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Eliminating the interference 
of water for direct sensing 
of submerged plastics using 
hyperspectral near‑infrared imager
Chunmao Zhu * & Yugo Kanaya 

Interference from water in the reflectance spectra of plastics is a major obstacle to optical sensing 
of plastics in aquatic environments. Here we present evidence of the feasibility of sensing plastics 
in water using hyperspectral near-infrared to shortwave-infrared imaging techniques. We captured 
hyperspectral images of nine polymers submerged to four depths (2.5–15 mm) in water using a 
hyperspectral imaging system that utilizes near-infrared to shortwave-infrared light sources. We also 
developed algorithms to predict the reflectance spectra of each polymer in water using the spectra 
of the dry plastics and water as independent variables in a multiple linear regression model after 
a logarithmic transformation. A narrow 1100–1300 nm wavelength range was advantageous for 
detection of polyethylene, polystyrene, and polyvinyl chloride in water down to the 160–320 µm size 
range, while a wider 970–1670 nm wavelength range was beneficial for polypropylene reflectance 
spectrum prediction in water. Furthermore, we found that the spectra of the other five polymers, 
comprising polycarbonate, acrylonitrile butadiene styrene, phenol formaldehyde, polyacetal, and 
polymethyl methacrylate, could also be predicted within their respective optimized wavelength 
ranges. Our findings provide fundamental information for direct sensing of plastics in water on both 
benchtop and airborne platforms.

Along with the increasing consumption of plastics in the Anthropocene, mismanaged waste plastics have been 
entering both the freshwater and marine ecosystems in remarkable quantities. The amounts of macroplastics 
(≥ 5 mm) have been observed to increase significantly over time from 1957 to 2016, based on the recorded quanti-
ties that have been entangled with towed marine samplers1. In the future, the annual rates at which macro- and 
microplastics (< 5 mm) enter the ocean will increase 2.6-fold over the period from 2016 to 2040 if no measures 
are taken2, while the corresponding rate for microplastics would increase two-fold from 2016 to 2030 in the 
subtropical convergence zone3. Microplastics can be ingested by aquatic animals and retained in their vascular 
systems4–7, thus subsequently having an adverse effect on the food chain8,9. Macroplastic debris is harmful to 
marine mammals because it causes physical tangling and choking10–12. To provide a better understanding of 
the temporal and spatial distributions of plastics in both fresh water and the oceans, there is an urgent need to 
develop rapid detection techniques.

Hyperspectral imaging is a promising technique for detection of plastics based on their optical features13–15. 
Individual polymers have shown unique reflectance features in the near-infrared to shortwave-infrared (NIR-
SWIR) wavelength range that are dependent on their C–H stretching overtones. When compared with cur-
rent commonly-used methods for plastics detection, e.g., the Fourier transform infrared technique, the Raman 
spectral technique, and the pyrolysis gas-chromatography technique, hyperspectral imaging techniques are 
advantageous, with the lowest requirements for sample preprocessing and rapid detection speeds16–20. Moreover, 
encouraging results have been reported for detection of plastics with size ranges spanning from the micrometer 
to meter scales using hyperspectral imagers when applied over the range from benchtop to airborne and satel-
lite platforms21–24. However, even such conceptual potential was proposed, technically it is still challenging to 
directly detect plastics submerged in water.

Hyperspectral imagers operating in the 900–2500 nm wavelength range have been basically applied to detec-
tion of plastics in the dry state using benchtop systems18,19,25. To provide a better cost performance, imager 
operation in the 900–1700 nm range is sufficient24. Important technical requirements that affect the detection 
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capabilities of benchtop hyperspectral imaging systems on plastics in the dry state include the wavelength cov-
erage of the illumination source, the photographic depth of field and exposure time, and the identification 
algorithms used13,26. In comparison, detection of plastics in the wet state is more demanding because of the 
interference from water in the spectra of the plastics, which are overlapped within the NIR-SWIR wavelength 
range. Over an extended (1000–2500 nm) wavelength range with use of well-conceived identification algorithms, 
plastics on wet filters were detected successfully27, although the detection capability was limited by the algorithms 
failing to separate the co-existing absorptive species in water.

Recent studies have attempted to establish hyperspectral reflectance datasets for a few polymers in the dry, 
wet, and submerged states28–32. Efforts have also been made to develop algorithms to eliminate interference from 
water when the plastics are submerged30,33,34. It was reported that a combination of the normalized vegetation 
difference index and the floating debris index has the potential to detect plastics in water using Sentinel-2 satel-
lite observations34,35, although the plastic being even slightly submerged in the water would reduce its floating 
debris index toward zero32. There is thus still an urgent need to develop effective algorithms that can separate 
plastics from water21,22,34.

Differential optical absorption spectroscopy provides a powerful method to identify the specific absorption 
signatures of different materials36. The rationale behind this method is that scattered or direct incoming light 
spectra can be decomposed into the absorption contributions from multiple molecules that show overlapping 
absorption features using the Lambert–Beer law. In the atmospheric chemistry research field, the method has 
been applied successfully to measure the concentrations of different trace gases in the ambient air37–40. Using 
this method, the spectral features of soil and sand could be separated from atmospheric nitrogen dioxide based 
on measurements from the GOME-2 satellite41. Equivalent water thickness of land vegetation was derived from 
AVIRIS data applying the method along with spectrum-matching techniques42. Furthermore, in the aquatic 
environment, two phytoplankton groups, cyanobacteria, and diatoms showing distinct absorption features were 
also quantified successfully43. This principle could thus be applicable to separation of water and plastic absorp-
tions within the same wavelength band.

In this work, we attempt to eliminate the interference caused by water from the detection of submerged plas-
tics based on the principle of differential optical absorption spectroscopy using the NIR-SWIR hyperspectral 
imaging technique. The schematic of the procedures is shown in Fig. 1 and the system is shown in Fig. S1. We first 
obtained the reflectance spectra for plastics submerged in water (2.5 mm, 5 mm, 10 mm and 15 mm in depth) 
using a benchtop hyperspectral imaging system within the wavelength range from 900 to 1700 nm. Note that 
the measured signals fall in line with the terminology “transflectance”, which encompasses the reflection and 
absorption by the target (Fig. S1b). However, to keep with the conventional usage in the earth and environment 
field31,32, we are using “reflectance” in this study. Nine polymer types were investigated, including polyethylene 
(PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polycarbonate (PC), acrylonitrile buta-
diene styrene (ABS), phenol formaldehyde (PF), polyacetal (POM) and polymethyl methacrylate (PMMA). 
Previous works suggested that completely dry conditions were favored for detection of plastics when using the 
hyperspectral imaging technique24. In this work, however, we aim to apply the method to detection of plastics 
in the wet state and under floating conditions on the sea surface when covered by thin water layers. We then 
developed algorithms to separate the contribution of water to the reflectance spectra of the submerged plastics 
by applying a multiple linear regression model after a logarithmic transformation. Subsequently, we evaluated the 
predictability of the submerged plastics regarding the polymer types, their size ranges, and the water depths, and 
considered wavelength range optimization. Our findings demonstrated the feasibility of applying hyperspectral 
imaging techniques directly to detection of plastics in surface water.

Results
Reflectance spectra of nine polymers in water
Although plastics showed featured reflectance spectra in the dry state, they were notably affected by the absorb-
ance of water when submerged (Fig. 2). In the dry state, the plastics absorbed photons at wavelengths centered 
on the 1100–1400 nm and 1600–1670 nm ranges. In comparison, as the wavelength increased, the reflectance 
spectrum of water showed notable dragging downward in both the 1130–1150 nm range and the 1300–1400 nm 
range. In the 1400–1700 nm range, the reflectance of water is close to zero. This high light absorption by water 
within the NIR-SWIR range interfered substantially with the reflectance signals of the plastics when they were 
submerged. Specifically, the featured reflectance spectra of PP and ABS in the dry state in the 1390–1410 nm 
range were hardly noticeable when these polymers were submerged in water.

As the water depth increased, the spectral features of the plastics were weakened, in agreement with previ-
ous studies29,32. At water depths of 10 mm and 15 mm, the reflectance spectra of most of these polymers were 
largely flattened. Garaba and Harmel reported that the reflectance spectra of PP at 490 nm and 860 nm were 
smoothed away at water depths greater than 0.32 m30. In comparison, our results indicate that this phenomenon 
occurred at the relatively longer wavelengths (NIR and SWIR) at shallower depths, i.e., on the millimeter scale, 
for pure water. Our results agreed with Moshtaghi et al., who found that the featured absorption of PP at 1070 nm 
could not be caught when the plastics were submerged by more than 50 mm32. Nevertheless, depending on the 
individual polymers, some featured spectra remained within specific wavelength ranges when the plastics were 
submerged in water. Therefore, we examined the possibility of predicting the spectra of plastics when submerged 
in water further.

Predictability of four common polymers in water
Of different polymers, polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) 
contributed to 61% of global primary plastic wastes in 201544. Therefore, we first investigated these 4 most 
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common polymers, on the predictability of reflectance spectra of plastics in water by linear combination of 
plastics in the dry state and water, respectively. To do that, the observed reflectance spectra was first simulated 
using a linear regression model, where the contributions from each variable (water and polymers) were calcu-
lated. Parameters relating to these contributions were used to evaluate the predictability. In the 1100–1300 nm 
wavelength range on an area of 100 × 100 pixels (16.0 × 16.0 mm2), the prediction parameters for the spectra of 
PE, PP, PS, and PVC when submerged to a depth of 2.5 mm in water were summarized in Table 1. Meanwhile, 
their spectra were predicted as the sum of the contributions from three components: the target polymer, the 
other polymers, and water (Fig. 3). The spectra of PE, PS and PVC when submerged to a depth of 2.5 mm in 
water were predominantly driven by the spectrum of the target polymer in the dry state from among the other 
polymer spectra (p < 0.001) (i.e., PE in the dry state for the prediction of PE in water, see Table 1). Although the 
inevitable interference from water was present (light blue shades in Fig. 3), the featured spectra of the polymers 
in water for PE, PS, and PVC were reproduced well. This was attributed to the featured spectra of each target 
polymer (green shades in Fig. 3).

The validity of the prediction algorithm was first evaluated by examining the spectral fitting residuals, defined 
as the difference between the predicted and the observed spectra. The prediction residuals, arising from incom-
pleteness of the algorithm or the measurement uncertainties, are in general comprised < 10% of the observational 
data, which is small enough for a valid simulation. These results indicated that the algorithm was successful 
even under relatively optically thick conditions when the plastics were submerged in water, although optically 
thin cases tend to be more easily reproduced in principle. The coefficient of each target polymer was the highest 

Figure 1.   Schematic for eliminating the interference of water on the hyperspectral detection of submerged 
plastics. (a) Hyperspectral imageries of 9 polymers submerging in 4 water depths (2.5–15 mm) in the 
wavelength ranges of 900–1700 nm were acquired. Example of polyethylene is shown. (b) The reflectance 
spectra of a typical region of interests (an area of 16.0 × 16.0 mm2) covering submerged plastics were calculated. 
(c) The contributions from the target polymer, water and other polymers were separated using a multi-linear 
regression model after logarithmic transformation for polyethylene submerged in 2.5 mm depth water. (d) The 
capability to predict each of the submerged polymers was evaluated based on the confidence level of prediction.
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among the coefficients of the other materials, with the exception of water, in the regression model (Table 1). 
In comparison, for PP in water, the contribution from water was dominant, while the contributions from PE 
overwhelmed that of PP. This is due to the similarity of the spectra of PP and PE in both the dry and submerged 
states within the 1100–1300 nm range (Fig. 2). Consequently, the featured spectra of PP in water at a depth of 
2.5 mm were not reproduced.

The predictability for the four common polymers in water was investigated further with respect to the detec-
tion area size, the water depth, and the wavelength range (Fig. 4). For each of the combined factors, a polymer in 
water was regarded as predictable if the confidence level value (c) of the target polymer was the highest among 
all the driving polymers and if it was > 95%. Here, c is defined as 1 – p, where p is the probability to evaluate the 
significance of the coefficient of each driving polymer. In addition to the three sizes of the plastics in the water, 
regions of interest covering water-only pixels (the white area in Fig. S1d) in each image were included in the 
predictions to serve as nonplastic references. The spectra of the areas without plastic pieces in each image did 
not show relationships with the spectra of any of the four common polymers in water, indicating that the plastic 
polymers were only recognized when they were present.

Among the different polymers in the water, PE, PS, and PVC showed predictability over broad size and sub-
merging water depth ranges within the 1100–1300 nm wavelength range, while the best wavelength range for 
prediction of PP in water was 970–1670 nm (Fig. 4); this is consistent with previous studies29,32. Specifically, PE 
and PS could be predicted when submerged by 2.5–5 mm in the 1100–1300 nm wavelength range, even when 
the detection area size was reduced from 100 × 100 pixels (16.0 × 16.0 mm2) to 1 × 1 pixel (0.16 × 0.16 mm2). PVC 
submerged in water to depths of 2.5–5 mm could be predicted for the 100 × 100 pixel and 10 × 10 pixel sizes over 
the 1100–1300 nm range, but it could not be predicted for the 1 × 1 pixel size, indicating that spatial averaging 
aided the analysis. The predictability of PE, PS, and PVC when submerged in deeper water (≥ 10 mm) decreased 
when the featured spectra were largely subject to interference from the water. In comparison, PP submerged in 
water was predictable in the 970–1670 nm wavelength range, rather than the 1100–1300 nm range. This pre-
dictability remained even for the 1 × 1 pixel size and under 15 mm of water. The featured spectra of PP spanned 
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Figure 2.   Spectra of plastics when submerged in water. Mean spectra on an area of 100 × 100 pixels of nine 
polymers submerged at four water depths of 2.5 mm, 5 mm, 10 mm, and 15 mm are shown. The shaded 
wavelength ranges of 970–1670 nm, 1100–1300 nm, and 1100–1400 nm were screened out for further 
prediction of the spectra of plastics in water based on the spectra of these plastics in the dry state (0 mm) and 
that of water.
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broadly over the 970–1670 nm range under these small size and greater water depth conditions, but they were 
not perceivable in the 1100–1300 nm range when using the regression algorithm.

Predictability of five minor polymers in water
Five polymers existing as relatively less abundant environmental pollutants, PC, ABS, PF, POM and PMMA, 
were investigated for their predictability when submerged in water as well. The reflectance spectra of PC, POM, 
and PMMA at a water depth of 2.5 mm on an area size of 100 × 100 pixels were predominantly contributed by 
each target polymer within the 1100–1300 nm range (Table  S1). Each of these featured spectra could be largely 
retained after the interference from water was eliminated (Fig. 5a, d, and e). In comparison, the featured spectra 
of ABS and PF at around 1150 nm and 1200 nm were both largely flattened by water when these plastics were 
submerged (Fig. 2), although the contributions from the target polymers were again the largest when compared 
with the other polymer types. Statistically, this in turn led to inadequate reproductions of the spectra by the 
regression model (Fig. 5b and c).

When the analysis was extended to broader size and water depth ranges, the predictability for the five minor 
polymers was highly dependent on the wavelength range (Fig. 6). In the 1100–1300 nm wavelength range, POM 
and PMMA submerged in water to a depth of 2.5 mm could be predicted down to the 1 × 1 pixel size, while the 
10 × 10 pixel size was the prediction limit for PC in water. For POM and PMMA, 5 mm was the water depth 
limit for prediction in the 1100–1300 nm wavelength range, while PC could be predicted in the same wavelength 
range when submerged in water up to a depth of 10 mm. In comparison, ABS submerged in 2.5 mm of water 
could be predicted over the 1100–1400 nm range down to 1 × 1 pixels, but if the wavelength range was extended 
to 970–1670 nm, the signal could be reproduced even when it was submerged in 15 mm of water. Similarly, 
the 970–1670 nm range was also appropriate for simulation of PF in water. It is worth nothing that PMMA in 
water was falsely simulated as being predictable by the nonplastic area in the 970–1670 nm wavelength range for 
2.5–5 mm water depths. Under these conditions, the signals of the water pixels and the polymer pixels were not 
differentiable by the model. These results indicated that rather than the wide wavelength range, the 1100–1300 nm 
and 1100–1400 nm wavelength ranges were more suitable for prediction of PMMA in water.

Discussion
Potential for detection of plastics in water under benchtop conditions
Elimination of the interference from water is an essential technical requirement for direct detection of submerged 
plastics when using the hyperspectral imager. In the optimized detection environment on a benchtop system, 
our results indicated that the interference from water could be separated using a linear regression model after 
logarithmic conversion for the nine polymers when submerged in surface water. This indicates that a drying 

Table 1.   Prediction parameters for four common polymers in 2.5-mm-deep water in the 1100–1300 nm 
wavelength range on an area of 100 × 100 pixels. *: If the coefficient is < 0.01, it is assumed to be zero.

Target polymer Driving variable Coefficient p value Confidence level (c, %)

PE

Intercept 0 ± 0.02* 1 0

PE 0.75 ± 0.12  < 0.001  > 99.9

PP 0 ± 0.33 1 0

PS 0 ± 0.32 1 0

PVC 0 ± 0.49 1 0

Water 1.68 ± 0.16  < 0.001  > 99.9

PP

Intercept 0 ± 0.01 1 0

PE 0.26 ± 0.09  < 0.01 99.6

PP 0.06 ± 0.24 0.815 18.5

PS 0 ± 0.23 1 0

PVC 0 ± 0.35 1 0

Water 1.67 ± 0.11  < 0.001  > 99.9

PS

Intercept 0.01 ± 0.003  < 0.01 99.0

PE 0 ± 0.02 1 0

PP 0 ± 0.06 1 0

PS 0.31 ± 0.06  < 0.001  > 99.9

PVC 0 ± 0.09 1 0

Water 1.26 ± 0.03  < 0.001  > 99.9

PVC

Intercept 0.02 ± 0.002  < 0.001  > 99.9

PE 0 ± 0.02 1 0

PP 0.07 ± 0.05 0.166 83.4

PS 0 ± 0.05 1 0

PVC 0.33 ± 0.07  < 0.001  > 99.9

Water 1.08 ± 0.02  < 0.001  > 99.9
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pretreatment process of environmental samples before hyperspectral analysis could be skipped, contributing to 
an improved efficiency. It should be noted that the prediction algorithms are dependent on an empirical selec-
tion of driving variables. For prediction of each of these polymers in water, we deliberately included not only 
the target polymer, but also other polymer types in each case to validate the arbitrariness of the algorithm. Each 
of the target polymers was found to be the dominant driving variable for prediction of its spectra in water, thus 
indicating the robustness of the algorithm. Nevertheless, because environmental plastics are often mixed with 
nonplastic debris, e.g., glass, stone, sand, and wood, further studies to include the associated variables in the 
algorithm will be required. Instead of pure water, investigations based on sea water would be another future work.

The predictability of the polymers when submerged in surface water up to depths of 15 mm was investigated. 
The degree of interference caused by water increased rapidly as the submerged depth increased beyond 10 mm, 
where the linearity might not be obtained. This indicated that although polymers with low densities (e.g., PE, PP, 
and PS) that are suspended in fresh water and/or seawater are more readily predictable, polymers with densities 
higher than that of water (e.g., PVC, PC, POM, ABS, PF, and PMMA) may sink gravitationally to depths at which 
their reflectance spectra could not be captured directly using a hyperspectral imager. When using the current 
methods, polymers in the wet state or with water layers on top of them could be detected directly under benchtop 
hyperspectral detection conditions, and our results suggested that a water depth of ≤ 10 mm is optimal. Moreover, 
polymers with dimensions down to 1.6 × 1.6 mm2 (PVC and PC) and 0.16 × 0.16 mm2 (PE, PP, PS, ABS, PF, POM 
and PMMA) could be detected. In future work, it is expected that the minimum detection size will be improved 
further when the system can be optimized to detect particles on the micrometer scale.

The optimal wavelength ranges for prediction of the spectra of the plastics in water varied among the poly-
mers. For PE, PS, PVC, PC, POM, and PMMA, 1100–1300 nm was the most favorable range for prediction of 
each of their spectra when they were submerged, attributing to little interference by water. For PP and ABS, the 
1100–1400 nm range was best for the prediction of each of their spectra in water up to a 2.5 mm depth, while a 
broader range of 970–1670 nm was necessary for the predictions when they were submerged in deeper water. 
The 970–1670 nm range was also most favorable for the prediction of PF in water. Tasseron et al. reported that 
an average spectral signature for polymers comprising high-density PE, low-density PE, PP, PS, and polyethene 
terephthalate showed two distinct absorption peaks at 1215 nm and 1410 nm with the aim of separating the 

Figure 3.   Separated contributions to the spectra of four common submerged polymers. Reflectance spectra of 
(a) PE, (b) PP, (c) PS, and (d) PVC in 2.5 mm of water were composed of contributions from the target polymer, 
the other polymers, and water, and were compared with the measurements. The logarithmic reflectance obtained 
after normalization was performed by subtracting the maximum value for each polymer in the 1100–1300 nm 
wavelength range on an area of 100 × 100 pixels are shown.
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interference produced by water34. In comparison, we have presented comprehensive results that cover a variety 
of polymers and water depths. These results will form a fundamental basis for further development of equipment 
and identification algorithms to detect plastics in aquatic environments using hyperspectral imagers.

Implications for aquatic plastic detection aboard airborne and satellite platforms
The hyperspectral imager’s capability for detection of aquatic plastics in the field is dependent on factors including 
photographic conditions (e.g., illumination conditions, water vapor), the submerging water conditions (depth, 
current, turbidity), and the target plastics (polymer type, size, color, adhesiveness/mixing with impurities/sub-
strates, weathering state)21,45–49. In this work, the possibility of direct sensing of plastics when submerged in 
water was investigated under benchtop experimental conditions. The results firmly support the hypothesis that 
the interference caused by water in the reflectance spectra of plastics can be separated, which is referable for 
further development of algorithms to detect submerged plastics present at non-prescribed water depth in the 
field. Specifically, featured wavelength ranges required to sense different polymers when submerged in water 
were identified. From the viewpoint of polymer composites, our findings indicate that when an imager that cov-
ers the 1100–1300 nm wavelength range is used, there is a potential for up to 43% (61% for an imager covering 
the 1100–1400 nm range) of the environmental plastics suspended in surface water to be detected directly with 
reference to the polymer-specific shares of plastic waste44. The fact that the analysis was successful in the narrow 
wavelength range implies the potential to use low-cost light-emitting diode devices as the light sources in the 
future as well.

With the aim of detecting plastics from space using hyperspectral sensors, several satellite products have 
been recently launched. The PRecursore IperSpettrale della Missione Applicativa (PRISMA) mission carries a 
hyperspectral sensor with spectral coverage of 400–2500 nm and resolution of < 15 nm, which is fitted well to 
the sensitive range for plastics50, with a relatively coarse ground resolution of 30 m. Sensors with similar spectral 
coverage and ground resolutions were launched aboard the Environmental Mapping and Analysis Program 
(EnMAP) mission (420–2450 nm; 30 m) and the Gaofen-5 mission39,51–53. The Hyperspectral Imager Suite (Hisui) 
sensor that was launched to the International Space Station in 2019 provided global coverage in addition to the 
coverage features mentioned above (400–2500 nm, 20–30 m)54. Our work provides the prospect of detection of 

Figure 4.   Predictability of four common polymers when submerged in water. The predictability is expressed 
as a confidence level as a function of the detection area size (100 × 100 pixels, 10 × 10 pixels, and 1 × 1 pixel), the 
water depth (2.5 mm, 5 mm, 10 mm, and 15 mm), and the wavelength range (1100–1300 nm, 1100–1400 nm, 
and 970–1670 nm). A water reference area (10 × 10 pixels) was also included for each polymer. Confidence levels 
below 95% are marked as less significant.
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large-scale accumulated plastics with respect to their polymer-specific levels in the ocean using these satellites. 
Furthermore, our results for the most sensitive spectral ranges of the different polymers will contribute to the 
development of next-generation, low-cost, multi-spectral sensors with improved ground resolution. Our find-
ings will also provide information toward the development of an atmospheric correction algorithm to eliminate 
the interference from water vapor.

Conclusions
Light absorption by water in the NIR-SWIR range has been an obstacle to direct detection of plastics in water 
using hyperspectral imagers. We investigated the reflectance spectra of plastics when submerged in surface water 
and developed algorithms to eliminate the interference from water. We first collected hyperspectral images in 
the 900–1700 nm wavelength range for nine polymers submerged in water to millimeter-scale depths to simulate 
floating conditions. Their reflectance spectra were interfered by the absorbance of water when submerged, par-
ticularly when the depth was > 10 mm. We also developed algorithms to account for composite reflectance spectra 
of plastics in water with respect to the separate contributions from the polymers and the water. The probability 
of eliminating water interference from the submerged plastics was then evaluated regarding the polymers, the 
wavelength ranges, the water depths, and the plastic sizes. A wavelength range of 1100–1300 nm was sufficient to 
eliminate the interference from water for PE, PS, PVC, PC, POM, and PMMA when submerged. In comparison, 
a broader range of 970–1670 nm was proposed to eliminate the interference from water for PP, ABS, and PF. 
Regarding the water depth, polymers submerged in water not deeper than 10 mm tend to be detected readily. 
The methods allow for detection of submerged PE, PP, PS, ABS, PF, POM, and PMMA in the small size range 
of approximately 0.16 × 0.16 mm2 with potential for further improvement. Our findings provide fundamental 
information for direct detection of plastics when submerged in water, not only for benchtop systems, but also 
for applications aboard airborne and satellite platforms.

Materials and methods
Hyperspectral imaging system
We modified a commercially available benchtop hyperspectral imaging system to sense plastics with sizes ranging 
from micrometer to centimeter scales26. Briefly, a two-dimensional InGaAs array detector with a pixel size of 
15 µm was incorporated into a hyperspectral imager (Pika NIR-640, Resonon Inc., Bozeman, Montana, USA). 
The imager had wavelength coverage of 900–1700 nm with spectral resolution of 5.6 nm. A lens (SR2343-A01, 
StingRay Optics Inc., Keene, New Hampshire, USA) that was optimized for the same wavelength range with a 
focal length of 25 mm and a field of view of 21.7° was used for the photography. With 640 spatial channels, the 
imager was mounted on a frame above the translation stage to perform push-broom line scanning (Fig. S1a, b). 
A symmetrical pair of convergent light NIR-SWIR lamps (LN-200CIR, CCS Inc., Kyoto, Japan) with wavelength 

Figure 5.   Separated contributions to the spectra of five minor submerged polymers. Reflectance spectra of (a) 
PC, (b) ABS, (c) PF, (d) POM, and (e) PMMA in 2.5 mm of water were composed of contributions from each 
target polymer, the other polymers, and water, and were compared with the measurements. The logarithmic 
reflectance obtained after normalization was performed by subtracting the maximum value of each polymer in 
the 1100–1300 nm wavelength range on an area of 100 × 100 pixels are shown.
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coverage of 400–2500 nm was installed on the left and right sides of the imaging system to provide stable illu-
mination with low radiant heat. Image acquisition was controlled using Spectronon Pro software (version 2.5, 
Resonon Inc., Bozeman, Montana, USA) on a computer, where the data were saved as three-dimensional cubes. 
With the modified system, microplastics as small as 100 µm could be rapidly detected.

Setup of plastics in water and the hyperspectral image acquisition
A total of 45 NIR-SWIR hyperspectral images were acquired for nine common polymers composed of authentic 
plastics (Table 2) in the dry state and when submerged to four water depths (2.5 mm, 5 mm, 10 mm, and 15 mm) 
(Fig. S2). For each polymer, a plate with dimensions of 50 mm × 50 mm × 1 mm was adhered to a stainless-
steel petri dish (φ 75 × 20 × 0.6 mm3; As One Inc., Japan) using glue (Fig. S1c), where a small amount of glue 
(ca. 0.05 ml) was applied to each corner of the plate. Distilled water (Fujifilm Wako Pure Chem. Corp. Osaka, 
Japan) with volumetric amount corresponding to each of the target submerging depths subtracting the volume 
of plastic plate was then added to the petri dish, i.e., 12.2 cm3, 22.7 cm3,43.7 cm3 and 64.6 cm3 for submerging 
depths of 2.5 mm, 5 mm, 10 mm and 15 mm, respectively. Because the corner regions were not selected for the 
subsequent image processing, no effect on the spectra was expected from the glue. During image acquisition, the 
distance between the lens and the stage was set at 30 cm, the frame rate was set at 25 s–1, the scan speed was set 
at 0.3969 cm s–1, and the scanning distance was set at 600 lines. Under these conditions, the nominal pixel size 
for the images was ca. 0.16 mm. Before observing the plastics, the imager was first corrected for the dark state 
(reflectance = 0) when the lens is covered with a cap, and for the reference (reflectance = 1) state with a white 
target (nominal reflectance: 99%; SRT-99–100, Labsphere, Inc., North Sutton, New Hampshire, USA).

Figure 6.   Predictability of five minor polymers when submerged in water. The predictability is expressed as 
a confidence level as a function of the detection area size (100 × 100 pixels, 10 × 10 pixels, and 1 × 1 pixel), the 
water depth (2.5 mm, 5 mm, 10 mm, and 15 mm), and the wavelength range (1100–1300 nm, 1100–1400 nm, 
and 970–1670 nm). A water reference area (10 × 10 pixels) was also included for each polymer. Confidence levels 
below 95% are marked as less significant.
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Image processing
Each of the images obtained contains three-dimensional information in the form of 640 samples (horizontal 
direction in Fig. S1c) × 600 lines (vertical direction) × 328 wavelength channels. The regions of interest in the 
center right area of each image were selected, covering 100 × 100 pixels (corresponding to an area of 16.0 × 16.0 
mm2), 10 × 10 pixels (1.60 × 1.60 mm2), and 1 pixel (0.16 × 0.16 mm2), respectively (Fig. S1d). An area covering 
water only (10 × 10 pixels) was also selected in the left edge area of each image for comparison. The mean reflec-
tance spectra were then calculated over each of the selected regions (e.g., mean spectra of 100 × 100 pixels in 
Fig. 2). To enable prediction of the reflectance spectra of the plastics in water, the spectra were first converted into 
their logarithms (Fig. S3). For each polymer at each water depth, the logarithmic spectrum was offset further by 
subtracting the maximum value along the wavelength range, which was to represent the wavelength-independent 
reflectance of the stainless steel without the influence of plastic absorbance (Fig. S4).

Prediction algorithm for four common polymers
Four common polymers (PE, PP, PS and PVC) submerged in water were first investigated on the predictability of 
their reflectance spectra. An ideal prediction for one polymer in water is that its spectrum is contributed purely 
by the spectrum of that polymer in the dry state and that of water to the same depth. However, to examine the 
validity of the proposed algorithm, other polymers were included simultaneously to act as driving parameters. 
The rationale is that the algorithm is valid if the spectrum of one polymer in water is first contributed by the 
spectrum of that polymer itself when compared with the other polymers.

The processed spectra were then subjected to a multiple linear regression model, in which an adaptive least-
squares algorithm was applied55. In the model, with the aim of predicting the target variable (i.e., the spectrum of 
each polymer in the water in the study), the empirical constants (coefficients) of each of the driving parameters 
(the spectra of the contributing polymers in the dry state and water) were optimized through minimization of 
the nonlinear residuals. For each polymer at each water depth d, the logarithms of the normalized reflectance 
spectra Log Rnorm,d(λ) were fitted as a linear combination of the contributions from the absorbing (and thus 
force-reflecting) compounds (i.e., water and polymers) as shown by Eq. (1):

where Log Waternorm,d(λ) represents the logarithm of normalized reflectance spectrum of water at the correspond-
ing depth and wavelength λ, and Log PEnorm,dry(λ), Log PPnorm,dry(λ), Log PSnorm,dry(λ), and Log PVCnorm,dry(λ) 
represent the logarithms of the normalized reflectance spectra of each polymer in the dry state. The lower bound 
of the fitting coefficients (a–f) was designated to be zero to provide a more realistic fit.

For each fitting, to provide the best predictions for the target polymer in water, the coefficients of the driv-
ing polymers were simulated along with the standard errors and the corresponding p values (i.e., the statistical 
probability that the estimated coefficient occurred by chance). To illustrate the contributions from each polymer 
more intuitively, the confidence level (c) was then expressed as 1 − p. Specifically, a high c value here indicates a 
high contribution from the polymer to the target polymer in the water.

For each polymer at each water depth, the predictability of the plastics was investigated with regard to the 
wavelength ranges and pixel sizes used. Three wavelength ranges were screened out for prediction of the reflec-
tance of the plastics, covering 970–1670 nm, 1100–1300 nm, and 1100–1400 nm, at the previously mentioned 
areas of 100 × 100 pixels, 10 × 10 pixels, and 1 pixel.

Prediction algorithm for five minor polymers
Five polymers that exist as relatively less abundant environmental pollutants, comprising PC, ABS, PF, POM and 
PMMA, were also investigated in terms of their predictability when submerged in water in a similar manner to 
the four common polymer types. Moreover, given the common nature of the four dominant polymer types in 

(1)
Log Rnorm, d(�) = a + b × Log Waternorm, d(�)+ c × Log PEnorm, dry(�)+ d

× Log PPnorm, dry(�)+ e × LogPSnorm, dry(�)+ f × Log PVCnorm, dry(�)

Table 2.   Authentic plastic polymers*. *All these polymers were obtained from As One Corp., Osaka, Japan, in 
plates with dimensions of 100 mm × 100 mm × 1 mm, and were cut to dimensions of 50 mm × 50 mm × 1 mm 
for the study.

Abbreviation Full name Color

PE Polyethylene Natural (semitransparent)

PP Polypropylene Natural

PS Polystyrene Transparent

PVC Polyvinyl chloride Transparent

PC Polycarbonate Transparent

ABS Acrylonitrile butadiene styrene Natural

PF Phenol formaldehyde Brown

POM Polyacetal Natural

PMMA Polymethyl methacrylate Transparent
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the environment, they were also included to validate the interference effect on the prediction of the five minor 
polymers. The prediction algorithm was thus expressed as shown in Eq. (2):

where Log Poly_Minornorm,d represents the logarithm of the normalized reflectance spectra of each of the five 
minor polymers, Log Waternorm,d(λ) represents the logarithm of the normalized reflectance spectra of water 
at the corresponding depth and wavelength λ, and Log PEnorm,dry(λ), Log PPnorm,dry(λ), Log PSnorm,dry(λ), Log 
PVCnorm,dry(λ), and Log Poly_Minornorm,dry(λ) represent the logarithms of the normalized reflectance spectra for 
the four common polymers and the target minor polymer, respectively, in the dry state. The predictability of each 
polymer at each water depth was then investigated in a similar manner to that of the four common polymers.

Data processing environment and packages
Image processing, plotting, and simulations were conducted in an R language environment (version 4.2.1), where 
“hyperSpec”, “ggplot” and “nls2” (“port” algorithm) packages were used.

Data availability
All data are available from the corresponding authors upon request.
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