19) should not 

Figure 10.  Tornado plot showing the sensitivities of the model parameters affecting the effective reproduction 
number Reff .

Figure 11.  response surface plot of Reff  with respect to α1 versus ǫ.
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be seen as the only solution that will eradicate this disease but rather as a valuable tool for containing its spread 
and reducing severe illnesses within populations. To attain true victory against this pandemic, attention must be 
given to the recovery of asymptomatic COVID-19-infected individuals. These individuals pose a unique chal-
lenge in controlling the spread of the disease. In other words, as a first step, and perhaps the most important, is 
to encourage individuals to get tested if they have any reason to believe that they have been exposed to someone 
who is recently diagnosed with COVID-19 or someone exhibiting symptoms.

Furthermore, it is crucial that these individuals follow up with medical personnel and stay in contact regard-
ing any further instructions that they may require. If there are any new symptoms that appear in the future, they 
should notify the medical personnel as soon as possible, so that they can get proper care and advice if necessary. 
Additionally, they should also practice proper hygiene measures, including washing their hands regularly and 
maintaining proper social distancing while out in public at all times.

From the results of our PRCC calculations, we found that the top five parameters that have the most influence 
on the disease transmission dynamics are effective contact rate, the rate of progression from exposed to asymp-
tomatic infected individuals, infection reduction due to vaccine effectiveness, the recovery rate of asymptomatic 
infected individuals, and infectiousness of omicron individuals. These do not fully support the finding  in26, 
which showed that the top 5 parameters of their model were the contact rate, infections of the omicron-infected 
individuals, incubation period, recovery rate of the asymptomatic infected individuals, and the rate of flow to 
omicron infected individuals.

The sensitivity analysis results revealed that significantly improving vaccine effectiveness and high recovery 
rate of the asymptomatic individuals can make the disease be eradicated. The current study agrees with the work 
of many authors that reported a significant decrease in COVID-19 transmission (see, for example,76).

A response surface plot of the effective reproduction number, as a function of the recovery rate of the asymp-
tomatic infected individuals and a fraction of the reduction of infections due to vaccine effectiveness, is depicted 
in Fig. 12. It follows from this figure if both parameters are increased, that could possibly eradicate the spread 

Figure 12.  response surface plot of Reff  with respect to β versus ω.

Figure 13.  response surface plot of Reff  with respect to ̟ versus ǫ.
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of COVID-19. Another parameter in our model that can be targeted for interventions is the vaccination rate 
of susceptible individuals. According to official government data, more than half of Thailand’s population has 
been vaccinated for the virus. An increase in this parameter can lead to a reduction in the effective reproduc-
tion number. The appearance of (ω) as one of the top six most sensitive parameters is quite significant because 
it supports the work  of27.

Conclusions
In this paper, we presented a comprehensive mathematical analysis of the transmission dynamics of COVID-19 
infections in Thailand, taking into account the different clinical manifestations of the disease and the emergence 
of the omicron variant. We developed an SVEIsIaImR model that captures the interactions among susceptible, 
vaccinated, exposed, symptomatic, asymptomatic, and omicron-infected individuals. The following are some of 
the main findings of this study: 

(1)  We calculated the effective reproduction number (Reff ) and established the conditions for both local and 
global stability of the equilibrium points for the model (3).

(2)  We also showed that the model exhibits backward bifurcation at Reff = 1 which brings about a sudden 
change from a stable equilibrium to an unstable one.

(3)  To determine the most crucial parameters that control the dynamics of COVID-19 transmissions, we 
performed a global sensitivity analysis utilizing Latin Hypercube Sampling and Partial Rank Correlation 
Coefficient and we discovered the most important parameters in controlling this pandemic are effective 
contact rate, the rate of progression from exposed to asymptomatic infected individuals, infection reduction 
due to vaccine effectiveness, the recovery rate of asymptomatic infected individuals, and infectiousness of 
omicron individuals.

(4)  To demonstrate some of the aforementioned theoretical findings, numerical simulations are carried out 
using the fitted parameters to Thailand data or cited from existing literature.

 Our study provides valuable insights into the epidemiology and control of COVID-19 in Thailand. Based on 
our findings, we suggest that public health authorities and policymakers should prioritize increasing vaccination 
coverage, enhancing testing and tracing capacities, enforcing social distancing and mask wearing measures, and 
monitoring the emergence and spread of new variants. These interventions can help reduce the transmission 
potential of COVID-19 and prevent future outbreaks.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.

Appendix
The proof of theorem 8

Proof We use the approach  in71–73 to establish the proof. If we first consider a Lyapunov function:

where Ji > 0 (i = 1, 2, 3, 4, 5, 6) are  constants  to  be determined.  It  is  easy to  see  that 
F2 ≥ 0 for all S,V ,E, Is , Ia, Im > 0, and F2 = 0 ⇐⇒ (S,V ,E, Is , Ia, Im) = (S∗,V∗,E∗, I∗s , I

∗
a , I

∗
m) . The Lyapu-

nov function has a derivative

By direct computation from (A-1), we have
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s )

∗V∗

(

ηαs V

(ηαs )
∗V∗

−
E

E∗
−

ηαs VE
∗

(ηαs )
∗V∗E

+ 1

)

,
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 and

 and

 and

Substituting J1 = J3 = 1, J2 = a, J4 =
(ηαs )

∗S∗

(σαταE∗+γ α
1 I

∗
a )
, J5 =

(ηαs )
∗I∗a G1

̟αταG2
, and J6 =

a(ηαs )
∗V∗

(ταk5E∗+γ α
2 I

∗
a )

 , and (A-2)–(A-7) 
into (A-1), where

G1 = S∗(ταγ α
1 k6E

∗ + γ α
1 γ

α
2 I

∗
a )+ aV∗(σαταγ α

2 E
∗ + γ α

1 γ
α
2 I

∗
a )

G2 = (ταk6E
∗ + γ α

2 I
∗
a )(σ

αταE∗ + γ α
1 I

∗)

we have

 Following the idea  in73,77, suppose we have a function defined as χ(x) = 1− x + ln(x), if x > 0 , we have 
χ(x) ≤ 0, and if x = 1, we have χ(1) = 0. Thus , x − 1 ≥ ln(x) for x > 0 Using this relation we find that

(A-5)

J4

(

1−
I∗s
Is

)

İs = J4

(

1−
I∗s
Is

)

(σαταE + γ α
1 Ia − k4Is)

= J4

(

1−
I∗s
Is

)(

σαταE + γ α
1 Ia −

(

σαταE∗

I∗s
+

γ α
1 I

∗
a

I∗s

)

Is

)

= J4

(

1−
I∗s
Is

)(

σαταE −
σαταE∗Is

I∗s
+ γ α

1 Ia −
γ α
1 I

∗
a Is

I∗s

)

= J4σ
αταE∗

(

1−
I∗s
Is

)(

E

E∗
−

Is

I∗s

)

+ J4γ
α
1 I

∗
a

(

1−
I∗s
Is

)(

Ia

I∗a
−

Is

I∗s

)

= J4σ
αταE∗

(

E

E∗
−

Is

I∗s
−

EI∗s
E∗Is

+ 1

)

+ J4γ
α
1 I

∗
a

(

Ia

I∗a
−

Is

I∗s
−

IaI
∗
s

I∗a Is
+ 1

)

,

(A-6)

J5

(

1−
I∗a
Ia

)

İa = J5

(

1−
I∗a
Ia

)

(̟αταE − k5Ia)

= J5

(

1−
I∗a
Ia

)(

̟αταE −
̟αταE∗Ia

I∗a

)

= J5̟
αταE∗

(

1−
I∗a
Ia

)(

E

E∗
−

Ia

I∗a

)

= J5̟
αταE∗

(

E

E∗
−

Ia

I∗a
−

EI∗a
E∗Ia

+ 1

)

(A-7)

J6

(

1−
I∗m
Im

)

˙Im = J6

(

1−
I∗m
Im

)

(k6τ
αE + γ α

2 Ia − k7Im)

= J6

(

1−
I∗m
Im

)(

k6τ
αE + γ α

2 Ia −

(

k6τ
αE∗

I∗m
+

γ α
2 I

∗
a

I∗m

)

Im

)

= J6

(

1−
I∗m
Im

)(

k6τ
αE −

k6τ
αE∗Im

I∗m
+ γ α

2 Ia −
γ α
2 I

∗
a Im

I∗m

)

= J6k6τ
αE∗

(

1−
I∗m
Im

)(

E

E∗
−

Im

I∗m

)

+ J6γ
α
2 I

∗
a

(

1−
I∗m
Im

)(

Ia

I∗a
−

Im

I∗m

)

= J6k6τ
αE∗

(

E

E∗
−

Im

I∗m
−

EI∗m
E∗Im

+ 1

)

+ J6γ
α
2 I

∗
a

(

Ia

I∗a
−

Im

I∗m
−

IaI
∗
m

I∗a Im
+ 1

)

.

(A-8)

Ḟ2(t) ≤ (ηαs )
∗S∗

(

2−
S∗

S
−

E

E∗
−

ηαs SE
∗

(ηαs )
∗S∗E

+
ηαs

(ηαs )
∗

)

+ a(ηαs )
∗V∗

(

2−
V∗

V
−

E

E∗
−

ηαs VE
∗

(ηαs )
∗V∗E

+
ηαs

(ηαs )
∗

)

+
σατα(ηαs )

∗S∗E∗

(σαταE∗ + γ α
1 I

∗
a )

(

E

E∗
−

Is

I∗s
−

EI∗s
E∗Is

+ 1

)

+
γ α
1 (η

α
s )

∗S∗I∗a
(σαταE∗ + γ α

1 I
∗
a )

(

Ia

I∗a
−

Is

I∗s
−

IaI
∗
s

I∗a Is
+ 1

)

+
(ηαs )

∗E∗I∗aG1

G2

(

E

E∗
−

Ia

I∗a
−

EI∗a
E∗Ia

+ 1

)

+
aταk6(η

α
s )

∗V∗

(ταk6E∗ + γ α
2 I

∗
a )

(

E

E∗
−

Im

I∗m
−

EI∗m
E∗Im

+ 1

)

+
aγ α

2 (η
α
s )

∗V∗I∗a
(ταk6E∗ + γ α

2 I
∗
a )

(

Ia

I∗a
−

Im

I∗m
−

IaI
∗
m

I∗a Im
+ 1

)

.
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Likewise,

 Meanwhile, one can still verify that

Similarly, we have

and

Substituting (A-9)–(A-15) in (A-8) we have,

Hence (A-2)–(A-16) ensure that dF2
dt ≤ 0 .  It  is easy to see that dF2

dt = 0 holds only for 
S = S∗,V = V∗,E = E∗, Is = I∗s , Ia = I∗a , Im = I∗m, and R = R∗ . In a similar manner  in78, every solution of our 

(A-9)

(

2−
S∗

S
−

E

E∗
−

ηαs SE
∗

(ηαs )
∗S∗E

+
(ηαs )

(ηαs )
∗

)

= −

(

1−
ηαs

(ηαs )
∗

)(

1−
Is(η

α
s )

∗

I∗s η
α
s

)

+ 3−
S∗

S
−

ηαs SE
∗

(ηαs )
∗S∗E

−
Is(η

α
s )

∗

I∗s η
α
s

−
E

E∗
+

Is

I∗s

≤ −

(

S∗

S
− 1

)

−

(

ηαs SE
∗

(ηαs )
∗S∗E

− 1

)

−

(

Is(η
α
s )

∗

I∗s η
α
s

− 1

)

−
E

E∗
+

Is

I∗s

≤ − ln

(

S∗ηαs SE
∗Is(η

α
s )

∗

S(ηαs )
∗S∗EI∗s η

α
s

)

−
E

E∗
+

Is

I∗s
=

Is

I∗s
− ln

(

Is

I∗s

)

+ ln

(

E

E∗

)

−
E

E∗
.

(A-10)

(

2−
V∗

S
−

E

E∗
−

ηαs VE
∗

(ηαs )
∗V∗E

+
ηαs

(ηαs )
∗

)

= −

(

1−
ηαs

(ηαs )
∗

)(

1−
Im(η

α
s )

∗

I∗mη
α
s

)

+ 3−
V∗

V
−

ηαs VE
∗

(ηαs )
∗V∗E

−
Im(η

α
s )

∗

I∗mη
α
s

−
E

E∗
+

Im

I∗m

≤ −

(

V∗

V
− 1

)

−

(

ηαs VE
∗

(ηαs )
∗V∗E

− 1

)

−

(

Im(η
α
s )

∗

I∗mη
α
s

− 1

)

−
E

E∗
+

Im

I∗m

≤ − ln

(

V∗ηαs VE
∗Im(η

α
s )

∗

V(ηαs )
∗V∗EI∗mη

α
s

)

−
E

E∗
+

Im

I∗m
=

Im

I∗m
− ln

(

Im

I∗m

)

+ ln

(

E

E∗

)

−
E

E∗
.

(A-11)

(

E

E∗
−

Is

I∗s
−

I∗s E

IsE∗
+ 1

)

= −

(

I∗s E

IsE∗
− 1

)

+
E

E∗
−

Is

Is∗
≤ − ln

(

I∗s E

IsE∗

)

+
E

E∗
−

Is

Is∗

≤ − ln

(

I∗s
Is

)

− ln

(

E

E∗

)

+
E

E∗
−

Is

Is∗
=

E

E∗
− ln

(

E

E∗

)

−
Is

Is∗
+ ln

(

Is

Is∗

)

.

(A-12)
(

Ia

I∗a
−

Is

I∗s
−

I∗s Ia

IsI∗a
+ 1

)

≤
Ia

Ia∗
− ln

(

Ia

Ia∗

)

−
Is

Is∗
+ ln

(

Is

Is∗

)

,

(A-13)
(

E

E∗
−

Ia

I∗a
−

I∗a E

IaE∗
+ 1

)

≤
E

E∗
− ln

(

E

E∗

)

−
Ia

Ia∗
+ ln

(

Ia

Ia∗

)

,

(A-14)
(

E

E∗
−

Im

I∗m
−

I∗mE

ImE∗
+ 1

)

≤
E

E∗
− ln

(

E

E∗

)

−
Im

Im∗
+ ln

(

Im

Im∗

)

,

(A-15)
(

Ia

I∗a
−

Im

I∗m
−

I∗mIa

ImI∗a
+ 1

)

≤
Ia

Ia∗
− ln

(

Ia

Ia∗

)

−
Im

Im∗
+ ln

(

Im

Im∗

)

.

(A-16)

Ḟ2(t) ≤ (ηαs )
∗S∗

(

Is

I∗s
− ln

(

Is

I∗s

)

+ ln

(

E

E∗

)

−
E

E∗
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(
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(
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E
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E
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∗
a )
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E
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(

E
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)
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(
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)
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α
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∗S∗I∗a
(σαταE∗ + γ α

1 I
∗
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(

Ia

Ia∗
− ln

(

Ia

Ia∗

)

+ ln

(

Is

Is∗

)

−
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Is∗

)

+
(ηαs )

∗E∗I∗aG1
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(

E

E∗
− ln

(

E

E∗

)

+ ln

(

Ia

Ia∗

)

−
Ia

Ia∗

)

+
aταk6(η

α
s )

∗V∗

(ταk6E∗ + γ α
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∗
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(

E
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− ln

(

E

E∗

)

+ ln

(

Im

Im∗

)

−
Im

Im∗

)

+
aγ α

2 (η
α
s )

∗V∗I∗a
(ταk6E∗ + γ α

2 I
∗
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(

Ia
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(

Ia
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(
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)

−
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model system (11) with initial conditions in D approaches the stable EE as t −→ ∞ . Hence, EE is GAS equilib-
rium of (11) on D .   �
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