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Predicting BRAFV600E mutations 
in papillary thyroid carcinoma using 
six machine learning algorithms 
based on ultrasound elastography
Enock Adjei Agyekum 1,2, Yu‑guo Wang 3, Fei‑Ju Xu 1, Debora Akortia 4, Yong‑zhen Ren 1,2, 
Kevoyne Hakeem Chambers 2, Xian Wang 1, Jenny Olalia Taupa 1,2 & Xiao‑qin Qian 1*

The most common BRAF mutation is thymine (T) to adenine (A) missense mutation in nucleotide 
1796 (T1796A, V600E). The BRAFV600E gene encodes a protein-dependent kinase (PDK), which is 
a key component of the mitogen-activated protein kinase pathway and essential for controlling 
cell proliferation, differentiation, and death. The BRAFV600E mutation causes PDK to be activated 
improperly and continuously, resulting in abnormal proliferation and differentiation in PTC. Based on 
elastography ultrasound (US) radiomic features, this study seeks to create and validate six distinct 
machine learning algorithms to predict BRAFV6OOE mutation in PTC patients prior to surgery. This 
study employed routine US strain elastography image data from 138 PTC patients. The patients were 
separated into two groups: those who did not have the BRAFV600E mutation (n = 75) and those who 
did have the mutation (n = 63). The patients were randomly assigned to one of two data sets: training 
(70%), or validation (30%). From strain elastography US images, a total of 479 radiomic features 
were retrieved. Pearson’s Correlation Coefficient (PCC) and Recursive Feature Elimination (RFE) with 
stratified tenfold cross-validation were used to decrease the features. Based on selected radiomic 
features, six machine learning algorithms including support vector machine with the linear kernel 
(SVM_L), support vector machine with radial basis function kernel (SVM_RBF), logistic regression (LR), 
Naïve Bayes (NB), K-nearest neighbors (KNN), and linear discriminant analysis (LDA) were compared 
to predict the possibility of BRAFV600E. The accuracy (ACC), the area under the curve (AUC), sensitivity 
(SEN), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV), decision 
curve analysis (DCA), and calibration curves of the machine learning algorithms were used to evaluate 
their performance. ① The machine learning algorithms’ diagnostic performance depended on 27 
radiomic features. ② AUCs for NB, KNN, LDA, LR, SVM_L, and SVM_RBF were 0.80 (95% confidence 
interval [CI]: 0.65–0.91), 0.87 (95% CI 0.73–0.95), 0.91(95% CI 0.79–0.98), 0.92 (95% CI 0.80–0.98), 
0.93 (95% CI 0.80–0.98), and 0.98 (95% CI 0.88–1.00), respectively. ③ There was a significant 
difference in echogenicity,vertical and horizontal diameter ratios, and elasticity between PTC patients 
with BRAFV600E and PTC patients without BRAFV600E. Machine learning algorithms based on US 
elastography radiomic features are capable of predicting the likelihood of BRAFV600E in PTC patients, 
which can assist physicians in identifying the risk of BRAFV600E in PTC patients. Among the six machine 
learning algorithms, the support vector machine with radial basis function (SVM_RBF) achieved the 
best ACC (0.93), AUC (0.98), SEN (0.95), SPEC (0.90), PPV (0.91), and NPV (0.95).

Abbreviations
ACC​	� Accuracy
AI	� Artificial intelligence
AUC​	� Area under the curve
AUS/FLUS	� Atypical lesions or follicular lesions of unknown significance
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CLNM	� Cervical lymph node metastasis
CSCO	� Chinese Society of Clinical Oncology
DCA	� Decision curve analysis
ETE	� Extrathyroidal extension
FDA	� Food and drugs authority
FNA	� Fine needle aspiration
GLCM	� Gray Level Co-occurrence Matrix
GLDM	� Gray Level Dependence Matrix
GLRLM	� Gray Level Run Length Matrix
GLSZM	� Gray Level Size Zone Matrix
KNN	� Knearest neigbor
LASSO	� Least absolute shrinkage selection operator
LDA	� Linear discriminant analysis
LR	� Logistic regression
NCCN	� National Comprehensive Cancer Network
NGTDM	� Neighbouring Gray Tone Difference Matrix
NB	� Naïve beyes
NPV	� Negative predictive value
PCC	� Pearson correlation coefficient
PPV	� Positive predictive value
PTC	� Papillary thyroid carcinoma
RFE	� Recursive feature elimination
ROI	� Receiver operating characteristics
SEN	� Sensitivity
SPEC	� Specificity
SUSP	� Suspected malignant tumors
SVM_RBF	� Support vector machine with radial basis function
SVM_L	� Support vector machine with linear kernel
US	� Ultrasound

The BRAFV600E mutation is a significant contributor to the papillary thyroid carcinoma (PTC) phenotype, which 
aids in the diagnosis and differential diagnoses of PTC before surgery1,2. BRAFV600E diagnosis requires genetic 
testing of cell eluate by ultrasound-guided fine-needle aspiration (FNA), which is invasive. Ultrasound-guided 
FNA cytological examination of thyroid nodules can diagnose PTC before surgery, but 15% to 30% of the cyto-
logical results belong to the Bethesda system definition with uncertain detection results (including Bethesda 
Type III: atypical lesions or follicular lesions of unknown significance (AUS/FLUS), Type IV: follicular tumors/
suspected follicular tumors, and Type V: suspected malignant tumors (SUSP)). Therefore, "TBSRTC Classifica-
tion Malignant Risk and Management Recommendation" recommends FNA cytology combined with BRAFV600E 
mutation detection, but are all invasive. As a result, it is critical in clinical practice to adopt non-invasive 
approaches to forecast the status of BRAFV600E mutations, so as to reduce the FNA and molecular detection rate.

More importantly, According to earlier research, BRAFV600E mutation in thyroid tumors is thought to be 
a sign of severe illness and PTC-related mortality3. It is interesting to note that the presence of the BRAFV600E 
mutation has become a more reliable molecular marker for PTC recurrence3. Therefore, finding BRAFV600E 
mutations in thyroid tumors has implications for prognosis and serves as a marker for tumor recurrence. The 
BRAFV600E mutation is also strongly linked to the existence of extrathyroidal extension (ETE) and cervical lymph 
node metastasis (CLNM) in PTC patients, suggesting an invasion4,5. Jin et al.6 observed a substantial relationship 
between BRAFV600E mutation with CLNM and ETE in a Mayo Clinic research. Xing et al.7 revealed a close link 
between BRAFV600E mutation and ETE, CLNM, and advanced illness stages in a large comprehensive interna-
tional multicenter investigation. Even if either gene mutation is capable of identifying aggressive cancer types, 
the genetic analysis still requires specimen tissue for examination, which is often collected by invasive surgical 
procedures. Furthermore, identifying tumors using FNA biopsy samples from type 4a nodules is difficult because 
tumor cells vary in quantity, quality, and purity8. A sensitive and precise BRAFV600E mutation detection method 
will thus aid in the early detection of PTC9. Because BRAFV600E gene mutations produce 99.8% of malignant 
nodules, it is a significant tumor marker for PTC.

With the increasing popularity of tumor thermal ablation technology (microwave, radio frequency, and laser) 
in China, an increasing number of patients with PTC, particularly those with minimal papillary thyroid cancer 
(MPTC), are willing to accept thermal ablation as a minimally invasive procedure to maximize the preservation 
of thyroid function. As a result, proper preoperative detection of BRAFV600E status in PTC patients is critical for 
patients to choose therapy methods. Surgery is currently chosen over ablation for highly invasive PTC in China.

The main imaging method for evaluating thyroid nodules is ultrasound (US)10. Grayscale US has recently been 
found to be able to predict the mutation of BRAFV600E in PTC. However, the findings are still up for debate11,12, 
which may be related to the drawbacks of the conventional US image, such as its dependence on the radiologist’s 
experience and interobserver variation13. The ability of a tissue to resist deformation whenever a force is exerted 
on it or to restore its initial form when that force is withdrawn is called elasticity, which is what elastography often 
examines in tissues. Depending on the Doppler US technology, strain images can be presented in grayscale or 
in colors that reflect the stiffness and elasticity of the tissues14–17. Elastography is also based on the grayscale US 
which is also subjective and operator dependent. There have been several significant developments to increase 
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the performance of US elastography such as elastography estimation from Doppler imaging using central dif-
ference and least-squares algorithms17.

Radiomics analysis using US images has been used to forecast the molecular characteristics of several malig-
nancies, which include PTC18,19. Artificial intelligence (AI) has considerably expanded in recent years as a cutting-
edge data analysis tool in the medical field20. As a result of its extensive digital data sets, radiology in particular 
is well suited for AI21. Recently, there has been a lot of interest in the medical area in the use of radiomics in 
conjunction with machine learning, which is an important subset of AI and plays a tremendous supporting 
role in increasing diagnostic and prognostic accuracy22,23. However, there are currently few studies that used 
machine learning models primarily on elastography US radiomics data to detect the existence of BRAFV6OOE 
mutation in PTC. There has also been no research that employed different machine learning classifiers in assess-
ing BRAFV6OOE in PTC patients using elastography US radiomic features. Based on elastography US radiomic 
features, this study seeks to create and validate six distinct machine-learning algorithms to predict BRAFV6OOE 
mutation in PTC patients prior to surgery.

Materials and methods
Patients.  A retrospective analysis was performed on PTC patients who had undergone preoperative thyroid 
US elastography, BRAFV600E mutation diagnosis, and surgery at Jiangsu University Affiliated People’s Hospital 
and traditional Chinese medicine hospital of Nanjing Lishui District between January 2014 and 2021. The enroll-
ing process is displayed in Fig. 1. 138 PTCs of 138 patients (mean age, 41.63 ± 11.36 [range, 25–65] years) were 
analyzed in this study. The patients were divided into BRAFV600E mutation-free group (n = 75) and BRAFV600E 
mutation group (n = 63). Using a stratified sample technique at a 7:3 ratio, all patients were randomly assigned 
to either the training group (n = 96) or the validation group (n = 42). The following criteria were required for 
inclusion: postoperative pathology indicated PTC; preoperative thyroid US elastography evaluation; related US 
images and diagnostic outcomes; maximum nodule diameter > 5 mm, and < 5 cm; and unilateral and single focal 
lesion. The exclusion criteria included a maximum nodule diameter of > 5 cm and indistinct US imaging of nod-
ules caused by artifacts. The clinical details of the enrolled patients were documented, including age, sex, nodule 
diameter, nodule location, nodular echo, nodule boundary, nodule internal and peripheral blood flow, nodule 
elastic grading, calcification, CLNM, and BRAFV600E mutation results. The Jiangsu University Affiliated People’s 
Hospital and the traditional Chinese medicine hospital of Nanjing Lishui District Ethics Committee approved 
this study. Because it was retrospective in nature, it did not require written informed consent.

Strain elastography ultrasound examination.  There were two ultrasonic devices used: the Philips Q5 
(both Healthcare, Eindhoven, Netherlands) and the GE LOGIC E20 (GE Medical Systems, American General) 
(L12-5 linear array probe, frequency: 10–14 MHz).

To acquire longitudinal and transverse images of the thyroid nodules, continuous longitudinal and transverse 
scanning was done while the patients were supine. Blood flow in and around the nodule, strain elastic grading of 
the nodule, calcification, and CLNM were all visible on the coexisting diagram, which also included the nodule 
diameter, location, echo, and boundary.

Figure 1.   Schematic diagram of the patient selection. PTC, papillary thyroid carcinoma.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12604  | https://doi.org/10.1038/s41598-023-39747-6

www.nature.com/scientificreports/

The cross-sectional image’s position and size of the sampling frame were adjusted, and the strain elastic 
imaging mode was activated. With an ROI that was larger than the nodules (generally more than two times), the 
nodules were placed in the middle of the elastic imaging zone. Pressure was applied steadily (range 1–2 mm, 1–2 
times/s) while the probe was perpendicular to the nodule. When the linear strain hint graph (green spring) sug-
gested stability, the freeze key was pressed to get an elastic image; the ROI’s color changed (green indicated soft; 
red indicated hard), and the nodule’s hardness was determined based on elasticity. The elastic image was graded 
according to the following criteria: one point equals a nodular area that alternates between red, green, and blue; 
two points equal nodules that are partially red and partially green (mostly green, area > 90%); three points equal 
a nodule area that is primarily green, with surrounding tissues visible in red; four points equal a nodule area that 
is primarily red, with the red area > 90%; and five points equal a nodule area that is completely covered in red.

Region of interests (ROIs) segmentation.  One week prior to surgery, thyroid US exams were con-
ducted. US image segmentation was done manually. Using the ITK-SNAP program (http://​www.​itksn​ap.​org), 
the ROIs were manually drawn on each image (Fig. 2). The grayscale images were used to create a sketch outline 
of the tumor regions in the elastography US images.

Radiomic feature extraction.  Radiomic features were extracted using PyRadiomics (https://​github.​com/​
Radio​mics/​pyrad​iomics). A total of 479 radiomic features were recovered from each ROI’s elastography US 
images. Among those included were first-order Gray Level Co-occurrence Matrix (GLCM), Gray Level Run 
Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Gray Level Dependence Matrix (GLDM), and 
Neighbouring Gray Tone Difference Matrix (NGTDM) features, as well as features deduced from wavelet filter 
images containing first-order GLCM, GLRLM, GLSZM, GLDM, and NGTDM features.

Radiomic feature selection.  The retrieved features were normalized using a standard scalar to reduce bias 
and overfitting in the study. The dataset was divided into training and validation cohorts. To make each charac-
teristic substantially independent, the row spatial dimension of the feature matrix was reduced using the Pearson 
correlation coefficient (PCC). Every pair of features with a PCC of more than 0.80 was deemed redundant.

After PCC, recursive feature elimination (RFE) for feature selection was applied to the whole dataset using 
the Scikit-learn python module24 to choose representative features for the training cohort. During the RFE 
procedure, the following parameters were taken into consideration (cross-validation was set to stratifiedkfold 
with the number of splits being 10, the random state was set to 101, minimum features to select was set to 3, and 
accuracy was employed for the scoring.

Development of machine learning‑based models.  The Support Vector Machine with the linear ker-
nel (SVM_L), Support Vector Machine with radial basis function kernel (SVM_RBF), LogisticRegression (LR), 
Naïve Bayes (NB), K-nearest Neighbors (KNN), and Linear Discriminant Analysis (LDA) classifiers were used to 
build the prediction models using the RFE’s key features. All six algorithms were implemented using the Scikit-
learn machine learning library24

The same feature sets were chosen and fed into the model during the validation process. Standard clinical 
statistics like the area under the curve (AUC), sensitivity, specificity, negative predictive value (NPV), positive 
predictive value (PPV), and accuracy (ACC) were used to evaluate the model’s performance on the training and 
validation datasets.

Statistical analysis.  Python (version 3.7, https://​www.​python.​org/ Accessed 8 July 2021) and IBM SPSS 
Statistics (Monk Ar, New York, New York State, USA.) for Windows version 26.0 were used for statistical analy-
ses. Pearson’s chi-square and Fisher’s exact tests were used to compare the differences in categorical character-
istics. The independent sample t-test was used for continuous factors with normal distribution, whereas the 
Mann–Whitney U test was used for continuous factors without normal distribution.

Figure 2.   (A) Ultrasound conventional B-mode image of papillary thyroid carcinoma. (B) corresponding 
ultrasound elastography image, with the circle, labeled A indicating a lesion region and the circle labeled B 
indicating a reference area. (C) Corresponding image after region of interest (ROIs) segmentation step.

http://www.itksnap.org
https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
https://www.python.org/
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A two‐sided P < 0.05 indicated statistically significant differences. PyRadiomics (version 2.2.0, https://​github.​
com/​Radio​mics/​pyrad​iomics Accessed 10 August 2021) and scikit‐learn version 1.224 were used to extract radi-
omic features and build the prediction models. Each prediction model’s AUC, sensitivity, specificity, ACC, NPV, 
and PPV were calculated.

Medcalc Statistical Software was used to calculate the six models’ AUCs and evaluate the predictions. The 
DeLong method was used to compare the AUCs of the six machine learning classifiers. To create calibration 
curves, the sci-kit-learn version 1.224 was used. R software (version 3.6.1, https://​www.r-​proje​ct.​org) was used 
to perform the decision curve analysis.

Institutional review board statement.  The study was conducted in accordance with the Declaration of 
Helsinki and approved by the Jiangsu University-Affiliated People’s Hospital and traditional Chinese medicine 
hospital of Nanjing Lishui District Ethics Committee.

Informed consent.  Patient consent was waived by the Jiangsu University-Affiliated People’s Hospital and 
traditional Chinese medicine hospital of Nanjing Lishui District ethics committee due to the retrospective 
nature of the study.

Results
Clinical characteristics.  There were 138 PTC patients in all, 87 of whom were women (mean age, 
41.81 ± 11.23 [range, 25–57] years), and 51 of them were men (mean age, 43.82 ± 12.18 [range, 28–65] years). In 
Table 1, 138 patients’ clinical information and imaging comparisons between the training and validation groups 
are displayed.

The relationship between the BRAFV600E mutation and ultrasonic imaging characteristics and the predic-
tive performance of the machine learning algorithms is shown in Tables 2, 3.

Diagnostic performance of the machine learning models in the training and validation 
cohorts.  After PCC and RFE with stratified tenfold cross-validation, 27 radiomic features were chosen in the 
training cohort (Figs. 3 and 4).

The following features were chosen to develop the predictive models for BRAFV600E based on six machine 
learning algorithms (Table 4).

In the training cohort, AUCs for KNN, LDA, LR, NB, SVM_L, and SVM_ RBF were 0.96 (95% confidence 
interval [CI]: 0.89–0.99), 1.00 (95% CI 0.96–1.00), 1.00 (95% CI 0.96–1.00), 0.96 (95% CI 0.89–0.99), 1.00 (95% 
CI 0.96–0.1.00), and 1.00 (95% CI 0.96–1.00), respectively (Table 3 and Fig. 5). The SVM_RBF, SVM_L, LDA, 
and LR models performed best. KNN and NB followed. All machine learning models performed well.

In the validation cohort, AUCs for NB, KNN, LDA, LR, SVM_L, and SVM_RBF were 0.80 (95% confidence 
interval [CI]: 0.65–0.91), 0.87 (95% CI 0.73–0.95), 0.91(95% CI 0.79–0.98), 0.92 (95% CI 0.80–0.98), 0.93 (95% 
CI 0.80–0.98), and 0.98 (95% CI 0.88–1.00), respectively. The SVM_RBF model performed the best in the 
validation cohort, followed by the LR, SVM_L, LDA, KNN, and NB models, in that order (Fig. 6). All machine 
learning-based models performed well. The SVM_RBF model’s sensitivity, specificity, PPV, and NPV were 0.95, 
0.90, 0.91, and 0.95, respectively (Table 3).

Furthermore, the DCA was used to evaluate the clinical utility of these models (Fig. 7). The calibration curve 
was used for evaluating the probability accuracy of the machine learning models in predicting an individual 
outcome event in the future (Fig. 8).

Discussion
The BRAF V600E mutation has become a distinctive and important molecular marker in the management of PTC 
due to its substantial relationship with aggressive clinical pathological outcome, serious molecular derangements, 
and selection of treatment methods in PTC.

Real-time tissue strain elastography helps assess the anatomical structure and biological traits of PTC because 
it represents the relative hardness of the lesion and its surrounding tissues, whereas the hardness of PTC tissues is 
closely related to its internal pathological structure. Bojunga et al.25 showed that elastography US could effectively 
distinguish between benign and malignant thyroid nodules. Recent research has demonstrated that varied cell 
arrangements and cell compositions result in varying tissue elastography indices26,27; the harder elastography US 
imaging is for PTC, the higher its malignancy. This gives the US diagnosis of BRAFV600E mutation-positive and 
negative PTC a new viewpoint. Using US images, it was determined that patients with and without BRAFV600E 
mutations had significantly different elastic moduli or levels of hardness. Elastography might more accurately 
describe the pathological features of tissues and directly and quantitatively indicate the absolute hardness of 
BRAFV600E mutation-positive and -negative PTC. This study used machine learning methods to extract imaging 
omics features behind PTC strain elastic US images, and then used these features to build models to predict 
BRAF gene status, which is more objective than the semi-quantitative method of dividing PTC strain elastic US 
images into 1–5 points based on naked eye observation.

In a previous study28, we developed three radiomic models to predict BRAFV600E mutation in PTC patients: 
a radiomic model based on grayscale US radiomic features, a radiomic model based on elastography radiomic 
features, and a third model based on combined gray US radiomic and elastography radiomic features using 
logistic regression classifier and the least absolute shrinkage selection operator (LASSO) feature selection algo-
rithm. The gray scale US radiomic model did not perform well in the validation cohort (ACC: 0.67, AUC: 0.73), 
but the elastography model (ACC: 0.88, AUC: 0.93) and combined model (ACC: 0.91, AUC: 0.94), did perform 
well. Considering that elastic US images superimpose information on the hardness of the mass on the basis of 

https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
https://www.r-project.org
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grayscale US images, image feature extraction not only extracts the hardness characteristics of the mass, but also 
extracts rich features of the internal structure of the mass. So we decided to focus on elastography radiomics 
features in this current study to explore the performance of multiple machine learning classifiers or algorithms 
as well as other feature selection methods.

Machine learning algorithms benefit from learning from input data and automatically recognizing patterns 
and trends in that data automatically. There have been numerous studies29–31 on the use of machine learning 
to differentiate between benign and malignant thyroid nodules. However, there have been only a few stud-
ies using machine learning models to predict BRAFV600E mutation in PTC patients. Additionally, there hasn’t 
been a comparison of the effectiveness of various machine learning algorithms for the prediction of BRAFV600E 
mutation in PTC patients based on US elastography radiomic features. In the current study, we constructed six 
machine-learning models to distinguish PTC patients with BRAFV600E gene mutations from PTC patients without 
BRAFV600E gene mutations using preoperative US elastography radiomic data. There were three noteworthy dis-
coveries. First, based on preoperative US elastography radiomic features, the six machine learning models could 
differentiate PTC patients with BRAFV600E from non-BRAFV600E PTC patients. Second, when the six machine 
learning models were compared, SVM_RBF had the best prediction performance. Third the machine learning 
algorithms’ diagnostic performance was based on 27 radiomic features.

Table 1.   Comparison of clinical and ultrasonic characteristics of the PTC patients in the training and 
validation dataset.

Characteristic Training cohort (n = 96) Validation cohort (n = 42) P-value

Age, mean ± SD (years) 41.78 ± 10.99 44.33 ± 12.81 0.152

Age (years)

 > 45 48.63 ± 5.23 49.90 ± 5.89 0.218

 ≤ 45 34.61 ± 5.17 34.76 ± 7.87 0.670

Sex

 Male 36 15
0.851

 Female 60 27

Tumor size(mm), mean ± SD 26.04 ± 8.51 26.63 ± 8.55 0.074

Primary site

 Right lobe 28 15 0.318

 Left lobe 30 16

 Isthmus 38 11

Tumor location

 Upper pole 31 18 0.325

 Lower pole 27 13

 Middle 38 11

Composition

 Solid 56 19 0.269

 Predominantly solid 40 23

Elastic classification

 1 13 5 0.375

 2 22 15

 3 15 7

 4 26 7

 5 20 8

Cystic change

 With cystic change 52 20 0.579

 Without cystic change 44 22

Calcification

 Microcalcification 37 11 0.143

 Macrocalcification 41 17

 Rim calcification 18 14

Tumor border

 Clear 37 13 0.510

 Less clear 31 18

 Fuzzy 28 11

Cervical lymph node metastasis 61 31 0.327
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In order to determine whether US-based radiomics could perhaps assess the occurrence of BRAFV600E muta-
tions among patients with PTC, Yoon et al.10 established a radiomic score using a dataset of 527 patients who had 
undergone surgical treatment for PTC and who had all undergone BRAFV600E mutation analysis on surgical speci-
men.They reported that radiomics features extracted from US have limited value as a non-invasive biomarker 
for predicting the presence of BRAFV600E mutation status of PTC, with a c-statistic value (equivalent to AUC) 
of 0.63 in the validation cohort and 0.72 in the training cohort. In comparison to this study, our study reported 
AUCs range of (0.96–1.00) and (0.87–0.98) in the training and validation cohorts, respectively, and ACCs range 
of (0.89–0.98) and (0.81–0.93) in the training and validation cohorts, respectively for the six machine learning 
algorithms employed in this study.

The higher AUCs and ACCs in the current study could be attributed to the US elastography radiomic features 
used, which provided more information than the grayscale US. Also in this study, machine learning algorithms 
were used in conjunction with radiomics, and several machine learning classifiers were used to build the models. 

Table 2.   Patient characteristics of the PTC with BRAFV600E and PTC without BRAFV600E groups. Clinical 
characteristics, such as age and gender, did not differ significantly between the two groups (P > 0.05). There 
were no significant differences in mean nodule size between the two groups (BRAFV600E mutant group: 
24.12 ± 8.6 mm; non-BRAFV600E mutant group: 23.98 ± 11.01 mm, P = 0.928) or CLNM (P = 0.102). There was 
a significant difference in echogenicity (P = 0.000), vertical and horizontal diameter ratios (P = 0.001), and 
elasticity (P = 0.015) between PTC patients with BRAFV600E and PTC patients without BRAFV600E.

BRAFV600E(+) (n = 63) BRAFV600E(−) (n = 75) P-value

Age, mean ± SD, years 38.03 ± 10.41 36.68 ± 10.05 0.377

Sex

 Male 22 29 0.724

 Female 41 46

Tumor size, mean ± SD 24.12 ± 8.6 23.98 ± 11.01 0.928

Composition

 Solid 33 42 0.733

 Predominantly solid 30 33

Elastic classification

 1 2 1 0.015

 2 2 0

 3 20 11

 4 14 13

 5 25 50

Solid part echogenicity

 Markedly hypoechoic 41 20 0.000

 Hypoechoic 10 21

 Isoechoic 9 14

 Hyperechoic 3 20

Shape

 Irregular 32 43 0.443

 Round to oval 31 32

Vertical and horizontal diameter ratio

 ≥ 1 41 27 0.001

 < 1 22 48

Margin

 Spiculated/microlobulated 30 25 0.183

 Ill-defined 21 28

 Smooth 12 22

Calcification

 Microcalcification 26 22 0.127

 Macrocalcification 27 31

 Rim calcification 10 22

FinalC-TIRADS category

 Low suspicion 16 31 0.058

 Intermediate suspicion 17 22

 High suspicion 30 22

Cervical lymph node metastasis 47 45 0.102
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Table 3.   Predictive performance comparison of machine learning algorithms in the training and validation 
cohorts. AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPEC, specificity; NPV, negative 
predictive value; PPV, positive predictive value; USR, ultrasound radiomic; PTC, papillary thyroid carcinoma; 
SVM-L, support vector machine with linear kernel;SVM-RBF, support vector machine with radial basis 
function; KNN, K-nearest neighbour; NB, naïve bayes; LDA, linear discriminant analysis;LR, logistic 
regression.

ACC​ AUC ± SE (95% CI) SEN SPEC PPV NPV

Training cohort

 KNN 0.89 0.96 ± 0.02 (0.89–0.99) 0.89 0.87 0.91 0.85

 LDA 0.98 1.00 ± 0.00 (0.96–1.00) 0.98 0.97 0.98 0.97

 LR 1.00 1.00 ± 0.00 (0.96–1.00) 1.00 1.00 1.00 1.00

 NB 0.90 0.96 ± 0.02 (0.89–0.99) 0.90 0.90 0.93 0.85

 SVM-L 1.00 1.00 ± 0.00 (0.96–1.00) 1.00 1.00 1.00 1.00

 SVM-RBF 0.98 1.00 ± 0.00 (0.96–1.00) 0.96 1.00 1.00 0.95

Validation cohort

 KNN 0.81 0.87 ± 0.05 (0.73–0.95) 0.86 0.75 0.79 0.83

 LDA 0.88 0.91 ± 0.05 (0.76–0.98) 0.91 0.85 0.87 0.89

 LR 0.88 0.92 ± 0.05 (0.80–0.98) 0.91 0.85 0.87 0.89

 NB 0.81 0.80 ± 0.08 (0.65–0.91) 0.82 0.82 0.80 0.80

 SVM-L 0.88 0.93 ± 0.05 (0.80–0.98) 0.91 0.85 0.87 0.90

 SVM-RBF 0.93 0.98 ± 0.02 (0.88–1.00) 0.95 0.90 0.91 0.95

Figure 3.   Boxplot of Selected features after RFE. Features were reduced to twenty-seven features during 
training of the machine learning models.
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To the best of our knowledge, this is the first study to develop models based on different machine-learning algo-
rithms to predict BRAFV600E mutations in PTC patients.

Comparing the current study results to our previous study28, the ACCs of SVM_L (0.88), LDA (0.88), and LR 
(0.88) were the same as the ACC of the logistic regression classifier (0.88) utilized in our previous study. However, 
the KNN (0.81) and NB (0.81) ACCs values were lower than the LR (0.88) method utilized in our previous study.

The AUCs of the KNN (0.87), LDA (0.91), LR (0.92), and NB (0.80) classifiers were all lower than the logistic 
regression classifier (0.93) utilized in our previous study. The SVM_L AUC (0.93) score, on the other hand, 

Figure 4.   Recursive feature elimination (RFE) with tenfold cross‐validation; number of features selected vs. 
cross‐validation score.

Table 4.   Radiomics features selected after PCC and RFE analysis.

Radiomics features Coefficient

original_firstorder_10Percentile 0.319091638765928

original_firstorder_Entropy 0.487563008130997

original_firstorder_Minimum − 0.689397324848202

original_glcm_InverseVariance 0.320755497574734

original_glrlm_LongRunLowGrayLevelEmphasis 0.289249743498163

original_glszm_GrayLevelNonUniformityNormalized − 0.462108224518231

original_glszm_LargeAreaLowGrayLevelEmphasis 1.53918767726622

original_glszm_SmallAreaHighGrayLevelEmphasis − 0.4600168409863

wavelet-LH_firstorder_Minimum 0.203880750540529

wavelet-LH_glcm_ClusterShade 0.370856455050612

wavelet-LH_glcm_Correlation − 0.527527316574072

wavelet-LH_glcm_MCC − 0.628688962372851

wavelet-LH_glszm_SizeZoneNonUniformityNormalized − 0.457585723931173

wavelet-LH_glszm_ZoneEntropy − 0.699132116206135

wavelet-HL_firstorder_Maximum 0.749434461872676

wavelet-HL_firstorder_Minimum − 0.790858716113758

wavelet-HL_glcm_Imc1 − 0.260391671132259

wavelet-HL_glcm_InverseVariance 0.58449015454453

wavelet-HL_glcm_MCC 0.672849806282339

wavelet-HL_glszm_SizeZoneNonUniformityNormalized 0.733532271458511

wavelet-HL_glszm_ZoneEntropy 0.686277806428273

wavelet-HH_firstorder_Maximum − 0.532437149368159

wavelet-HH_firstorder_Median 0.334726274781584

wavelet-HH_glcm_ClusterShade − 0.288808544114359

wavelet-HH_glszm_SizeZoneNonUniformityNormalized 0.359598216711341

wavelet-LL_firstorder_Minimum 0.268464336096376

wavelet-LL_ngtdm_Complexity − 0.441332524522852
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was the same as the logistic regression algorithm (0.93) utilized in our previous work. When compared to the 
logistic regression classifier (ACC: 0.88 and AUC: 0.93) employed in our previous investigation, the SVM_RBF 
had higher ACC (0.93) and AUC (0.98) values. The disparity in performance could be attributed to the various 
feature preprocessing techniques and feature selection strategies used in the current investigation.

On US examination, Kabaker et al.32 discovered that vertical and horizontal diameter ratios greater than one, 
as well as low echo, were all associated with the BRAFV600E mutation. Similarly, Hahn et al.33 discovered that 

Figure 5.   The mixed ROC curves of the six machine learning models in the training cohort. ROC: receiver 
operating characteristic; KNN: K-nearest neighbor; LDA: linear discriminant analysis; LR: logistic regression; 
NB: Naïve Bayes;SVM_L: support vector classifier with the linear kernel; SVM_RBF: support vector classifier 
with the radial basis function.

Figure 6.   The mixed ROC curves of the six machine learning models in the validation cohort. ROC: receiver 
operating characteristic. KNN: K-nearest neighbor; LDA: linear discriminant analysis; LR: logistic regression; 
NB: Naïve Bayes; SVM_L: support vector classifier with the linear kernel; SVM_RBF: support vector classifier 
with the radial basis function.
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vertical and horizontal diameter ratios greater than one were linked to BRAFV600E gene mutations. Consistent 
with these studies, we discovered in this current study that there was a significant difference in echogenicity, 
vertical and horizontal diameter ratios, and elasticity between PTC patients with BRAFV600E and PTC patients 
without BRAFV600E.

The calibration curve of the prediction model is an essential metric for evaluating the probability accuracy 
of a disease risk model in predicting an individual outcome event in the future. A high degree of calibration 
shows that the prediction model is accurate, whereas a low degree of calibration indicates that the model may 
exaggerate or underestimate the risk of illness. The blue line reflects the performance of the machine learning 
algorithms, while the diagonal dotted line represents an ideal prediction (Fig. 8). A closer match to the diagonal 
dotted line suggests a better prediction. When the calibration curves were near the diagonal line, SVM_RBF, 
SVM_L, and NB algorithms demonstrated good agreement between the real status of BRAFV600E gene mutation 
and the predicted probability.

Furthermore, the DCA was used to evaluate the clinical utility of these models (Fig. 7). Assuming that all 
patients do not have BRAFV600E gene mutation, the solid black line (negative line) indicates that when no patient 
accepts intervention or treatment, the net benefit is zero. On the contrary, the solid grey line (positive line) 
indicates the net benefits when all patients have BRAFV600E and receive treatments or interventions. According 
to the incidence of BRAFV600E among patients with PTC, the reasonable range of thresholds was set from 0.3 to 
0.99. In the entire range, all machine learning-based algorithms showed higher net benefits than the two extreme 
lines (negative line and positive line). In almost the entire threshold probability range, the SVM_RBF algorithm 
had the highest net benefit in both the training and validation cohorts (Fig. 7).

Figure 7.   Decision curve for predictive models based on machine learning models in the training cohort 
(A) and the validation cohort (B). KNN K-nearest neighbor; LDA Linear discriminant analysis;LR Logistic 
regression; NB Naïve Bayes;SVM_L Support vector classifier with the linear kernel; SVM_RBF Support vector 
classifier with the radial basis function.
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There are some limitations of the study, in the construction of the models to predict BRAFV600E in PTC 
patients, the gene in healthy individuals was not analyzed, and the focus was on evaluating the BRAFV600E muta-
tion in PTC patients, which could have resulted in a selection bias. Also, this was a small sample retrospective 
study conducted at two institutions; thus, a selection bias may exist. In the future, we aim to conduct a multicenter 
study with a larger sample size.

Conclusion
Finally, our study found that machine learning-based US elastography radiomic models performed well in 
predicting the potential of BRAFV600E in PTC patients, which can assist physicians in identifying the risk of 
BRAFV600E in PTC patients. SVM_RBF achieved the greatest prediction performance of the six machine learn-
ing models tested.

Data availability
The original contributions presented in the study are included in the article. Further inquiries can be directed 
to the corresponding authors.
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