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Bird’s Eye View feature selection 
for high‑dimensional data
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In machine learning, an informative dataset is crucial for accurate predictions. However, high 
dimensional data often contains irrelevant features, outliers, and noise, which can negatively impact 
model performance and consume computational resources. To tackle this challenge, the Bird’s Eye 
View (BEV) feature selection technique is introduced. This approach is inspired by the natural world, 
where a bird searches for important features in a sparse dataset, similar to how a bird search for 
sustenance in a sprawling jungle. BEV incorporates elements of Evolutionary Algorithms with a 
Genetic Algorithm to maintain a population of top-performing agents, Dynamic Markov Chain to steer 
the movement of agents in the search space, and Reinforcement Learning to reward and penalize 
agents based on their progress. The proposed strategy in this paper leads to improved classification 
performance and a reduced number of features compared to conventional methods, as demonstrated 
by outperforming state-of-the-art feature selection techniques across multiple benchmark datasets.

The increasing number of high-dimensional datasets in various organizations is driving the need for advanced 
data mining techniques1,2. However, handling high-dimensional data presents a challenge that limits the applica-
tion of data mining algorithms. To overcome this, feature selection3 and extraction methods are used to reduce 
the dimensions of the data. While feature extraction transforms raw data into a new feature space, feature selec-
tion algorithms choose the optimal subset of features from the raw data, leading to lower dimensionality and 
improved interpretability while preserving the actual data space4.

With the rise of high-dimensional data in various organizations, the need for effective feature selection algo-
rithms has become increasingly crucial. Currently, several search mechanisms exist, including ranking-based 
methods5, swarm intelligence/evolutionary algorithms6, forward/backward search7,8, and nature-inspired meta-
heuristics9. These approaches can be further classified as supervised10, semi-supervised11, or unsupervised12 based 
on the availability of training data labels. Despite their successes, supervised-wrapper configurations of these 
methods often face limitations in handling high-dimensional data. In this paper, we introduce the Bird’s Eye 
View (BEV) model for feature selection that incorporates the strengths of supervised evolutionary algorithms 
in a wrapper configuration while addressing their limitations in high-dimensional data spaces.

The BEV model draws inspiration from various natural mechanisms to achieve a comprehensive perspec-
tive on feature selection (as illustrated in Fig. 1). Similar to how a bird surveys a vast terrain to search for food 
from a high altitude, the BEV technique scours high-dimensional datasets for valuable features. Furthermore, 
the BEV approach resembles the biological process of gene regulation, in which a cell selects which genes to 
activate from its genome to form a unique gene pattern that enables each cell type to perform its specific func-
tion. This integration of nature-inspired mechanisms allows the BEV model to have a more comprehensive view 
of feature selection.

Our method determines which features to retain for optimal performance and discards unnecessary features. 
This resembles a reward-based training approach, similar to teaching a dog the desired behavior through positive 
reinforcement with treats, play, and other incentives. Our model’s agents evaluate the performance of various 
subsets of data and reward improved performance with increased probabilities. Conversely, reduced performance 
results in lower probabilities.

The proposed BEV model is a unique feature selection technique with the following significant contributions:

1.	 The design of the Markov chain and Reinforcement learning paradigms in an evolutionary framework for 
efficient communication between search agents and optimal global solution.
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2.	 The evolution of agents is based on the Markov chain, generating new agents with improved accuracy and 
associated probabilities.

3.	 A new metric for evaluating classifiers is proposed as a fitness function.
4.	 The movement of agents in search space is guided by reinforcement learning, rewarding progress and penal-

izing regress with changes in associated probabilities.
5.	 The process involves iterations that result in improved agents and reduced computational complexity by 

restricting the number of agents involved in each iteration.
6.	 The recursive approach includes choosing a subset of characteristics at each stage in order to remove unim-

portant features while keeping important ones.

Background and literature review
In recent years, various optimization techniques have been developed to tackle complex problems across fields 
such as computer science, engineering, finance, machine learning, and data science. This section reviews three 
of the most prominent algorithms: Markov Chain, Evolutionary Algorithms (specifically Genetic Algorithm), 
and Reinforcement Learning. These methods have proven to be effective in addressing challenging optimization 
problems and have been widely used. Despite their importance, these methods have certain drawbacks, including 
constrained exploration, the necessity for parameter modification, the inability to handle multiple objectives, 
and slow or premature convergence. Thus, it is crucial to take these restrictions into account when applying 
them to challenging optimization problems. One can overcome these limitations by carefully characterizing 
the problem, selecting the best algorithm, fine-tuning the parameters, and using complementary strategies to 
solve the shortcomings of each approach. In the following subsections, a brief overview of each approach, its key 
concepts, applications, advantages, and usage in the proposed work are provided.

Markov chain.  The Markov analysis is a technique for estimating the value of a variable that is solely depend-
ent on its current state, without taking into account prior activity13. It calculates a random variable based on the 
present state of other variables using a probability matrix. This makes it a useful tool for evaluating state transi-
tions in various fields such as surveillance14, machine learning15, and computer vision16. Its popularity is due 
to its ease of use and good prediction accuracy, often outperforming more complex models17. Although widely 
used, few studies have applied it to feature extraction18–20, where Markov chain features are extracted to capture 
dynamic changes in data and used by learning algorithms to make decisions. A new concept of feature selection, 
based on the transition probabilities of the Markov chain, is proposed as an alternative to feature extraction in 
our work.

Evolutionary algorithms.  An Evolutionary Algorithm (EA) is a computational method that solves prob-
lems by mimicking the behavior of living organisms using nature-inspired mechanisms21. The use of EAs for fea-
ture selection has received significant attention in academia, with various algorithms being proposed, including 
Particle Swarm Optimization (PSO)22–24, Genetic Algorithm (GA)25,26, Artificial Bee Colony (ABC)27, Genetic 
Programming (GP)28, Gravitational Search Algorithm (GSA)29 and Ant Colony Optimization (ACO)30,31. One 
advantage of EAs is their population-based search approach, which involves a team of entities exploring the fit-
ness landscape to find the globally optimum solution. This allows for more effective and efficient exploration of 
vast and challenging search areas. The sharing of information among team members also enables the discovery 
of potential regions of the search space and the narrowing of the search to critical areas. Additionally, these 
methods balance exploration and exploitation, allowing for faster convergence while avoiding local optimal 
solutions. These unique characteristics make EAs a promising approach for designing neural networks32.

Genetic algorithms are the type of evolutionary algorithms used in this work. A genetic algorithm is an 
optimization technique that uses a process inspired by natural evolution to find the best solution for a problem. 
The algorithm works by iteratively searching through a space of potential solutions, selecting and breeding the 
most promising candidates based on a set of rules inspired by genetics, and introducing random mutations to 

Figure 1.   Eagle at a high altitude seeking the optimum way.
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create new solutions. This process is repeated until either a satisfactory solution is found or a specified number 
of iterations have passed. Genetic algorithms are commonly used in machine learning and data analysis to find 
optimal model parameters33–35 or identify patterns in data36,37. The same approach is applied to feature selection 
in the proposed work. Initially, a set of possible feature combinations is generated randomly, represented as pairs. 
These pairs are then evaluated using a fitness function that assigns a score based on their accuracy. The pairs with 
the highest scores are selected for reproduction, mimicking the process of natural selection. The process repeats 
until a satisfactory solution is found or a specified number of iterations have been reached.

Reinforcement learning.  Reinforcement learning38,39 is a method of learning by interacting with the envi-
ronment and learning from rewards received from actions taken. It aims to find the best long-term solution by 
balancing exploration and exploitation. This type of learning has a lot of potential for effective feature selection 
in the subspace of features. Feature selection can be performed through single-agent40,41 or multi-agent42 deci-
sion processes. In a single-agent process, only one agent decides on the selection or deselection of features, 
resulting in a large action space and the risk of getting stuck in a local optimum solution. On the other hand, 
in a multi-agent process, multiple agents are involved in feature selection, which enables easier exploration and 
convergence of the search space. This approach also resembles natural systems, as there are similarities between 
reinforcement learning and biological systems43.

A fitness function to better evaluation of classifiers
Classifier evaluation metrics44,45 are used to determine the effectiveness of a classification model by comparing 
the predicted outcomes to the actual outcomes. Some commonly used metrics for evaluating classifiers include:

•	 Accuracy It measures the percentage of correct predictions made by the model out of all predictions. It is 
defined as (TP + TN)/(TP + TN + FP + FN) , where TP (True Positives) represents the number of positive 
instances correctly predicted, TN (True Negatives) represents the number of negative instances correctly 
predicted, FP (False Positives) represents the number of negative instances incorrectly predicted as positive, 
and FN (False Negatives) represents the number of positive instances incorrectly predicted as negative.

•	 Precision It is the ratio of true positive predictions to the sum of true positive and false positive predic-
tions. Precision measures the ability of the classifier to avoid false positive predictions and is defined as 
TP/(TP + FP).

•	 Recall (Sensitivity or True Positive Rate) It is the ratio of true positive predictions to the sum of true positive 
and false negative predictions. Recall measures the ability of the classifier to detect positive instances and is 
defined as TP/(TP + FN).

•	 F1-Score It is the harmonic mean of precision and recall, used to balance precision and recall when they are 
in conflict. The F1-Score is defined as (2 · Precision · Recall)/(Precision + Recall) . It provides a balance 
between precision and recall, as it is a measure of the harmonic mean of these two values.

•	 AUC-ROC curve The receiver operating characteristic (ROC) curve plots the true positive rate against the 
false positive rate at different classification thresholds. The area under the ROC curve (AUC) summarizes 
the performance of the classifier.

•	 Confusion matrix It is a table used to evaluate the performance of a classification algorithm, by comparing 
the predicted classes to the actual classes.

•	 Log Loss (Cross-Entropy Loss) It measures the performance of a classification model by calculating the likeli-
hood of the predicted outcomes being accurate.

The choice of evaluation metric will depend on the problem and the goals of the classifier. For example, 
precision may be important when false positive predictions are costly, while recall may be important when false 
negative predictions are costly. Note that in multiclass classification, precision, recall, and F1-Score can be cal-
culated for each class and then averaged using macro-average or micro-average methods. The confusion matrix 
is a table that has C rows and C columns, where C is the number of classes. Each row of the matrix represents 
the instances in a predicted class, while each column represents the instances in an actual class. For example, 
consider a multiclass classification problem with C = 3 classes. The confusion matrix would be a 3 × 3 table, as 
shown below in Table 1.

Where TPi represents the number of instances of class i that are correctly predicted as class i, and FPij repre-
sents the number of instances of class j that are incorrectly predicted as class i.

From the values in the confusion matrix, various evaluation metrics such as accuracy, precision, recall, and 
F1-Score for each class, as well as macro-average and micro-average across all classes, can be calculated. The 
choice of evaluation metric will depend on the problem and the goals of the classifier.

Table 1.   Confusion matrix.

Actual class 1 Actual class 2 Actual class 3

Predicted class 1 TP1 FP12 FP13

Predicted class 2 FP21 TP2 FP23

Predicted class 3 FP31 FP32 TP3
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In this study, a new metric is proposed to better monitor the performance of classifiers. Our new metric will 
accurately measure the accuracy of each class and is suitable for use in feature selection. Therefore, this metric 
can be used as a fitness function in our search algorithm

Methods
The goal of feature selection is to identify and select the smallest possible subset of relevant features from a larger 
set of features, to improve the accuracy, interpretability, and computational efficiency of the model. The idea is 
to remove redundant, irrelevant, and noisy features that may negatively impact the model’s performance. The 
selection of a smaller set of relevant features not only aids in mitigating overfitting but also enhances the inter-
pretability and comprehensibility of the model for human experts. A new tree search algorithm is developed in 
this paper to better explore the search space representing all the possible subsets. Our algorithm starts from the 
root node and expands it to generate child nodes until a goal node is found.

The search algorithm begins with a randomly selected subset of features represented by a sequence of 1 s 
and 0 s, where 1 s indicate selected features and 0 s indicate unselected features, i.e., each leaf belongs to {0, 1}d , 
where the integer d is the size of the total features.

The root leaf generates A new subsets, known as children, by randomly altering the states of each pair of 
features. The children are formed using the transition probability of the Markov chain of each feature pair, the 
transition matrices reflect the likelihood of transitioning between distinct states {00, 01, 10, 11}, with initial 
values for the transition probabilities of 0.25.

Through the expansion, the transition matrices are updated based on a rewards function reflecting the per-
formance of the generated children. Therefore, each new leaf generated will inherit the transition matrices of 
each pair of features from the parent and update them according to the concept of reward that will describe 
later in this section.

Updating these transition matrices in the right manner will favor certain extensions of the proposed tree 
to better explore the search space. After each cycle or iteration, only the highest-performing leaves are kept for 
further expansion.

The following definitions are crucial for a thorough explanation of the approach:

•	 States or leaves are defined in: {0, 1}d , where the integer d is the size of the total features.
•	 A : number of children generated by each leaf; each offspring represents a subset of selected features.
•	 MA : number of top-performing leaves that are selected for further expansion at each iteration.
•	 t: number of iterations.
•	 s: number of stages.
•	 F

t,s
j  : represents the status of the jth leaf (i.e., state) at time t and stage s, F t,s

j ∈ {0, 1}d , j = 1, . . . ,MA , which 
specifies whether each feature has been selected or not. The position of values of 1 shows the location of the 
features that have been chosen, and the position of the values of 0 indicates the position of the features that 
have been eliminated.

•	 f t,si,j : represents the value of the ith feature in the jth leaf at time t  and stage s , f t,si,j ∈ {0, 1} , i = 1, 2, . . . , d and 
j = 1, . . . ,MA .

•	 Ct,s
i,j : represents the state of ith feature pair, Ct,s

i,j = {f t,s2i−1,j , f
t,s
2i,j} , at time t  and stage s of jth leaf.

•	 Pt−1,s
i,j (Ct.si,j |C

t−1,s
i,j ) : transition probability from the pair Ct−1,s

i,j  to the pair Ct.si,j  , it represents the actions of the 
evolutional algorithm.

•	 d : dimension of data or number of features f t,si,j , i = 1, 2, . . . , d;
•	 n: number of observations of data.
•	 ε : reward function.

Genetic algorithm.  The BEV algorithm utilizes a smart branching evolution approach that is based on 
dynamic Markov chains. At each new expansion, a fixed number of leaves ( MA ) are chosen. Each leaf is repre-
sented by a sequence consisting of 1 s and 0 s and they are organized in pairs within the sequence. The process 
begins with a root leaf and generates   A children leaves, where  A is less than MA . Since the number of gener-
ated leaves does not exceed MA , all of them are selected. During the next expansion, each leaf (or child) gener-
ates A   leaves, resulting in a total of A ·A children and  A parent leaves. These children and parent leaves are 
evaluated, and the best MA leaves are chosen for the expansion.

In the subsequent step, each leaf from the selected A ·MA leaves generates a  A child, resulting in ( A ·MA ) 
children and MA parent leaves. Again, these leaves are assessed, and only the best MA leaves are selected for 
the next expansion. This process continues until there is no further improvement in the quality of the solution.

Figure 2 illustrates the process of the BEV method, which involves expanding the children and selecting the 
most effective subset of features with  A set to 3 and MA set to 9. Starting from the root leaf, three leaves are 
generated and all of them will be selected as they do not exceed the value A ·MA . The next expansion results in 
9 children and 3 parent leaves, and the 9 best leaves will be chosen based on their performance (step 1). From the 
selected 9 leaves, a total of 27 leaves (children) are generated, leading to a combined set of 36 leaves (including 

(1)min
i

(

TPi

TPi +
∑

j �=i FPij

)
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parents and children). Similarly, in the next expansion, the 9 best leaves among the 36 will be chosen (step 2), 
and this process continues iteratively.

Each leaf is represented by a sequence of 1 s and 0 s, where the features are grouped in pairs, as shown in 
Fig. 3. Every pair of features for each leaf has its transition matrix that determines the expansion process for that 
pair. Two scenarios must be taken into account when features are grouped two by two. Figure 4a, b demonstrate 
these two scenarios depending on whether the dimension d is even or odd.

Markov decision process (MDP) and reinforcement learning.  In order to determine the optimal 
subset of features that effectively differentiate between different classes, the BEV algorithm utilizes an smart 
approach to update transition probabilities during the transition from one state to another. This updating pro-
cess is based on a reward and penalty mechanism. When the fitness function shows improvement, a reward value 
is added to the transition probability associated with the corresponding direction. At the same time, one third 
of the reward value is deducted from the transition probabilities of other directions. On the other hand, if the 

Figure 2.   Process implementation in recursive levels. The process explains how the search space in an 
upcoming stage is reduced by considering only the best-performing features from the previous stage. We select 
or omit the specified features by assigning a 1 or 0 to each feature position.

Figure 3.   The features are gathered two by two in the leaf F t,s
j .
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fitness function does not improve, a penalty value is applied to the transition probability of the relevant direc-
tion, while one third of the penalty value is added to the transition probabilities of other directions.

As each Markov chain has four states {00, 01, 10, 11}, each pair of features at each leaf of F t,s
j  has four separate 

probability mass functions that govern the expansion process. Each child leaf will inherit these probability mass 
functions, or transition matrices, from the parent leaf and update them based on the fitness function as shown 
in Figs. 5 and 6.

The fitness function, denoted by f  , can be interpreted as the classification accuracy at the state F t,s
j ,

The accuracy is calculated based solely on the features chosen with a value of 1 at their positions. The fitness 
function f  can be chosen as a minimum accuracy for each class as:

where TPi represents the number of instances of class i that are correctly predicted as class i, and FPij  represents 
the number of instances of class j that are incorrectly predicted as class i. The value K represents the total number 
of classes.

In the case where A = 3 and A ·MA = 9, Fig. 5 illustrates the early stages of expansion in a process, where 
three leaves, denoted as F t=1,s=0

j  with j = 1, 2, 3, emerge from the root leaf. Another 9 leaves are generated from 

(2)f : {0, 1}d → [0, 1]

(3)min
1≤i≤K

(

TPi

TPi +
∑

j �=i FPij

)

Figure 4.   Dividing features into pairs.

Figure 5.   Process of expanding tree when  A = 3,A ·MA = 9.

Figure 6.   Dynamic Markov Chain for pairs.
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the 3 leaves F t=1,s=0
j  noted F t=2,s=0

j  for j = 1 to 9. From these 12 leaves, only 9 are selected for continued expan-
sion through the application of fitness functions, f

(

F
t=1,s=0
j

)

 for j = 1, 2, 3 and f
(

F
t=2,s=0
j

)

 for j = 1 to 9, which 
determines the most suitable leaves for growth.

The growth of each leaf is achieved through the transitions of each pair of features, represented by Ct,s
i,j  .The 

progression is guided by the transition probabilities, which are visualized in Fig. 6 through the presentation of 
four probability mass functions.

The transition probability of the ith pair at time t and stage s can be described as follows:

Figure 7 illustrates an example of how the probabilities are updated according to the fitness function values 
where it was initially supposed to be uniformly distributed, i.e., P0,si,1

(

Ct=0,s=0
i,0

)

= 0.25 . When the fitness function 
improves, a reward in the form of a value (ε) is added to the transition probability associated with the correspond-
ing direction. Simultaneously, a deduction of ε/3 is made from the transition probabilities of other directions. 
Conversely, if the fitness function fails to improve, a penalty is applied by subtracting ε from the transition prob-
ability of the relevant direction, while ε/3 is added to the transition probabilities of other directions.

Figure 8 clarifies the process of our approach, where each leaf F t,s
j  from A ·MA leaves will be expanded to  

A leaves noted as follows:

The selected best A ·MA leaves, according to the fitness function, will be given new labels of 
F

t+1,s
j forj = 1toMA.

At each stage s and iteration t, new leaves are identified by generating  A independent uniform random 
variables, denoted αt,s

j,i,r , for each leave j and each pair of features i. These variables are drawn from a uniform 
distribution between 0 and 1, with r = 1, …, A , as illustrated in Fig. 9.

(4)Pt−1,s
i,j (C

t.s
i,j |C

t−1,s
i,j ) =































P
t−1,s
0,i,j if C

t,s
i,j = {0, 0}

P
t−1,s
1,i,j if C

t,s
i,j = {0, 1}

P
t−1,s
2,i,j if C

t,s
i,j = {1, 0}

P
t−1,s
3,i,j if C

t,s
i,j = {1, 1}

(5)
3

∑

h=0

P
t−1,s
h,i,j = 1

(6)C
t−1,s
i,j ∈ {{0, 0}, {0, 1}, {1, 0}, {1, 1}}

(7)F
t+1,s
A(j−1)+1

,F t+1,s
A(j−1)+2

, . . . ,F t+1,s
A.j

Figure 7.   Probability updating mechanism based on the rewarding scheme by adding ε to the appropriate 
direction as a reward and subtracting ε /3 to the other direction if the fitness function was improved and vice 
versa.
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The transition pair from Ct.si,j  to Ct+1.s
i,(j−1)A+r

 is controlled by the values of the random variable αt,s
j,i,r as indicated 

by Eq. (8).

where r = 1, 2, . . . ,A.
At every expansion, one of the four probability mass functions for each pair of features for each leave gener-

ated from the A ·MA leaves must be updated after inheriting the transition matrices from the parent leaf. This 
process is illustrated in Figs. 7, 8 and 10.

A probability mass function (p.m.f) is a function that describes the probability distribution of a discrete 
random variable. The following are some of the properties of a p.m.f that need to be kept during the process of 
updating:

(8)

C
t+1.s
i,(j−1)A+r

=



































{0, 0} if α
t,s
i,j,r < P

t,s
0,i,(j−1)A+r

{0, 1} if P
t,s
0,i,(j−1)A+r

≤ α
t,s
i,j,r < P

t,s
0,i,(j−1)A+r

+ P
t,s
1,i,(j−1)A+r

{1, 0} if P
t,s
0,i,(j−1)A+r

+ P
t,s
1,i,(j−1)A+r

≤ α
t,s
i,j,r < P

t,s
0,i,(j−1)A+r

+ P
t,s
1,i,(j−1)A+r

+P
t,s
2,i,(j−1)A+r

{1, 1} Elsewhere

Child 1 Child Child

.

ℱ ( −1)+
+1

ℱ

ℱ (j−1)+1
+1

… …

ℱ j
+1

Figure 8.   Expanding of the leave F t,s
j  to  A different children leaves.

α
, ,1

,

α
, ,3

,α
, ,2

,

ℱ
,

Figure 9.   Expanding of the leaf F t,s
j  to  A = 3 different children leaf where αt,s

i,j,k are generated from an 
independent identically uniform distribution between [0,1] to define new pairs in other leaves according to their 
p.m.f.

,
,
∈ {{0,0}, {0,1}, {1,0}, {1,1}} ,

+1,
∈ {{0,0}, {0,1}, {1,0}, {1,1}}

= 1,… ,ℳ = ( − 1) + 1,… , ( − 1) +

,
,

,
+1,

Figure 10.   Transitions between pairs for the survival leaf and newly generated leaf.
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•	 Non-negativity The p.m.f must be non-negative, meaning that it can take a value of 0, but it cannot be nega-
tive.

•	 Non-exceeding 1 The p.m.f must be less than 1, meaning that it can take a value of 1, but it cannot be bigger.
•	 Normalization The sum of the p.m.f over all possible outcomes of the discrete random variable must equal 

1, meaning that the probabilities of all outcomes add up to 100%.

Therefore, the procedure of probability of transition updating can be executed according to the following 
equation when the transition was performed from Ct,si,j = {0, 1} to Ct,si,1 = {1, 1} for instance.

where ε is the value given by the reward function, γ ∈ {+1,−1}, and

The other three probability mass functions Pt+1,s
i,l (x|{0, 0}), Pt+1,s

i,l (x|{0, 1}), Pt+1,s
i,l (x|{1, 1}) are kept the same.

The reward may be positive or negative depending on the evolution of the fitness function values from the 
leaf F t+1,s

m  to the leaf F t,s
r  , and it can be captured by the variable γ as follows:

The reward function ε should be small variables depending on the progress of the fitness function, and dif-
ferent functions can be proposed as follows:

Or

where η and τ are two parameters that can be any small values, refer to Fig. 11.
The process proceeds through stages until accuracy can no longer be improved or further dimension reduc-

tion is not possible. The next stage (s + 1) will evaluate the best features selected from the previous stage (s) as 
the root of the new stage (s + 1). The progression through stages is necessary when there is a progression in 
performance, as shown in Fig. 12.

As shown in Fig. 13, most transition probabilities will eventually converge to either 1 or 0, referred to as the 
equilibrium distribution, after a certain number of iterations determined by the reward value ε . At that point, 
it is necessary to reset the transition probabilities to 0.25 of the best leaf of the current stage as the root leaf for 
the next stage and repeat the branching process to see if higher accuracy can be achieved with fewer features.
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Figure 11.   The reward function ( ε ) plotted against the difference of fitness function of Eq. (13) when τ = 0.01, 
η = 0.2.
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The overall structure of each stage of the BEV approach is summarized in Fig. 14.

Results and discussion
This section plans to evaluate the proposed strategy by conducting experiments on a range of datasets that are 
commonly used for testing and comparison purposes. These datasets will serve as benchmarks to compare the 
performance with state-of-the-art methods and showcase the robustness of our technique. A thorough analysis 
of results, in terms of accuracy and size of selected features, will provide valuable insights into the strengths and 
weaknesses of our approach.

Datasets.  The evaluation of the suggested method was conducted using 10 real-world high-dimensional 
datasets. These datasets are used to test the performance of the method in terms of feature selection and clas-
sification tasks. The datasets used in the evaluation of the suggested method are gene expression datasets with 
high dimensionality, meaning there are more features than observations. Additionally, the datasets are challeng-
ing because of the imbalanced distribution of observations across classes. Table 2 provides information on the 
number of observations, number of features, and other relevant details for these datasets.

Figure 12.   Progress through different stages.
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Experimental settings.  This paragraph describes the process of evaluating the proposed strategy using 
tenfold cross-validation. To account for the limited number of samples in the datasets, the cross-validation tech-
nique is used to create the training and test sets (no validation set is used). One-fold is reserved as the test set and 
not used in the feature selection process, while the remaining nine folds are used for building the training data. 
The selected features are then used to update the training and test sets, which are fed into the KNN algorithm 
to evaluate their performance. To ensure a fair and comprehensive assessment, each dataset is subjected to ten 
independent tenfold cross-validation tests with different random seeds, resulting in 100 total runs for each data-
set. This approach aligns with previous research and provides a current assessment of the state-of-the-art31,46.

Baseline methods.  To demonstrate its effectiveness, the proposed work is compared with several exist-
ing feature selection algorithms that cover various techniques such as ant colony optimization, variable-length 

Figure 13.   The evaluation of the transition probability of the best pair of features to determine when the 
equilibrium distribution will be attained.

Figure 14.   BEV feature selection process summary. 
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particle swarm optimization, comprehensive learning PSO with adaptive learning probability, and correlation-
based feature selection. The comparison includes evolutionary models (TSHFS-ACO (two-stage hybrid feature 
selection model based on ant colony optimization)31, IRRF- SACO (Relevance-redundancy feature selection 
based on ant colony optimization)47), particle swarm optimization [Standard PSO, VL-PSO (Variable-Length 
Particle Swarm Optimization)46, CLPSO (Comprehensive Learning PSO) enhanced with the adaptive learning 
probability48, and CSO (Competitive Swarm Optimizer)49], graph-based [TFSACO (Text feature selection using 
ACO)50], and classical methods [LFS (linear forward selection), CFS (correlation-based feature selection)51, and 
FCBF (fast correlation-based feature selection)52].

Parameter’ settings.  Table 3 presents the parameters utilized in the proposed approach. The rest of the 
baseline methods compared are in line with those specified in prior studies31,46.

Results and discussion.  Table 4 demonstrates the performance of the proposed methodology on 10 high-
dimensional real-world datasets. The comparison between the actual feature vector and the results of the pro-
posed feature selection method is displayed for each dataset. The developed algorithm significantly improves 
classification accuracy and reduces the dimensionality of all datasets, as shown in Fig.  15. The graphical 

Table 2.   Details of datasets.

Dataset Observations Features Classes % largest class % smallest class % sample distribution

Lung cancer 203 12,600 5 69 3 [69, 10, 10, 8, 3]

11 tumor 174 12,533 11 16 4 [16, ,5,4]

Leukemia 2 72 11,225 3 39 28 [28, 33, 39]

Prostate 102 10,509 2 51 49 [49, 51]

Brain tumor 2 50 10,367 4 30 14 [14, 28, 30]

Brain tumor 1 90 5920 5 67 4 [67, 11, 11, 7, 4]

9 tumor 60 5726 9 15 3 [15,  , 10, 10, 3]

DLBCL 77 5469 2 75 25 [75, 25]

Leukemia 1 72 5327 3 53 12 [53, 35, 12]

SRBCT 83 2308 4 35 13 [13, 22, 30, 35]

Table 3.   Parameter’s settings.

Parameters Settings

ε η∗ tanh
∣

∣fitness
(

F t,s
r

)

− fitness
(

F t+1,s
m

)
∣

∣

A (# of new agents for every t + 1) 3

MA 9

Max t 36

KNN-k 5

η 0.2

Table 4.   Results on different datasets compared to the full feature set.

Dataset

Full feature set Selected features

No. of features Accuracy % Average No. of features Average accuracy %

Lung cancer 12,600 78.05 12.1 100.0

11 tumor 12,533 71.42 430.6 87.00

Leukemia 2 11,225 89.44 5.6 100.0

Prostate 10,509 85.33 6.4 100.0

Brain tumor 2 10,367 62.50 6.5 98.00

Brain tumor 1 5920 72.08 7.3 89.00

9 tumor 5726 36.67 108 64.80

DLBCL 5469 83.00 6.0 100.0

Leukemia 1 5327 79.72 6.1 100.0

SRBCT 2308 87.08 10.4 100.0
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comparison highlights the improvement in the performance of the proposed feature selection results compared 
to the original feature vectors. Table 5 provides a detailed analysis of the performance of the proposed algorithm, 
including the best, worst, and meaningful results.

The dataset size reduction process is implemented iteratively until the accuracy and feature count remain con-
sistent in three consecutive stages. During these initial stages, the dimensionality reduction is carried out without 
sacrificing precision. In the following three stages, the criteria for maintaining accuracy are relaxed, allowing for 
further reduction in dimensions with the possibility of fluctuating accuracy. Figures 16 and 17 summarize the 
results of 10 separate runs on all datasets using these additional stages. It can be seen that the number of features 
decreases as the stages progress. Initially, accuracy increases consistently, but in the last three stages, accuracy 
may decline as the feature count decreases. The results show that, while the balanced accuracy may vary among 
the same dataset experiments in the early stages, it eventually converges to a similar level in the later stages.

Additionally, Fig. 18 demonstrates that as the feature count decreases, the balanced accuracy for all datasets 
improves, highlighting the critical role of feature selection in attaining optimal accuracy and its potential for 
reducing the actual feature vector size. It is noteworthy that there is a trade-off between the number of features 
and accuracy, as reducing the feature vector size too much can result in decreased accuracy in most cases.

To showcase the versatility of our approach, we expanded our analysis by incorporating two additional 
classification models, Random Forest and Support Vector Machine (SVM), in addition to the KNN model. We 
conducted experiments on two datasets, ‘brain tumor 1’ and ‘brain tumor 2’, to assess the accuracy of the BEV 
and Autoencoder algorithms. We evaluated and compared the performance of these algorithms by averaging 
the results obtained from 10 experiments. These datasets were intentionally selected as they offer potential for 
improvement beyond what the BEV algorithm achieves in terms of accuracy. The corresponding comparison is 
presented in Table 6. Details of the Autoencoder parameters used for these evaluations can be found in Table 7.

The results clearly demonstrate that our proposed algorithm outperforms the Autoencoder when employing 
different classification models on the aforementioned datasets. Notably, the BEV algorithm achieves optimal 
performance by selecting only 7 and 5 features for ‘brain tumor 1’ and ‘brain tumor 2’, respectively, whereas the 
Autoencoder attains its best performance with 100 features on both datasets.

Figure 15.   Performance comparison with the original feature vector of different datasets. (a) Performance in 
terms of dimensionality reduction. (b) Performance in terms of classification accuracy.

Table 5.   Best, worst, and mean results on different datasets by the proposed algorithm.

Dataset

Accuracy (%) Features Stages

Best Worst Mean ± std Best Worst Mean Min Max Average

Lung cancer 100.0 100.0 100 ± 0.00 6 26 12.1 8 15 12

11 tumor 90.0 80.00 87.00 ± 3.49 59 1521 430.6 3 8 5.5

Leukemia 2 100.0 100.0 100± 0.00 2 8 5.6 10 15 11.9

Prostate 100.0 100.0 100± 0.00 4 13 6.4 10 14 12

Brain tumor 2 100.0 80.00 98.00± 5.37 3 18 6.5 9 15 12.4

Brain tumor 1 89.0 89.00 89.00± 0.00 2 26 7.3 9 12 10.7

9 tumor 77.77 55.55 64.80± 7.04 5 355 108 4 12 8.1

DLBCL 100.0 100.0 100± 0.00 3 14 6.0 10 13 10.5

Leukemia 1 100.0 100.0 100± 0.00 4 10 6.1 9 13 10.9

SRBCT 100.0 100.0 100± 0.00 3 26 10.4 7 12 9.1
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Moreover, our proposed model offers a distinct advantage by eliminating the need for a predefined number 
of desired feature selections, which is a requirement in the Autoencoder approach. In order to investigate the 
influence of desired feature selection on the Autoencoder’s performance, we conducted experiments utilizing 
various feature configurations on the ‘Brain Tumor 1’ and ‘Brain Tumor 2’ datasets.

To ensure a fair comparison, we specifically examined the performance of two feature sets: one with 7 fea-
tures for the ‘brain tumor 1’ dataset and another with 5 features for the ‘brain tumor 2’ dataset. These feature 
sets represent the average number of features obtained by the BEV algorithm for each dataset. Additionally, we 
assessed the performance of the Autoencoder using two different desired feature settings: 50 and 100 features. 
The performance of the Autoencoder under these settings for the two datasets is presented in Table 8, based on 
the average results from 10 experiments. These analyses allow us to explore the impact of feature selection on 
the Autoencoder’s performance.

Figure 16.   Performance of the proposed algorithm on ten different datasets over ten independent runs. The 
graphs show the performance in terms of reducing the number of dimensions with recursive stages.
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After analyzing the results, we made several key observations. Firstly, the random forest classifier demon-
strated the best performance when utilizing the autoencoder with 7 features. However, when employing 50 and 
100 features, the KNN classifier outperformed other classification models. It is important to highlight that, despite 
the varying performance across different feature configurations, none of the results surpassed the accuracy and 
feature efficiency achieved by the BEV algorithm.

Furthermore, we emphasize that the BEV algorithm excels in extracting precise features, ensuring the preser-
vation of the exact features present in the dataset. In contrast, the autoencoder learns compressed representations 
that may not directly align with the original features of the data. This distinction highlights the strength of the 
BEV algorithm in capturing relevant information from the dataset.

Figure 17.   Accuracy of the proposed algorithm on ten different datasets over ten independent runs. The graphs 
show the improving classification accuracy with recursive stages.
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Comparison with existing literature.  Table 9 presents the results of the proposed methodology against 
state-of-the-art approaches in terms of balanced classification accuracy. The proposed BEV method outperforms 
current state-of-the-art techniques, including the two best methods TSHFS-ACO and ERM-FS, in balanced 
classification accuracy. BEV achieved an average improvement of 9.21% and 4.23% over TSHFS-ACO and ERM-
FS, respectively. The largest improvement was observed in the Brain Tumor 2 dataset, with 8.77% and 21.92% 
over ERM-FS and TSHFS-ACO. The second largest improvement was seen in Brain Tumor 1 dataset, with 5.74% 

Figure 18.   The performance regarding the number of features versus Balanced accuracy. The representation 
demonstrates the effectiveness of reducing dimensionality over all ten datasets.

Table 6.   Accuracy comparison of BEV and Autoencoder algorithms on two datasets: ‘brain tumor 1’ and 
‘brain tumor 2’ based on the average of 10 experiments. Significant values are in bold.

Datasets Brain tumor 1 Brain tumor 2

Models Proposed BEV Autoencoder Proposed BEV Autoencoder

KNN 89% 73% 98% 74%

Random Forest 89% 62.20% 100% 52%

SVM 89% 65% 95% 2%

Best features 7 100 5 100
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Table 7.   Autoencoder parameters.

Autoencoder parameters Values

Optimizer Adam

Loss Mean squared error

Epochs 1000, 2500, 5000

Batch size 32, 64, 128

Desired features 7, 50, 100

Table 8.   Autoencoder performance on different desired features on two datasets i.e., ‘brain tumor 1’ and 
‘brain tumor 2’ based on AVG of 10 experiments. Significant values are in bold.

Autoencoder performance Brain tumor 1 (%) Brain tumor 2 (%)

Models 7 feats 50 feats 100 feats 5 feats 50 feats 100 feats

KNN 55.50 67.70 73.30 70 67.9 74

Random forest 60.00 62.20 57.70 52 46 38

SVM 59.0 59.0 65.50 0 0 2

Table 9.   Comparison in terms of average balanced accuracy with existing studies in 100 feature selection runs 
(mean ± std). Significant values are in bold.

Dataset

Method

Proposed BEVFSBACOM TFSACO IRRFSACO TSHFS-ACO PSO ECLPSO CSO VLPSO ERM-FS

Lung cancer 82.81 ± 1.54 88.84 ± 2.24 86.67 ± 3.13 88.62 ± 0.84 78.77 ± 1.53 77.91 ± 1.98 87.72 ± 2.93 87.60 ± 1.20 93.25 ± 0.01 100.0 ± 0.00

11 tumor 80.21 ± 1.76 81.71 ± 1.17 78.85 ± 1.60 85.12 ± 1.30 71.81 ± 1.75 71.09 ± 1.20 79.52 ± 2.35 82.38 ± 1.94 80.26 ± 0.02 87.00 ± 3.49

Leukemia 2 92.22 ± 2.12 92.44 ± 2.04 87.72 ± 2.44 95.00 ± 1.43 89.83 ± 1.00 89.82 ± 1.20 91.71 ± 3.16 91.56 ± 2.05 98.12 ± 0.01 100.0 ± 0.00

Prostate 83.98 ± 1.90 88.73 ± 2.02 91.05 ± 2.31 91.57 ± 1.21 86.00 ± 1.49 85.46 ± 1.41 88.99 ± 2.68 88.48 ± 1.93 96.12 ± 0.01 100.0 ± 0.00

Brain tumor 2 67.21 ± 4.48 72.33 ± 3.29 72.58 ± 4.58 76.08 ± 3.68 61.99 ± 2.91 63.20 ± 2.60 80.44 ± 6.28 70.29 ± 5.25 89.23 ± 0.03 98.00 ± 5.37

Brain tumor 1 74.83 ± 1.78 74.04 ± 3.33 63.88 ± 4.53 71.42 ± 3.97 73.73 ± 2.21 73.87 ± 2.37 79.93 ± 3.09 70.58 ± 2.78 83.26 ± 0.04 89.00 ± 0.00

9 tumor 40.83 ± 5.49 45.83 ± 5.33 40.00 ± 3.80 50.67 ± 5.53 42.72 ± 1.42 41.33 ± 1.48 59.50 ± 3.72 47.33 ± 4.23 64.44 ± 0.07 64.80 ± 7.04

DLBCL 89.48 ± 2.00 91.22 ± 6.43 91.53 ± 3.66 93.95 ± 1.68 83.67 ± 1.52 82.44 ± 2.01 94.30 ± 4.05 91.03 ± 3.85 98.09 ± 0.02 100.0 ± 0.00

Leukemia 1 84.68 ± 4.23 93.90 ± 1.13 80.32 ± 2.78 94.81 ± 2.35 80.60 ± 2.55 80.88 ± 2.28 88.45 ± 3.90 96.05 ± 2.62 97.93 ± 0.01 100.0 ± 0.00

SRBCT 88.96 ± 3.00 98.71 ± 0.89 89.13 ± 2.35 99.42 ± 0.53 89.51 ± 1.56 88.10 ± 1.57 93.29 ± 5.52 98.88 ± 0.70 100 ± 0.00 100.0 ± 0.00

Figure 19.   Comparison of proposed BEV with best performing TSHFS-ACO and ERM-FS in terms of Mean 
Balanced Accuracy (%) on all the datasets. The datasets are ranked in numbers from the highest dimensions to 
the lowest dimensions.
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and 17.58% improvement, respectively. The lowest improvement was 1.88% and 5% on Leukemia 2 dataset. The 
proposed method performed best in the largest dataset, Lung Cancer (with 12,600 dimensions), with 11.38% 
and 6.75% improvement over TSHFS-ACO and ERM-FS, respectively (see Table 9). Figure 19 highlights the 
superiority of our approach in comparison with the two best techniques TSHFS-ACO and ERM-FS in terms of 
accuracy.

Table 10 compares the average number of selected features for various techniques. Despite a higher mean 
balanced accuracy, the proposed BEV approach results in a lower average number of selected features on 8 out of 
10 datasets. This highlights the efficiency of the proposed BEV in identifying the optimal features while reducing 
dimensions. The TFSACO performed better in reducing dimensions on 2 out of 10 datasets. Table 11 presents 
a comparison of the average balanced accuracy and the average number of selected features of classical studies. 
It clearly shows that the proposed BEV approach outperforms all other techniques in overall performance. In 
conclusion, these results demonstrate the superiority of the proposed BEV for high-dimensional feature selection.

To assess the performance of the BEV algorithm, we conducted an evaluation with recall which is an impor-
tant metric in addition to accuracy. We compared the results of the BEV algorithm with the ERM-FS algorithm, 
which achieved the second-highest accuracy after our proposed algorithm, as shown in Table 11. The evaluation 
was performed using ’macro’ recall since our scenario involved multiple classes. The results for both algorithms 
can be found in Table 5. It is important to note that ’macro’ recall was utilized to ensure a comprehensive evalu-
ation in our multi-class setting.

Table 12 demonstrates that the BEV algorithm consistently surpasses the ERM-FS algorithm in terms of 
macro recall across the various datasets. This finding highlights the superior performance of the BEV algorithm 
in accurately capturing important information from the data. In fact, the BEV algorithm achieves a perfect 
macro recall score of 100% on the majority of the datasets, further emphasizing its effectiveness. However, it is 
important to mention that in the case of 11 Tumor, Brain Tumor 1, and 9 Tumor datasets, the BEV algorithm 
exhibits a comparatively lower macro recall of 86.3%, 80%, and 66.6% respectively, indicating an area with 
potential for improvement.

Table 10.   Comparison in terms of average number of features selected with existing studies in 100 feature 
selection runs. Significant values are in bold.

Dataset

Method

Proposed BEVPSO ECLPSO CSO FSBACOM TFSACO IRRFSACO TSHFS-ACO VLPSO ERM-FS

Lung cancer 6234.7 5739.7 226.4 379.1 61.9 96.0 96.3 181.0 61.00 12.1

11 tumor 6205.0 5731.7 588.6 339.6 93.7 146.0 145.9 204.4 292.60 430.6

Leukemia 2 5535.7 5115.6 88.6 363.0 32.2 56.0 55.9 42.7 15.30 5.6

Prostate 5193.7 4818.5 357.2 420.9 12.2 65.0 64.89 38.08 11.00 6.4

Brain tumor 2 5117.2 4718.7 90.43 218.5 46.8 74.0 74.1 113.6 26.80 6.5

Brain tumor 1 2917.2 2710.0 207.6 120.5 38.7 71.0 70.9 103.8 32.44 7.3

9 tumor 2811.9 2605.5 220.3 123.9 79.9 89.0 89.2 87.6 89.40 108

DLBCL 2681.0 2491.3 30.1 173.9 17.4 45.0 45.0 31.9 14.20 6.0

Leukemia 1 2615.5 2427.9 170.1 130.1 37.8 45.0 44.5 7.0 22.80 6.1

SRBCT 1119.4 1054.8 85.4 35.8 49.8 43.0 42.5 23.4 31.00 10.4

Table 11.   Comparison in terms of average balanced accuracy and number of selected features with classical 
studies in 100 feature selection runs. Significant values are in bold.

Dataset

Average balanced accuracy

Proposed BEV

Average number of selected 
features

Proposed BEVLFS CFS FCBF ERM-FS LFS CFS FCBF ERM-FS

Lung cancer 79.62 93.76 92.71 93.25 ± 0.01 100 ± 0.00 8.5 517.0 439.4 61.00 12.1

11 Tumor 61.76 80.04 80.57 80.26± 0.02 87.00 ± 3.49 17.3 361.6 349.6 292.60 430.6

Leukemia 2 89.44 94.44 95.56 98.12± 0.01 100 ± 0.00 4.7 129.5 77.5 15.30 5.6

Prostate 90.17 92.17 92.17 96.12 ± 0.01 100 ± 0.00 5.9 80.4 66.1 11.00 6.4

Brain tumor 2 77.50 77.50 77.50 89.23 ± 0.03 98.00 ± 5.37 9.1 101.1 66.2 26.80 6.5

Brain tumor 1 63.33 76.6.7 73.75 83.26 ± 0.04 89.00 ± 0.00 12.2 151.9 104.6 32.44 7.3

9 tumor 26.67 56.67 55.00 64.44 ± 0.07 64.80 ± 7.04 9.7 44.0 33.7 89.40 108

DLBCL 83.33 93.00 94.83 98.09 ± 0.02 100 ± 0.00 5.9 86.3 66.1 14.20 6.0

Leukemia 1 85.14 92.08 89.86 97.93 ± 0.01 100 ± 0.00 5.4 79.4 48.5 22.80 6.1

SRBCT 91.67 99.17 98.75 100 ± 0.00 100 ± 0.00 7.1 112.3 69.0 31.00 10.4
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Algorithm complexity.  The BEV algorithm utilizes the KNN model as its classification model. During 
training, the time complexity of the KNN model is O(1) , indicating that it does not depend on the size or 
dimensionality of the dataset. However, during prediction, the time complexity becomes O(k · n · d) , where k 
represents the number of neighbors, n denotes the number of samples/points in the data, and d represents the 
dimensionality of the dataset. It’s important to note that the time required for distance calculations is typically 
insignificant compared to other algorithmic steps. The performance of the BEV algorithm is primarily affected 
by the dimensionality of the dataset. As the dimensionality increases, the computational time also increases. 
Consequently, the overall time complexity of the BEV algorithm can be expressed as O(d2 · n) , assuming the 
number of neighbors ( k ) remains constant. Table 4 provides the computational time needed for the different 
algorithms. The algorithms were executed on an Intel Core i7-4770 CPU @3.4 GHz.

According to Table 13, the proposed algorithm is positioned as the third fastest in terms of average compu-
tation time across all datasets. It is noteworthy that VLPSO exhibits the highest speed, followed by ERM-FS. 
However, it is important to emphasize that although VLPSO excels in computational efficiency, it does not rank 
among the top algorithms in terms of accuracy. Conversely, the proposed algorithm demonstrates slightly slower 
computation time compared to ERM-FS, but it achieves significantly better accuracy performance while utilizing 
a reduced number of features.

Conclusion
The proposed Bird’s Eye View (BEV) feature selection approach offers a solution to the challenge of selecting 
features in high-dimensional datasets. It combines three different paradigms and employs a rewarding scheme 
and collective evolution with Markov impact to iteratively reduce the feature space. The BEV algorithm draws 
inspiration from the genetic algorithm mechanism and implements a smart branching evolution approach that 
relies on dynamic Markov chains. The algorithm begins by initializing a root leaf and proceeds to generate 
children leaves, where the number of generated leaves is determined by a predetermined fixed value. Each leaf 
is represented by a sequence of 1 s and 0 s, organized in pairs. The best leaves are selected for each expansion 
based on evaluation. This iterative process continues until no further improvement is observed. The BEV algo-
rithm effectively distinguishes between different classes by utilizing a reward and penalty mechanism to update 
transition probabilities during state transitions. This mechanism is based on the improvement or lack thereof in 

Table 12.   Macro recall comparison of ERM-FS and BEV algorithms on multiple datasets. Significant values 
are in bold.

Datasets ERM-FS recall BEV recall

Lung cancer 93.5 100

11 tumor 88.4 86.3

Leukemia 2 92.7 100

Prostate 81.7 100

Brain tumor 2 93.1 100

Brain tumor 1 89.4 80

9 tumor 43.62 66.6

DLBCL 91.1 100

Leukemia 1 91.42 100

SRBCT 87.8 100

Table 13.   Computational time comparison of various algorithms. 

Datasets Dimensions

Time (min)

Proposed BEVPSO ECLPSO CSO VLPSO ERM-FS

Lung cancer 12,600 574.2 503.1 5565.9 70.1 30.33 87.37

11 tumor 12,533 418.5 366.7 6288.6 65.8 37.18 78.95

Leukemia 2 11,225 120.6 125.6 1845.2 16.9 33.19 47.28

Prostate 10,509 160.6 152.5 2369.9 22.6 29.1 45.14

Brain tumor 2 10,367 80.5 73.6 950.8 12.1 27.39 40.14

Brain tumor 1 5920 66.7 60 462.1 9.8 15.45 21.88

9 tumor 5726 39.2 39.2 373.4 6.2 15.53 20.35

DLBCL 5469 47.6 44.2 394.8 7.4 14.46 19.89

Leukemia 1 5327 41.2 36.3 251.8 6.4 12.08 19.12

SRBCT 2308 8.2 7.5 19.9 1.4 6.82 8.61

Average time (min) 155.7 140.9 1852.2 21.9 22.2 38.9
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the fitness function. As a result, the algorithm achieves a significantly reduced feature subset while preserving 
high classification performance.

The effectiveness of the proposed BEV approach in high-dimensional feature selection is demonstrated by its 
ability to generate a significantly reduced feature subset while maintaining a high fitness level. Through evalua-
tion on 10 benchmark datasets, the BEV model outperforms current state-of-the-art methods. Furthermore, it 
offers advantages such as simplicity in development, ease of hyperparameter configuration, and fast execution.

However, it is important to note that our approach is a stochastic algorithm, which means it provides subop-
timal solutions rather than guaranteed optimal solutions. Despite effectively exploring the search space, there 
is no guarantee that the selected feature subset will be the absolute best. Achieving satisfactory performance in 
the proposed approach depends heavily on fine-tuning various hyperparameters. One avenue for future research 
involves exploring the tuning of additional hyperparameters to enhance the algorithm’s performance. Addition-
ally, we plan to investigate the inclusion of sets of k-features, as opposed to limiting the selection to only two 
features. This modification aims to assess whether expanding the feature selection scope can further improve 
the approach’s performance.

Data availability
The code and datasets are available from the links https://​github.​com/​Bilal​39/​Bird-​Eye-​View-​Script and https://​
github.​com/​tnbinh/​VLPSO/​tree/​main/​Data.
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