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Variational quantum 
and quantum‑inspired clustering
Pablo Bermejo 1,2 & Román Orús 1,2,3*

Here we present a quantum algorithm for clustering data based on a variational quantum circuit. 
The algorithm allows to classify data into many clusters, and can easily be implemented in few‑qubit 
Noisy Intermediate‑Scale Quantum devices. The idea of the algorithm relies on reducing the clustering 
problem to an optimization, and then solving it via a Variational Quantum Eigensolver combined with 
non‑orthogonal qubit states. In practice, the method uses maximally‑orthogonal states of the target 
Hilbert space instead of the usual computational basis, allowing for a large number of clusters to be 
considered even with few qubits. We benchmark the algorithm with numerical simulations using real 
datasets, showing excellent performance even with one single qubit. Moreover, a tensor network 
simulation of the algorithm implements, by construction, a quantum‑inspired clustering algorithm 
that can run on current classical hardware.

Quantum computing is living interesting times. Right now, we are at the historical moment in which the first 
prototypes of quantum computers are allowing to think about actual applications. These first prototypes, called 
Noisy Intermediate-Scale Quantum (NISQ) devices, do not have error correction, are subject to noise, and have 
a limited number of qubits. Therefore, the relevant question is not “when are we going to have a fully developed 
quantum computer?”, but rather “can we do something useful with the limited machines that we have now?”

History has taught us that the answer to the above question must be a qualified yes. One of the very first 
applications of quantum computers is quantum machine learning1. This is a very active field of research, with new 
algorithms coming up every day. Among the many tasks in machine learning where a quantum computer can 
help one finds quantum neural networks, quantum support vector machines, and much more. All in all, there 
is a large variety of algorithms that have been proposed for supervised learning, where the quantum computer 
is trained with a set of data in order to recognize patterns and anomalies. A number of algorithms have been 
proposed in this context, including some that are amenable to the limitations of current quantum hardware such 
as quantum classifiers with data  reuploading2. A different story, though, is that of unsupervised learning, where 
the quantum computer must learn by itself the different classes associated to the data. These are the so-called 
clustering algorithms, where computers cluster data into different groups according to the properties “seen” by 
the algorithm. Concerning this, current approaches to quantum clustering rely on algorithms that are not eas-
ily implemented on NISQ devices. An example is the quantum-KNN  algorithm3, which would require of more 
powerful quantum computers than current prototypes in order to apply it in a real-life setting (lots of data, lots of 
features, and perhaps highly imbalanced). Another option more recently explored is that of quantum  annealing4, 
where clustering is mapped to an optimization. Despite being a friendlier algorithm, this option still has strong 
limitations, including the overhead due to embedding in the quantum annealer.

In this paper, we propose an alternative approach to quantum clustering. Our idea is to solve it as an optimi-
zation problem, but on a universal gate-based quantum computer. This can be achieved by using a variational 
quantum circuit, i.e., by implementing a Variational Quantum Eigensolver (VQE). Moreover, we allow the target 
states in the Hilbert space to be non-orthogonal2. In this way we can implement a large number of clusters even 
if having few qubits. In practice, even just one single qubit is already able to implement an accurate clustering 
into many classes with just a single rotation in the Bloch sphere. By construction, this algorithm is perfectly 
adapted to run on current prototypes of universal gate-based quantum computers, and is able to deal with real, 
complex datasets. In addition, a tensor  network5,6 simulation of the algorithm implements, by construction, a 
quantum-inspired clustering algorithm that can run on current classical hardware. And by targeting directly the 
optimization of the cost function with TNs, one has, directly, native quantum-inspired clustering algorithms. 
The work presented in this paper is, therefore, not incremental: this is the first proposal of a quantum clustering 
algorithm that can solve real-size problems on gate-based NISQ quantum processors. This approach significantly 
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reduces the computational requirements required for quantum clustering, so that it brings NISQ devices closer 
to practical applications of everyday life.

Algorithm
Let us start by assuming that we have N datapoints, each being described by m features. The goal is to classify 
these datapoints into k clusters. Without loss of generality, datapoints are described by m-dimensional vectors 
−→x i , with i = 1, 2, . . . ,N . To implement a clustering of the data we could, for instance, use classical bit variables 
qai = 0, 1 , with i = 1, 2, . . . ,N and a = 1, 2, . . . , k , so that qai = 0 if datapoint i is not in cluster a, and qai = 1 if 
it is in the cluster. Let us also call d(−→x i ,

−→x j) some distance measure between datapoints −→x i and −→x j . With this 
notation we build a classical cost function H such that points very far away tend to fall into different  clusters4:

Additionally, one must impose the constraint that every point falls into one and only one cluster, i.e.,

The bit configuration optimizing Eq. (1) under the above constraint provides a solution to the clustering of 
the data. As explained in Ref.4, this can be rephrased naturally as a Quadratic Binary Optimization Problem 
(QUBO) of k × N bit variables, so that it can be solved by a quantum annealer. However, on a gate-based quan-
tum computer, we can use a Variational Quantum Eigensolver (VQE)7 with fewer qubits as follows. Let us call 
f ai ≡ |�ψi|ψ

a
�|
2 the fidelity between a variational quantum state |ψi� for datapoint −→x i and a reference state |ψa

� 
for cluster a. In a VQE algorithm, we could just sample terms haij,

for all datapoints i, j and clusters a, together with penalty terms ci,

which are taken into account via Lagrange multipliers for all datapoints i. This last term must only be taken into 
account if several configurations of the qubits forming the VQE circuit allow for multiple clusters a simultane-
ously for the same datapoint, e.g., if we codified one qubit per cluster as in Eq. (1).

Our approach here, though, is not to relate the number of qubits to the number of clusters. Instead, we work 
with some set of predefined states |ψa

� ∈ H , not necessarily orthogonal, and being H whichever Hilbert space 
being used for the VQE. This provides us with enormous flexibility when designing the algorithm. For instance, 
we could choose states |ψa

� to be a set of maximally mutually-orthogonal  states2 in H . In the particular case of 
one qubit only, we would then have H = C

2 and the set of maximally-orthogonal states would correspond to the 
k vertices of a platonic solid inscribed within the Bloch sphere. The corresponding VQE approach would then 
correspond to a simple quantum circuit of just one qubit involving the fine-tuning of a single one-qubit rotation, 
and no sampling of the constraints in Eq. (4) would be needed at all, since this would be satisfied by construc-
tion. And for more qubits, the corresponding generalization would involve interesting entangled states in H.

In addition to this, the terms to be sampled can be further refined to improve algorithmic performance. One 
can for instance introduce modified cost functions, such as

In the above cost functions, the first one tends to aggregate together in the same cluster those datapoints that 
are separated by a short distance, which is the complementary view to the original cost function in Eq.  (3). The 
second one includes two regularization hyperparameters α and � , where α allows for modified penalizations 
for the distances between points, and � accounts for the relative importance of the distance between datapoint 
−→x i and the centroid formed by the elements belonging to the same cluster than point i, which we call −→c i . This 
centroid can be re-calculated self-consistently throughout the running of the algorithm. Additionally, one can 
consider cost functions with a different philosophy, such as the third one, where datapoints with a large separa-
tion distance tend to be either in different clusters, but not ruling our the chance of being in the same cluster. 
On top of all these possibilities, one could also consider combining them in a suitable way to build even more 
plausible cost functions. Eventually, the goodness of a cost function depends on the actual dataset, so for each 
particular case it is worth trying several of them.
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The rest of the algorithm follows the standards in unsupervised learning. After a preprocessing of the data 
(e.g., normalization), we define the suitable set of states |ψa� and set the characteristics of the variational quantum 
circuit, including the parameters to be optimized. We set them the classical optimizer for the VQE loop (e.g., 
Adam optimizer) and its main features (learning rate, batch size, etc.). After initialization, and if needed, we 
compute the centroids −→c i and distances d(−→x i ,

−→x j), d(
−→x i ,

−→c i) . We then perform the VQE optimization loop 
for a fixed number of epochs, where new parameters of the variational quantum circuit are computed at each 
epoch. To accelerate performance in the VQE loop, one can include only in the sampling those terms that have 
a non-negligible contribution. The final step involves estimating, for a given datapoint, the cluster to which it 
belongs. This can be done implementing quantum state tomography (either classical or quantum), so that we 
can read out the final state |ψi� for a given datapoint −→x i , and determine to which cluster it belongs by looking 
for the maximum of fidelities f ai  for all clusters a.

Benchmark
We validated our approach by implementing simulations both by generating random data distributed according 
to gaussian blobs, as well as using data from the Iris  dataset8. In our simulations we implemented all the cost func-
tions mentioned in the previous section. In practice, we have seen that the one that shows better convergence and 
stability for the studied data was the last one in Eq. (7). The results shown in this section correspond to that case.

In Fig. 1, we show our results for one qubit. In Fig. 1a, we have the case of the Iris dataset. This dataset con-
tains four features (length and width of sepals and petals) of 150 samples of three species of Iris (Iris setosa, Iris 
virginica and Iris versicolor). Here we take the classification in terms of sepal width vs petal with. The feature data 
is normalized and rescaled to two variables x1, x2 ∈ [−1.9π/2, 1.9π/2] , which shows good algorithmic perfor-
mance. In the left panel we show the results of the classification in the 3 classes using 15–20 epochs (iterations), 
achieving 96% accuracy in the classification, as compared to the exact result which is shown in the right panel.

In Fig. 1b–d, we show further results for one qubit, using gaussian blobs as data with 150–200 points for each 
case in a two-dimensional space with coordinates x1, x2 . Again, the number of epochs was 15–20, and here in 
all cases the accuracy obtained was always 100%. We see also that the higher the density of points, the better the 
algorithmic convergence and stability.

Our results for several qubits are shown in Fig. 2, for gaussian blobs and a similar scenario to that in the previ-
ous figure in terms of coordinates, epochs and accuracies, with increasing accuracy for increasing point density. 
Interestingly enough, in all the shown cases the Hilbert space allowed for more clusters to be considered. We see 
that in this case, an iterative strategy, increasing the number of clusters until we reach good accuracy, perfectly 
provides the number of clusters also without having to tell the algorithm a priori. Datasets with a larger number 
of clusters could also be considered.

For the sake of explanation, in Fig. 3 we include the idea of the variational quantum circuits that have been 
used for the different benchmarks, for 1, 2 and 3 qubits, in the case of one single epoch. For one qubit only the 
circuit involves only a single qubit rotation. In the case of two qubits, the most generic circuit involves two one-
qubit rotations and one CNOT gate. For three qubits, we implement three one-qubit rotations and two sequential 
CNOTs. This strategy is also used for more qubits, namely for 8 and 10 qubits: one single-qubit rotation per 
qubit, and sequential entangling gates such as CNOTs and/or Toffolies. These circuits offer a good performance 
for the required data. What is more, they actually correspond to variational quantum states that are exactly 
Matrix Product States (MPS)5 of low bond-dimension. This has a double implication: first, it means that the 
same clustering algorithm would work using tensor networks, in particular MPS, without having to use an actual 
quantum computer. And second, that for more complex and intricate datasets, we can always use more complex 
quantum circuits involving a large degree of entanglement between the qubits, so that they cannot be efficiently 
simulated with tensor networks (TN)5,6. However, and as a matter fact, even a complex quantum circuit could 
be simulated using TNs at the expense of some controllable error, hence producing by construction a generic 
quantum-inspired clustering algorithm that can run on current classical hardware. In fact, with TNs one could 
target directly the optimization of the cost function without any quantum circuit behind, using e.g., variational, 
imaginary-time, or tangent space  methods5,6.

Comparison to other approaches
Our approach has a number of advantages compared to alternative approaches to quantum clustering. Most 
prominently, our algorithm can be implemented reliably in a remarkably-small number of qubits. Moreover, it 
is a variational algorithm, and is therefore better suited to handle errors via techniques such as error mitigation. 
The fact that the optimization is heuristic allows also for extra degrees of freedom to play with, such as learn-
ing rates and, in fact, even the optimization algorithm (where one could play with gradient descent, stochastic 
gradient descent, adam optimizer, and more). As such, no other quantum clustering algorithm is so well adapted 
to run on NISQ devices.

Let us review briefly the resources required by other quantum clustering approaches. Firstly, the original 
algorithm in Ref.9 uses a Schroedinger approach, searching the potential V(x) for which a a wavefunction ψ(x) 
corresponds to estimator of the probability distribution of the data points. As such, this approach is an inverse 
optimization problem (i.e. finding the parent Hamiltonian of a given ground state), which is computationally hard 
and cannot be solved easily on a NISQ device. Secondly, the quantum-KNN  algorithm3 determines the distance 
between feature vectors encoded as quantum states, and for this uses Grover’s quantum search  algorithm10 as a 
subroutine. The procedure therefore allows to obtain a square-root speedup with respect to the classical KNN 
method but, however, is remarkably hard to implement on few-qubit devices since Grover operators need larger 
quantum computers to be implemented in daily life scenarios. Hybrid approaches for quantum-KNN have also 
been proposed, see for instance Refs.11,12. These approaches, while reducing in part the computational resources 
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of the quantum-KNN alogorithm, still require the encoding of data into quantum states, which is difficult to 
implement and prone to errors. Additionally, the number of qubits required to run these algorithms is still large, 
since they still rely in part on Grover-like operators. Beyond quantum circuits, exotic approaches have also been 
proposed with other quantum computational models. For instance, in Ref.13 the authors propose a quantum clus-
tering algorithm for measurement-based quantum computers. Unfortunately, this model of quantum computer 
is not yet at the same level of hardware development than the quantum circuit model. In addition, in Ref.4, the 
approach proposed based on quantum annealing needs a number of qubits for the annealer that is remarkably 
large and grows with the number of datapoints, therefore with unfavourable scaling.

(a)

(b)

(c)

(d)

Figure 1.  Clustering results for one qubit: (a) Iris dataset with three labels, (b) 3 gaussian blobs, (c) 3 gaussian 
blobs, (d) 4 gaussian blobs. Colors between true test and prediction do not necessarily match, since for the 
prediction the labelling is generated automatically by the algorithm.
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Conclusions
In this paper we have proposed a new quantum clustering algorithm that can run on NISQ devices. The algorithm 
is based on an optimization problem, that is subsequently solved via VQE using, on top, non-orthogonal states 
in the Hilbert space. The combination of all these approaches allows to cluster large datasets into a large number 
of clusters, accurately, and even with few qubits. The algorithm is benchmark by performing clusterings of the 
Iris dataset and gaussian blobs, using from one to ten qubits. Additionally, the algorithm can also be simulated 
and refined with tensor networks, producing a quantum-inspired clustering.

We believe that the results in this paper are a significant step forward in the enormous challenge of find-
ing useful applications of NISQ devices. As such, the proposed method can label real data, in an unsupervised 
way, even with few noisy qubits. The applications of such an algorithm are transversal in many fields of science, 
engineering and industry. Our algorithm shows that current prototypes of quantum computers can be applied 
in real-life settings, beyond toy academic models.

(a)

(b)

(c)

(d)

Figure 2.  Clustering results for several qubits: (a) 2 qubits and 2 gaussian blobs, (b) 8 qubits and 6 gaussian 
blobs, (c) 10 qubits and 5 blobs, (d) 3 qubits and 3 gaussian blobs. Colors between true test and prediction do 
not necessarily match, since for the prediction the labelling is generated automatically by the algorithm.
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Figure 3.  Three variational quantum circuits for one epoch: (a) one qubit, (b) two qubits, and (c) three qubits. 
For qubit i, the set of variational angles is {θi} , and the set of angles for the initial rotations is {ρinit

i
}.
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