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Comparative performances 
of machine learning algorithms 
in radiomics and impacting factors
Antoine Decoux 1,2, Loic Duron 1,3, Paul Habert 1,4,5, Victoire Roblot 1, Emina Arsovic 1, 
Guillaume Chassagnon 6, Armelle Arnoux 2 & Laure Fournier 7*

There are no current recommendations on which machine learning (ML) algorithms should be used in 
radiomics. The objective was to compare performances of ML algorithms in radiomics when applied 
to different clinical questions to determine whether some strategies could give the best and most 
stable performances regardless of datasets. This study compares the performances of nine feature 
selection algorithms combined with fourteen binary classification algorithms on ten datasets. These 
datasets included radiomics features and clinical diagnosis for binary clinical classifications including 
COVID-19 pneumonia or sarcopenia on CT, head and neck, orbital or uterine lesions on MRI. For each 
dataset, a train-test split was created. Each of the 126 (9 × 14) combinations of feature selection 
algorithms and classification algorithms was trained and tuned using a ten-fold cross validation, then 
AUC was computed. This procedure was repeated three times per dataset. Best overall performances 
were obtained with JMI and JMIM as feature selection algorithms and random forest and linear 
regression models as classification algorithms. The choice of the classification algorithm was the 
factor explaining most of the performance variation (10% of total variance). The choice of the feature 
selection algorithm explained only 2% of variation, while the train-test split explained 9%.

Aims and objectives
Radiomics can be defined as the quantitative extraction of a high number of features from medical images for 
discovery of new predictive, diagnostic or prognostic imaging biomarkers of disease. Radiomics enables the 
non-invasive extraction of information invisible to the human eye from medical images using machine learn-
ing techniques and has shown promising results. However, the lack of standards hinders the use of radiomics 
biomarkers in a clinical  setting1.

A radiomics study is structured in five steps: cohort constitution and imaging acquisition, segmentation of 
the region of interest (ROI), feature extraction, modeling and external validation on an (ideally) independent 
 dataset2.

The modeling phase itself relies on two distinct steps: feature selection and prediction. For each step, many 
different methods and algorithms are available, which leads to a large number of possible combinations. To 
date, no strategy or recommendation has emerged on which algorithm(s) should be used preferentially when 
performing radiomics. Some teams have therefore chosen to test simultaneously different algorithms when 
performing studies, as it is believed that the algorithms which provided the best results depend of the  scenario3. 
However, testing a large number of strategies when performing radiomics on a given dataset increases the risk of 
false discoveries. Therefore, it may be desirable to use a smaller number of selected models to increase chances 
of meaningful results.

Even if there are some initiatives to issue recommendations such as the Radiomics Quality  Score2 or the 
Checklist for Artificial Intelligence in Medical Imaging (CLAIM)4, these recommendations are not well fol-
lowed. For example, out of the 69 machine learning studies on diagnosis or prognosis of Covid-19 investigated 
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by Roberts et al5, only 25 got a RQS above 6 out of 36. These results are supported by Spadarella et al.’s  review6, 
which obtained a median RQS of 21% (7,5) for 44 radiomics studies. This is a significant issue, as poor meth-
odological choices at different steps of the studies could lead to biased results. Bias could be introduced as early 
as the cohort constitution step if the distribution of the training dataset is different of the target  population7. It 
can also be introduced by operator variability during the annotation of the dataset. Joskowicz et al8 showed on 
3193 CT segmentations that the mean volume overlap variability between two observers was 37%. This variability 
can prevent some radiomics features from being reproducible. Also, ML algorithms could overfit or provided 
ill-estimated performances. Varoquaux et al.’s9 experiments on neuroimaging datasets reveal that a study sample 
size of one hundred leads to ± 10% errors in prediction accuracy. Conversely, Roelofs et al.’s  study10 on Kaggle 
competitions showed that overfitting can be prevented by large enough test samples. Roelofs considered 10,000 
examples as the minimum to protect against overfitting. 

The purpose of this study was to focus on the modeling phase of the radiomics workflow to determine 
whether some – and which – combination of algorithms could give the best and most stable performances in 
radiomics studies, regardless of datasets. This would serve to guide users in their choice of modeling strategies 
when performing radiomics. A secondary objective was to determine the main factors impacting the models’ 
performances.

Materials and methods
Materials. In order to estimate the impact of the choice of the methods and algorithms on models’ perfor-
mances, we used ten datasets from various radiomics studies previously published or  submitted11–14. This study 
adhered to the tenets of the Declaration of Helsinki. Ethical approval was obtained for all studies. The stud-
ies which constituted Covid datasets, Head and Neck dataset, Sarcopenia dataset and Uterine masses dataset 
were approved by Institutional Review Board Comité d’éthique de la recherche APHP.5 (previously CERAPHP.5, 
CERAPHP.Centre IRB00011928), which waived the need for written informed consent. The study which consti-
tuted Orbital Lesion dataset was approved by Comité d’Éthique pour la Recherche Hôpital Fondation Rothschild 
(IRB00012801) and signed informed consent was obtained from all subjects.

These datasets included radiomics features extracted from different imaging modalities addressing various 
diagnostic questions. All diagnoses were binary. Datasets included between 97 and 693 patients and between 
105 and 606 radiomics features per sample (Table 1). One dataset included five different segmented Regions Of 
Interest (ROI) and another two different ROIs extracted from the same sets of images. The others included a 
single ROI per image.

Methods
Evaluation of performances of algorithms. We selected the following seven algorithms most often 
used in radiomics studies for feature selection, based on filtering approaches. These filters can be grouped into 
three categories : those from the statistical field including the Pearson correlation coefficient (abbreviated as 
“Pearson” in the manuscript) and Spearman correlation coefficient (“Spearman “), those based on random for-
ests including Random Forest Variable Importance (“RfVarImp “) and Random Forest Permutation Importance 
(“RfPerImp”), and those based on the information theory including Joint Mutual Information (“JMI”), Joint 
Mutual Information Maximization (“JMIM”) and Minimum-Redundancy-Maximum-Relevance (“MRMR”).

These methods rank features, and then a given number of best features are kept for modeling. Three different 
numbers of selected features were investigated in this study: 10, 20 and 30.

Table 1.  Description of the datasets used. The COVID severity dataset was a set of CT images from a 
multicentric  database3 in which ROIs were defined in lungs to quantify severity of infection, and in the 
mediastinum to determine whether cardiac comorbidities affected prognosis. The sarcopenia dataset was a set 
of CT images from a multicentric  database5 in which ROIs were defined on psoas and posterior muscles at L3 
level to quantify muscle surface. Orbital  lesions4, Uterine  masses6, and Head and Neck cancers (unpublished 
data) were MRI datasets in which ROIs were drawn on tumors respectively for tumor characterization (benign 
vs malignant) or to correlate to tumor biology. CT computed tomography, MRI magnetic resonance imaging, 
HPV human papillomavirus, Y yes, N No.

Diagnostic questions Region of Interest Number of images Number of patients Number of features Prevalence (%) Imaging modality Multicentric

Covid severity

Heart

693 693 107 20 CT Y

Right Lung (total)

Left Lung (total)

Right lung lesion

Left lung lesion

Sarcopenia
Psoas muscle 180 111 159

42 CT Y
Posterior muscle 179 110 159

Benign vs malignant Orbital lesions 200 175 606 37 MRI N

Benign vs malignant Uterine masses 167 167 315 26 MRI Y

HPV status Head and neck 
cancers 96 96 105 36 MRI Y
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Moreover, in order to estimate the impact of the feature selection step, two non-informative algorithms of 
feature selection were used as benchmarks: no selection which resulted in selecting all features (“All”) and a 
random selection of a given number of features (“Random”).

Fourteen machine-learning or statistical binary classifiers were tested, among those most often used in 
radiomics studies: K-Nearest Neighbors (“KNN”); five linear models including Linear Regression (“Lr”), three 
Penalized Linear Regression (Lasso Penalized Linear Regression (‘LrL1”), Ridge Penalized Linear Regression 
(“LrL2″), Elastic-net Linear Regression (“LrElasticNet”)) and Linear Discriminant Analysis (“LDA”); Random 
Forest (“RF”); AdaBoost and XGBoost; three support vector classifiers including Linear Support Vector Clas-
sifier (“Linear SVC”), Polynomial Support Vector Classifier (“PolySVC”) and Radial Support Vector Classifier 
(“RSVC”); and two bayesian classifiers including Binomial Naive Bayes (“BNB”) and Gaussian Naive Bayes 
(“GNB”).

In order to estimate performances of each of the 126 combinations of the nine feature selection algorithms 
with the fourteen classification algorithms, each combination was trained using a grid-search and nested cross 
validation  strategy15 as follows.

First, datasets were randomly split into three folds, stratified on the diagnostic value so that each fold had 
the same diagnostic distribution as the population of interest. Each fold was used in turn as the test set while the 
two remaining folds were used as training and cross-validation sets.

Ten-fold cross validation and grid-search were used on the training set to tune the hyperparameters maxi-
mizing the area under the receiver operating characteristic curve (AUC). Best hyperparameters were then used 
to train the model on the whole training set.

In order to take into account overfitting, the metric used was the AUC penalized by the absolute value of the 
difference between the AUCs of the test set and the train set:

This procedure was repeated for each of the ten datasets, for three different train-test splits and the three 
different numbers of selected features.

Each combination of algorithms yielded 90 (3 × 3 × 10) AUCs, apart from combinations using the “All” fea-
ture selection which were associated with only 30 AUCs due to the absence of number of feature selection, the 
“Random” feature selection, repeated three times which yielded 270 AUCs. Hence, in total, 13,020 AUCs were 
calculated.

Statistical analysis. Multifactor ANalysis of VAriance (ANOVA) was used to quantify the variability of 
the AUC associated with the following factors: dataset, feature selection algorithm, classifier algorithm, number 
of features, train-test split, imaging modality, and interactions between classifier / dataset, classifier / feature 
selection, dataset / feature selection, and classifier / feature selection / dataset. Proportion of variance explained 
was used to quantify impacts of each factor/interaction. Results are given as frequency (proportion(%)) or range 
(minimum value; maximum value).

For each feature selection, classifier, dataset and train-test split, median AUC,1st quartile (Q1); and  3rd quartile 
(Q3) were computed. Box-plots were used to visualize results.

In addition, for feature selection algorithms and classifiers, a Friedman  test16 followed by post-hoc pair-wise 
Nemenyi-Friedman tests were used to compare the median AUCs of the algorithms.

Heatmaps were generated to illustrate results for each Feature Selection and Classifier combination.

Implementation. All the algorithms were implemented in Python (version 3.8.8). Pearson and Spearman 
correlations were computed using Pandas (1.2.4), the XGBoost algorithm using xgboost (1.5) and JMI, JMIM 
and MRMR algorithms using MIFS. All other algorithms were implemented using the scikit-learn library (ver-
sion 0.24.1). Data were standardized by centering and scaling using scikit-learn StandardScaler.

Results
AUCs ranged from 0.20 to 0.91 when considering all possible combinations. Four hundred thirty-five (3.4%) 
AUCs were below 0.5.

Figure 1 shows proportion of performance variation explained by experimental factors. Running the multifac-
tor ANOVA on the AUCs, the identified factors and their interactions explained 55% of the variation in modeling 
performance. Among these 55%, the most important factor was the dataset itself (17% of the variations), then the 
classifier (10%), and the train-test split (9%). The feature selection algorithm only explained 2% of the variations. 
Both number of selected features and imaging modality (CT vs MRI) explained less than 1% of the variation in 
performances. Interactions between factors explained the remaining 17%.

Table 2 shows the median [Q1;Q3] AUC for each of the feature selection algorithms, regardless of the classi-
fier used. Differences in median AUCs were slight between all possible combinations, ranging from 0.68 to 0.70, 
yet were statistically significantly different (P-value < 1e−32). Pairwise comparisons are presented in SI Table 1.

Feature selection algorithms based on information theory such as JMI and JMIM provided the best overall 
performances as seen with their higher median AUC at 0.70 respectively and their relatively high Q1, ensuring 
consistently good performances. All feature selection algorithms performed better than the “Random” feature 
selection.

Table 3 shows the median [Q1;Q3] AUC for each of the classifier algorithms, regardless of the feature selection 
used. The difference between median AUC of classifier algorithms was significant (P-value < 1e−32). Pairwise 
comparisons are presented in SI Table 2.

AUCCross−Validation = AUCTest−Fold −

∣

∣AUCTest−Fold − AUCTrain−Fold

∣

∣
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On our datasets, Linear classifier algorithms (Ridge Penalized Linear Regression, Elastic-net Linear Regres-
sion, Linear Discriminant Analysis) and Random Forest gave consistently better performances (median AUCs 
greater than 0.70). Some algorithms, such as KNN, AdaBoost or XGBoost, gave lower overall performances, 
though they could reach occasionally very high performances on some combinations of dataset/number of 
features/train-test split.

Figure 2 shows the heatmap of median AUC for all feature selection algorithms and classifiers. Median AUC 
ranged between 0.57 and 0.74. With the exception of the combination None-lrElasticNet, the best combina-
tions of algorithms were those using best feature selection algorithms (JMI, JMIM, MRMR) and best classifier 
algorithms (penalized linear regressions and Random Forest).

Figure 1.  Proportion of performance variation explained by dataset and model property. There remained 45% 
of variation which was not explained by factors represented. Clf : classifier, FS : feature selection, “:” represents 
interaction between factors.

Table 2.  AUC performances for Feature Selection algorithms displayed from lowest to highest median 
value. Random : Random Selection of features (non-informative) ; Pearson : Pearson correlation coefficient; 
Spearman: Spearman correlation coefficient; RfVarImp : Random Forest Variable Importance; RfPermImp : 
Random Forest Permutation Importance; JMI : Joint Mutual Information; JMIM : Joint Mutual Information 
Maximization; MRMR : Minimum-Redundancy-Maximum-Relevance. Information theory algorithms (JMI 
and JMIM) had the highest values. All : No-Selection of features (non-informative).

Feature selection Median Q1 Q3

Random 0.675 0.615 0.719

RFVarImp 0.677 0.624 0.722

Spearman 0.678 0.613 0.724

Pearson 0.682 0.620 0.725

RFPermImp 0.683 0.611 0.731

All 0.695 0.636 0.731

MRMR 0.696 0.643 0.742

JMIM 0.701 0.654 0.746

JMI 0.703 0.650 0.748
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Figure 3 shows box-plots of AUCs for the different datasets, feature selection and classifier algorithms. The 
Covid severity dataset provided smaller distributions of AUCs.

Figure 4 shows the boxplots of AUC for the different train-test split separation of left lung lesion dataset, as an 
example. Boxplots for the other datasets are given in SI Fig. 1–9. Maximum difference in median AUC between 
the train and the test performance was 0.11 on the Head and neck dataset while minimum difference was 0.00 
on the right lung ROI from the COVID dataset.

Discussion
In this study, we compared combinations of feature selection algorithms and classifiers in ten different data-
sets. Firstly, the factor most impacting variations in performance was the dataset itself, probably reflecting the 
quantity of information truly present in the data. Secondly, feature selection algorithms based on information 
theory performed consistently higher than other algorithms, for any given dataset. However, the choice of the 
feature selection algorithm had little effect on performance when analyzing variations using ANOVA. Thirdly, 
for a given dataset, choice of classifiers was the most impacting factor. Some classifiers performed generally 
better (Random Forest, Linear Discriminant Analysis and Ridge Penalized Linear Regression), however there 
was no algorithm that consistently gave the best performance. Finally, the train-test split explained 9% of the 
variations in performance.

Our study finds similar results to previous publications. Two main studies investigated the impact of algorithm 
choice on performances in radiomics, Parmar et al. on 464 lung cancer  CT8 and Sun et al. on 285 brain MRI in 
 glioblastoma17. In Parmar’s study, the classifier was the most important source of variability of performance, 
similar to our study. Random Forest gave the best result in Parmar’s study, while LDA gave the best result in 
Sun’s study, both of which are also consistent with our results. Studies in other research fields also supply insight 
for radiomics. Wang and Liu’s study on microbiology used 29 datasets which include between 29 and 512 
 observations18. In this study SVC provided poorer results than Elastic-net, Random Forest or XGBoost. These 
results could be explained by the similarity between radiomics and microbiology datasets in terms of number 
of observations and number of available features.

Feature selection seemed to have a smaller impact on performances in our study compared to that of Par-
mar, but results of the ANOVA showed that there was an interaction between feature selection algorithms and 
dataset implying that some feature selection algorithms appeared more adapted to some datasets. This may 
explain why the best feature selection algorithms varied in the different studies because they were applied to 
single  datasets17,19. Information theory-based algorithms may perform better because they take into account the 
potential redundancy between features as well as the information brought by the feature. Regarding the number 
of features selected,  Parmar19 and  Sun17 are in line with our results showing the low impact on performance.

This study highlights some factors explaining variability in performances in radiomics. Datasets usually 
contain a number of features far greater than independent observations, and even with dimension reduction, 
this leads to overfitted models and poor generalizability. Radiomics models are often evaluated using a train-
test strategy. However, radiomics studies, including our own, show that different train-test splits may lead to 
variations in performances. An et al. studied the impact of the train-test strategy on 258 meningioma MRIs and 
showed that using a single random train-test split led to a loss in performance (generalization gap) when applied 
to a test dataset, especially with small datasets and when working on a difficult  task20. Studies on Gaussian data 
showed that nested cross-validation is a better way to evaluate model performances. Varma and Simon showed 

Table 3.  AUC performances for classifier algorithms displayed from lowest to highest median value. KNN:K-
Nearest Neighbors; Lr : Linear Regression; LrL1 : Lasso Penalized Linear Regression; LrL2 : Ridge Penalized 
Linear Regression; LrElasticNet : Elastic-net Linear Regression; LDA : Linear Discriminant Analysis; RF : 
Random Forest; AdaBoost : AdaBoost; XGBoost : XGBoost; Linear SVC : Linear Support Vector Classifier; 
Poly SVC : Polynomial Support Vector Classifier; RBFSVC : Radial Support Vector Classifier; BNB : Binomial 
Naive Bayes; GNB : Gaussian Naive Bayes.

Classifier Median Q1 Q3

polySVC 0.619 0.532 0.690

RSVC 0.659 0.588 0.706

linearSVC 0.663 0.580 0.724

KNN 0.663 0.612 0.712

AdaBoost 0.671 0.622 0.718

XGBoost 0.680 0.628 0.719

BNB 0.688 0.640 0.724

lr 0.690 0.641 0.729

lrl1 0.694 0.604 0.748

GNB 0.698 0.648 0.733

lrElasticNet 0.706 0.654 0.753

rf 0.706 0.662 0.740

lda 0.707 0.660 0.748

lrl2 0.710 0.661 0.749
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cross-validation underestimated the true error of a model by more than 20% in one out of five  simulations21. 
Vabalas et al. also investigated five validation approaches on simulated Gaussian data. They showed cross-vali-
dation could lead to over-fitting by reusing the data in both training and validation folds, whereas nested cross-
validation led to a smaller bias. The impact of the train-test split is probably due to the relatively low number of 
samples in each dataset compared to biological variability. It results in performances being highly susceptible to 
the distribution of data in the training vs the test set and may partly explain lack of generalizability of results that 
may be observed in published radiomics studies. To compensate for the impact of the train-test split, a nested 
cross validation could be used. This strategy is rarely used in radiomics studies, and we believe it could improve 
performances of discovered signatures when applied to an external validation dataset.

When performing radiomics studies in a specific dataset, a common strategy is to simultaneously test sev-
eral combinations of feature selection algorithms and classifiers to choose the one that optimizes performance. 
Indeed, a large number of feature selection algorithms and classifiers are available. However, multiplying the 
number of models tested may lead to an increase in the rate of overfitting and false discoveries, similar to false 
discovery rates observed in genomics. Based on our results, it might be more efficient to select a smaller number 

Figure 2.  Heat map of median [Q1; Q3] AUC scores for all 9 × 14 combinations of feature selection algorithms 
and classifiers. All : No feature selection (non-informative); Random : Random feature selection (non-
informative) ; Pearson : Pearson correlation coefficient; Spearman : Spearman correlation coefficient; RfVarImp : 
Random Forest Variable Importance; RfPermImp : Random Forest Permutation Importance; JMI : Joint Mutual 
Information; JMIM : Joint Mutual Information Maximization; MRMR : Minimum-Redundancy-Maximum-
Relevance ; KNN:K-Nearest Neighbors; Lr : Linear Regression; LrL1 : Lasso Penalized Linear Regression; LrL2 
: Ridge Penalized Linear Regression; LrElasticNet : Elastic-net Linear Regression; LDA : Linear Discriminant 
Analysis; RF: Random Forest; AdaBoost : AdaBoost; XGBoost : XGBoost; Linear SVC : Linear Support Vector 
Classifier; Poly SVC : Polynomial Support Vector Classifier; RBFSVC : Radial Support Vector Classifier; BNB : 
Binomial Naive Bayes; GNB : Gaussian Naive Bayes.
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of combinations, for a better balance between optimization and overfitting. This would also reduce computa-
tion time. Similar to other scientific benchmarks, algorithms with the same underlying approaches seem to give 
similar  results22. When determining which smaller subset of models should be tested in a radiomics study, one 
strategy therefore could be to choose classifiers from different families. The overall number of algorithms that 
should be tested in a single dataset is not defined, however, and may also depend on available computation time 
and dataset size. Determining the right number of algorithms was out of the scope of this study but should be 
further investigated. 

There are some limits to our study. While most radiomics studies focus on a single dataset, our work ana-
lyzed ten datasets from previously published radiomics studies, which strengthened the generalizability of our 
results. However, dataset characteristics were similar, in particular regarding the number of observations and 
prevalence. Thus, the impact of dataset characteristics could not be fully investigated in this study. Though it 
was not possible to compute the exact portion of variation explained by dataset characteristics, we hypothesize 
that it contributed in part to the explained 17% in modeling performance variation and possibly to some of the 
remaining unexplained 45% variation. Though we investigated the impact of the train-test split on performances, 
few iterations were done to estimate the impact of randomness during the train-test split, which prevented us 
from estimating precisely the impact of chance at this step. Finally, as in every analysis of variance, a portion 
of the unexplained variation in modeling performance might be related to unobserved, possibly unobservable, 
characteristics. Identification of some of the unobserved parameters in our study would be a useful step toward 
increasing the explained portion of variation in modeling performance.

Another limitation of the present study was the relatively small number of algorithms tested. Only seven 
feature selection algorithms and fourteen classifiers were investigated, which is only a small portion of the 
large number of available algorithms. Though linear methods provided good performances, non-linear fea-
ture  transformation23 or wrapper feature selection algorithms may have improved performances. However, its 

Figure 3.  Boxplot of AUCs by (a) dataset, (b) feature selection algorithm and (c) classifier. All : No-Selection 
of features (non-informative); Random : Random Selection of features (non-informative) ; Pearson : Pearson 
correlation coefficient; Spearman : Spearman correlation coefficient; RfVarImp : Random Forest Variable 
Importance; RfPermImp : Random Forest Permutation Importance; JMI : Joint Mutual Information; JMIM : 
Joint Mutual Information Maximization; MRMR : Minimum-Redundancy-Maximum-Relevance ; KNN:K-
Nearest Neighbors; Lr : Linear Regression; LrL1 : Lasso Penalized Linear Regression; LrL2 : Ridge Penalized 
Linear Regression; LrElasticNet : Elastic-net Linear Regression; LDA : Linear Discriminant Analysis; RF : 
Random Forest; AdaBoost : AdaBoost; XGBoost : XGBoost; Linear SVC : Linear Support Vector Classifier; Poly 
SVC : Polynomial Support Vector Classifier; RBFSVC : Radial Support Vector Classifier; BNB : Binomial Naive 
Bayes; GNB : Gaussian Naive Bayes.
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implementation was beyond the scope of this study which was meant to focus on filter feature selection, most 
often used in radiomics studies. Finally, neural networks were not used, in part due to the small datasets.

Conclusion
When performing radiomics, model performances may vary greatly and these variations are related to several 
main factors, including the dataset itself, the type of classifier and the split between train and test subsets. We 
recommend testing a small number of feature selection and classifier combinations to avoid false discovery due 
to multiple testing and overfitting. Feature selection algorithms based on information theory on the one hand, 
and penalized linear models and random forest as classifiers on the other hand seemed to perform the most 
consistently across datasets.

Data availability
Datasets are not publicly available. Data access is subject to each dataset’s specific ethical authorizations for 
secondary use and may be submitted to the corresponding author.
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