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Machine learning‑based technique 
for gain and resonance prediction 
of mid band 5G Yagi antenna
Md. Ashraful Haque 1,2, Md Afzalur Rahman 3, Samir Salem Al‑Bawri 3,4*, Zubaida Yusoff 5*, 
Adiba Haque Sharker 2, Wazie M. Abdulkawi 6, Dipon Saha 1,2, Liton Chandra Paul 7 & 
M. A. Zakariya 8

In this study, we present our findings from investigating the use of a machine learning (ML) 
technique to improve the performance of Quasi‑Yagi–Uda antennas operating in the n78 band for 5G 
applications. This research study investigates several techniques, such as simulation, measurement, 
and an RLC equivalent circuit model, to evaluate the performance of an antenna. In this investigation, 
the CST modelling tools are used to develop a high‑gain, low‑return‑loss Yagi–Uda antenna for the 
5G communication system. When considering the antenna’s operating frequency, its dimensions 
are 0.642�

0
× 0.583�

0
 . The antenna has an operating frequency of 3.5 GHz, a return loss of −43.45 

dB, a bandwidth of 520 MHz, a maximum gain of 6.57 dB, and an efficiency of almost 97%. The 
impedance analysis tools in CST Studio’s simulation and circuit design tools in Agilent ADS software 
are used to derive the antenna’s equivalent circuit (RLC). We use supervised regression ML method 
to create an accurate prediction of the frequency and gain of the antenna. Machine learning models 
can be evaluated using a variety of measures, including variance score, R square, mean square error, 
mean absolute error, root mean square error, and mean squared logarithmic error. Among the nine 
ML models, the prediction result of Linear Regression is superior to other ML models for resonant 
frequency prediction, and Gaussian Process Regression shows an extraordinary performance for gain 
prediction. R‑square and var score represents the accuracy of the prediction, which is close to 99% 
for both frequency and gain prediction. Considering these factors, the antenna can be deemed an 
excellent choice for the n78 band of a 5G communication system.

Nowadays, to address growing communication challenges in terms of size, bandwidth, and gain, the demand for 
newer microwave and millimetre-wave systems has increased. As a result, antennas are frequently used to suit 
the demands of satellite communication. Different satellite communication applications are available in differ-
ent frequency  ranges1. Investigators are constantly trying to improve the bandwidth and gain for antennas. In 
recent years, technology has grown very quickly, and both developed and developing nations now employ wire-
less communications at an extremely high  level2. Recent decades have seen widespread adoption of numerous 
generations of wireless communication standards, such as 1G, 2G, 3 G, 4G, 5G, etc.3–5. The fifth generation of 
cellular technology (5G), which offers data speed in Gigabits/sec (Gbps), virtually eliminates the drawbacks of 
earlier technology. More so, 5G enables low-power IoT applications, which are expanding  rapidly6,7. As the key 
frequency band for the rollout of 5G, the sub-6 GHz range (from 2 to 6 GHz) is expected to strike good stability 
between coverage and capacity, notably in the N77, N78, and N79  bands8.
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Shintaro Uda and Hidetsugu Yagi were the inventors of the Yagi antenna, also known as the Yagi–Uda antenna. 
This antenna is directional and constructed with a dipole and a bunch of parasitic elements. The parasitic ele-
ments are one reflector set behind the dipole and more than one director set in front of the dipole element, 
which can improve radiation properties. It has directional radiation because it concentrates its signal in a single 
direction, making it less susceptible to interference from other  transmitters9. There are many reasons for the Yagi 
Uda antenna’s widespread use, including its low price, substantial gain, and simple construction. While televi-
sions were the primary users of this antenna in the early days after its invention, such devices now find usage in 
sectors as diverse as radar, radio frequency identification, satellite communications, and  more10.  In11, microstrip 
Yagi–Uda antennas were constructed with resonance frequencies close to 900 MHz, a substrate height of 1.575 
mm, a characteristic impedance of 50 ohms, and a strip conductor thickness of 35 µ m using an RT Duroid 5880 
material. Microstrip circuits are used to implement Yagi Uda antennas, allowing for the antennas to be small and 
discreet. A 5-element version of the Yagi–Uda antenna was developed  in12 using the simulation software FEKO. 
The antenna’s centre frequency is 500 MHz, which can work with signals in the 450–550 MHz range, and the 
highest antenna gain is 6.7 dB.  In13, numerous Quasi Yagi antennas are reviewed based on feeding methodologies. 
Some authors have reported gains of 14–17 dB for the Yagi–Uda antenna by increasing the number of directors. 
The Yagi–Uda antenna’s fundamental flaw is its narrow  bandwidth10,13. A 3-D full wave electromagnetic simula-
tions of a ground penetrating radar (GPR) is used for artificial-intelligence-based buried item characterization 
is represented  in14. This work developed a fast and accurate data-driven surrogate modeling approach for buried 
objects characterization, a computationally efficient surrogate model construction method using small training 
datasets, and a novel deep learning method, time-frequency regression model (TFRM), that uses raw signal 
without pre-processing to achieve competitive estimation performance. The given method outperforms multi-
layer perceptron (MLP), Gaussian process (GP), support vector regression machine (SVRM), and convolutional 
neural network (CNN) regression. Authors are stated  in15, frequency-reconfigurable antennas have their own 
generalizable surrogate modeling approach. The technique postprocesses CAD simulation discrete data to a 
surrogate model. Afterwards, a reconfigurable UWB antenna with a tunable notch band shows that surrogate 
modeling is practical, effective, and precise. The proposed surrogate model is a good contender for a cognitive 
radio system’s reconfigurable antenna-signal processing interface standard. Miniaturized microwave components 
are generally designed using full-wave electromagnetic (EM)  simulations16. Surrogate-assisted procedures use 
rapid data-driven metamodels to replace costly EM simulations. Verification studies for three microstrip com-
ponents show that the suggested approach outperforms performance-driven approaches and standard modeling 
processes in surrogate fabrication accuracy and computing cost.  In17, authors are discussed about surrogate-
assisted microwave filter designs utilizing different design objective functions. Surrogate modeling (machine 
learning) and advanced optimization algorithms are examined for filter design. Three basic filter design methods 
are: Smart data sampling, advanced surrogate modeling, and advanced optimization frameworks. They must be 
customized or blended to match microwave filter parameters for success and stability. Finally, emerging filter 
design applications and trends are examined. The researcher used surrogate modeling to design and optimize 
MIMO antennas  in18. Microwave Studio and MATLAB numerical analyzer automatically optimize. Shallow 
neural network optimization is used to identify the best TARC, S11, and S12 solutions. A 3.1–10.6 GHz ultra-
wideband MIMO antenna is constructed and optimized to test the suggested approach. Antennas are difficult 
to design and maintain without the use of machine learning technologies. Without machine learning, antenna 
design accelerates too slowly. Without ML, it’s hard to keep errors low and productivity high. Not having the 
helping Hand for ML Simulation reduction while maintaining work feasibility and antenna behavior calcula-
tion is a challenging  task19. Machine learning replaces trial-and-error in metamaterial simulations by predicting 
design parameters using one or more properly designed machine learning models. Two things affect predic-
tion accuracy. primarily dataset size. Furthermore, the training machine learning  model20. An antenna-derived 
material ensemble approach estimates antenna bandwidth and gain  in21. This paper compares the presented 
method to SVM, Random Forest, K-Neighbors Regressor, and Decision Tree Regressor. The adaptive dynamic 
polar rose guided whale optimization technique optimizes ensemble model features. The suggested model pre-
dicted antenna bandwidth and gain efficiencies better than the others in a regression study. Based on antenna 
specifications, machine learning techniques may forecast the reflection coefficient (S11). Thus, it can prevent 
the trial-and-error optimization loop. This  research22, used Decision Tree, Random Forest, XGBoost Regres-
sion, KNN, and ANN algorithms. Since the simulation dataset is nonlinear, these algorithms were chosen to 
perform regression for nonlinear data. After antenna simulation using HFSS, this research obtains the L-shaped 
slot’s resonance frequency, length, width, and thickness. Different ML algorithms predict values. The prediction 
accuracy is measured by the R-square score and Mean Squared Error (MSE) for the simulated and predicted 
reflectance coefficients (S11). A Yagi-Uda antenna using an artificial neural network (ANN) to forecast antenna 
gain and training time is proposed  in23.  In23, only MSE was used as a prediction accuracy metric, while MAE, 
MSLE, RMSLE, MAPE, RMSE, R-Square, and Var scores were ignored. Furthermore, the suggested ANN model’s 
prediction results were not compared to those of other current ML models. In another  study24, the authors probed 
one of the IoT’s key forms of communication, ambient backscattering, and suggested a machine learning-based 
antenna design strategy for physical layer protection. To determine the degree of inaccuracy in this study, the 
researchers did not calculate the percentage of error expressed as MSE, MAE, or RMSE. Furthermore, the vari-
ance score has not been quantified in the majority of the previous papers on ML-based antenna design.

In this paper, the proposed antenna has a suitable realized gain (6.57 dB) and bandwidth (520 MHz), and 
the antenna size ( 0.642�0 × 0.583�0 ) is compact when compared with the Yagi–Uda antenna. The impedance 
response of a two-layer structure consisting of a single material was predicted. Therefore, a brand-new type of 
predictive model based on electrical equivalent circuits was created. Realizing an antenna’s desired performance 
levels in 3D electromagnetic simulation programs like CST, HFSS, FEKO, and ADS is a complex and time-
consuming endeavor. In this research, nine regression ML models such as linear regression (LR), random forest 
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regression (RFR), decision tree regression (DTR), lasso regression, ridge regression (RR), extreme gradient boost-
ing (XGB) regression, Bayesian linear regression (BLR), Gaussian process regression (GPR) and Support Vector 
Regression Machine (SVRM) are used to predict the operating frequency and gain of the proposed antenna.

The CST MWS simulation software is used to design and optimize the antenna’s performance. Furthermore, 
the exact same antenna was remodeled in measurement to validate the performance result obtained from the 
simulation. The Advance Design System (ADS) circuit simulation tool is used to validate the return loss level 
and bandwidth by using the R-L-C equivalent circuit. Using the CST electromagnetic (EM) modelling tool, a 
novel approach has recently been explored predicting the frequency and gain with numerous unsupervised 
regression methods.

Design of proposed antenna
To model the performance of the proposed 5G antenna, employed the CST MW package from Computer Simula-
tion Technology. The basic structure of the Yagi–Uda antenna is presented in Fig. 1.

It is often found that the reflector comes after the other two elements. Its typical length is 5% greater than that 
of the dipole element. The dipole element’s length is equal to half its wavelength. Notably, the spacing between 
the dipole element and the reflector can be between 0.1� and 0.25� . Directors are placed at a length of 5% less 
than the dipole element. The spacing between the dipole element and each director is 0.13�25,26. The value of � , 
and the initial value of length of parasitic elements along with driven element and spacing between two elements 
can be calculated by using the following Equations (1, 2, 3, 4, 5, 6, 7)25,26:

where c = Speed of light, f = Resonant Frequency, � = Wavelength
FR-4 (lossy) substrate is used to design and simulate the antenna. The antenna’s total size is 

0.642�× 0.583�× 0.009� . The thickness of the ground plane is 0.035 mm. The length of the reflector is 34 mm. 
The length of the dipole is 30.87 mm, and the length of the directors is 23 mm. The width of these elements is 
1 mm. The length of the feed is 1.70 mm, and used a discrete port for simulating the antenna with a 50-ohm 
impedance. The front and back views are shown in Fig. 2.

(1)� = c
f

(2)Length of Driven or Dipole element = 1
2 × �

(3)Length of Reflector = 0.55× �

(4)Length of Directors = 0.45× �

(5)Spacing between Reflector and Dipole = 0.25× �

(6)Spacing between Dipole and Director 1 = 0.13× �

(7)Spacing between Dipole and Director 2 = 0.26× �

Figure 1.  Structure of Yagi–Uda Antenna.
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Result analysis of the proposed antenna
The simulated and measured results of the proposed Yagi–Uda antenna are discussed in this section. The simu-
lated S11 using CST is also compared with the result obtained from the ADS. Different machine learning algo-
rithms are discussed in brief to predict the resonance frequency and gain of the proposed antenna. In Table 1. 
the comparison of performance with recently published work is presented.

Perametric analysis. The impact of the structure’s primary parameters is illustrated in the following sec-
tions to help the reader comprehend it better.

Impact of dipole length. The dipole element of a Yagi antenna is frequently considered the essential portion of 
the antenna since it connects the antenna to its power source and serves as the feed. In this study, it has been 
noticed that as the length of the dipole increases, the return loss also increases and starts to decrease at a specific 
length. For this design, the particular length is 33 mm. Moreover, the resonance frequency also moved to the 
left when the length increased. The desired frequency of this study was 3.5 GHz, which was found at a length of 
30.87 mm, presented in Fig. 3.

Impact of directors. The component on the right side of the Yagi antenna, known as the director, is in charge of 
concentrating the radiated power along the director components because of its capacitive  nature34. Because of its 
radiative nature, it is also known as a parasitic element. There are used two directors in this study. The effect of 
directors on resonance frequency and return loss level is shown in Fig. 4 with and without directors. The suitable 
curve of the design was found when it was simulated with two directors. The level of return loss is less evident in 
the absence of directors. The resonance frequency is cleared with one director but not the desired one. Moreover, 
it is discovered that the return loss level is increased when directors are increased. An antenna’s gain increases 
when more directors are added after the  dipole35. The director has a significant impact on the antenna’s gain, 
as shown in Fig. 5. Without directors, the gain is 4.45 dB at the resonance frequency, and it is 5.5 dB with one 
director and 6.57 dB with two directors.

Figure 2.  Dimensional (a) front and (b) back view.

Table 1.  Performance comparisons with the recent state of the art.

Parameter Ref.27 Ref.28 Ref.29 Ref.30 Ref.31 Ref.32 Ref.33 Proposed work

Technique Quasi Yagi (2 port) Finite integration 
technique Vehicular WLAN & 5G Split-ring resona-

tor
Dielectric resona-
tor antenna

Cross-ring slot 
with DR trunca-
tion

Discrete port 
Microstrip Yagi

Oparating fre-
quency (GHz) 3.6 3.8 and 5.2 2.4 4.28 2.45 3.72 3.25 3.5

Return loss (dB) –29 –32 –25 –44.8 –27 –35 –35 –43.45

Bandwidth (%) 8 2.2–8 2.35–2.45 4–6 3.95 17.47 18.7 14.77

Peak gain (dB) 4.3 5 5.7 3 6.73 4.27 4.83 6.57

Radiation effi-
ciency (%) 73 96 – 80 70 80 – 97

ML analysis No No No Yes No No No Yes

Size ( W× L) 0.47�0 × 0.93�0 0.7�0 × 0.47�0 0.8�0 × 0.8�0 0.48�0 × 0.64�0 0.593�0 × 0.48�0 0.29�0 × 0.19�0 0.5�0 × 0.5�0 0.642�0 × 0.583�0

Substrate Material FR4 ( ε=4) FR4 FR4 PET FR4 ( ε=4.3) FR4 ( ε=4.4) FR4 ( ε=4.4) FR4 ( ε=4.3)
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Current distribution. At 3.5 GHz, a representation of the current distribution may be found in Fig. 6. At 
the center of the dipole, the current is at its maximum of 37.58 A/m before it is distributed to the first parasitic 
element. The intensity of the surface current is reflected in the color, which serves as a visual representation of the 
concept. At a frequency of 3.5 GHz, it is possible to detect a current that is traveling down the surface of the item.

Simulation and measurement. A vector network analyzer (VNA), as shown in Fig. 7, is used to test the 
port qualities, while an anechoic chamber is used to examine the radiation properties shown in Fig. 8.

Return loss. The strength of a signal that is reflected from an antenna and travels back to the transmitter is 
known as the return loss (S1,1). A higher return loss indicates that the antenna can transmit more RF energy. 
Greater bandwidth is a necessary condition for 5G communications since it enables faster communication and 
data  transfer36. For optimal performance, the return loss must be less than −10 dB, which is expressed as a deci-
bel (dB)37.

It can be seen that the observed resonance frequency is extremely close to the simulated one (Simulated: 3.50 
GHz and Measured: 3.53 GHz). Approximately -43.45 dB (when simulated) and -40.81 dB (when measured) is 
the reflection coefficient at the resonant point as depicted in Fig. 9.

Gain and efficiency. When determining an antenna’s effectiveness, it is crucial to consider its gain and direc-
tivity. Gain quantifies how much energy is transferred to the primary beam, whereas directivity evaluates how 
much power is focused in a single  direction38.

Figure 3.  Simulated reflection coefficient for different length of dipole.

Figure 4.  Simulated reflection coefficient for director.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12590  | https://doi.org/10.1038/s41598-023-39730-1

www.nature.com/scientificreports/

Figure 5.  Simulated gain for different directors.

Figure 6.  Current distribution at frequency 3.5 GHz.

Figure 7.  Return loss measurement using vector network analyzer.
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An antenna’s effectiveness is measured in part by its Gain and  Directivity39. Efficiency calculated 96.76% by 
using the equation (8).

Maximum gain values (simulated 6.57 dB) over the operating frequency band are displayed in Fig. 10, demon-
strating the antenna’s suitability for the n78 5G band. In an anechoic chamber, the prototype’s peak gain was 
measured to be 6.39 dB. In addition, the range of simulated efficiencies and measured efficiencies, as shown in 
Fig. 10, varies from 84 to 97% for simulated efficiencies and 75–93% for measured efficiencies.

The Z-matrix has highlighted yet another important essential impedance feature of the proposed Yagi antenna, 
as seen in Fig. 11. According to this figure, the real component of the Z-parameter is close to 50 ohm, whereas 
the imaginary component of the Z-parameter is close to 0 when the frequency is 3.5 GHz.

Radiation pattern (2D). The simulated and measured 2D radiation patterns for the frequency of 3.5 GHz are 
shown in Fig. 12. Since theta ( θ ) and phi ( � ) are circular coordinates, they can be used to describe the orienta-
tion of the radiation pattern in relation to the Cartesian axes; for example, if is approximately constant 0, then 

(8)Efficiency =
Gain

Directivity
× 100%

Figure 8.  Radiation characteristics measurement within anechoic chamber.

Figure 9.  Simulated and measured reflection coefficient.
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Figure 10.  Simulated and measured gain & efficiency of proposed antenna.

Figure 11.  Z-parameter of the studied antenna.

Figure 12.  Simulated and measured 2D radiation pattern of proposed antenna at 3.5 GHz for � = 0
◦ , � = 90

◦ , 
θ = 90

◦.
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the region from 0 ◦ to 360◦ is the XZ cut, which is also known as the E-plane. Simulated and measured 2D radia-
tion patterns are projected into the E-plane along the XZ ( � = 0 ◦ ) & YZ ( � = 90◦ ) axes the H-Plane along the 
xy direction at θ = 90◦ . Extensive testing of the far-field properties reveals superior directional behavior in every 
magnetic field plane. In the xz plane main lobe magnitude is -37.7 dB A/m and for yz plane it is -30.3 dB A/m. 
At xy plane it can be seen that the side lobe level is -11.9 dB with angular width (3dB) 71.5◦.

The proposed prototype has been observed to provide radiation in all directions, matching the acceptable 
behaviour shown in simulations. Nonetheless, a minor difference is investigated at between the simulated and 
measured results in both planes as a result of constraints of the measurement setup and flaws in the 3D Yagi 
antenna.

Radiation pattern (3D). Anechoic chambers are used to measure 3D radiation patterns. Measure the antenna’s 
field from different angles with a probe or horn antenna. The antenna’s radiation pattern is plotted in 3D using 
this data. The pattern of radiation in a three-dimensional spherical coordinate system is depicted in Fig. 13. The 
projected measured 3D radiation pattern bottom view and front view at 3.4 GHz is shown in Fig. 13a and b. 
Figure 13c and d depict the 3D radiation pattern of the proposed measured Yagi antenna at 3.5 GHz. Finally, the 
measured 3D radiation pattern for 3.6 GHz is presented in Fig. 13e and f.

Equivalent circuit modeling and simulation
Circuit design tools like Agilent ADS software and CST Studio simulation are used to create the antenna’s 
equivalent circuit, which is produced by the antenna’s impedance analysis. Maximum power transfer (at least 
90%) from the input port to the antenna structure and radiation into free space is guaranteed by a return level 
of less than −10 dB at the resonance frequency. In order to transfer as much power as possible, it is necessary 
to match the antenna circuit’s impedance to the characteristic impedance of 50�40. According to the principle 
of maximum power transmission, for a network to be considered “matched,” the load impedance and the input 
resistance (Zload = R in ) should be as close to equal as possible.

Finding a lumped element model (RLC circuit) with characteristics close enough to the proposed Yagi antenna 
is the basis of this method. After disassembling the antenna and proposing a similar circuit for each part, the final 
product is reassembled as Fig. 16a–d41,42. The final phase involves simulating the proposed antenna’s equivalent 
circuit model across its full frequency range using the R–L–C parameters. This model accurately represents the 
intended Yagi antenna operation. Clearly displayed the qualities of the notches in Fig. 14. The suggested Yagi 
antenna’s behavior is captured by this model rather accurately. The findings of the CST simulation are compared 
to the results of a similar circuit simulation using the S11 parameters in Fig. 15.

Equivalent circuits of Yagi antenna dipole element. As part of the equivalent circuit, the proposed 
Yagi antenna was developed using transmission lines. Consequently, right dipole element of the antenna repro-
duces a parallel R1, L1, C1 circuit, left dipole element of the proposed antenna produces a parallel R2, L2, C2. 
Whereas C6 represents the gap between dipole and reflector as shown in Fig. 16b.

Equivalent circuits of reflector and director. Reflector of the antenna produces a parallel of L3 and C3. 
Whereas C7 and C8 represents the gap between dipole and director1.The combination C4 and L4 symbolizes the 
first director, C5 and L5 denotes the second director as depicted in Fig. 16 a and 16c .The gap between director 
2 and director 1 is signified by the letter C9.

Machine learning methodology
ML approaches have seen much research and use in antenna designs during the past decade, due to their capac-
ity to learn from observed or simulated antenna data through a training process. In ML-assisted optimization 
(MLAO), a computationally efficient model is built using ML techniques to predict the designated character-
istics at the possible points in the design space using the training set generated at the sampled points based on 
the original computationally expensive model. Gaussian process regression (GPR), support vector machine 
(SVM), and artificial neural networks are just a few of the ML techniques included in MLAO approaches to 
antenna  design43. To provide a high-level overview, machine learning may be defined as the extraction of useful 
information from data through the development of accurate prediction  algorithms44. These algorithms have the 
potential to be useful in optimization, but their efficacy is contingent on the quality and quantity of the data that 
is gathered. Because of this, statistical analysis and machine learning are often considered to be synonymous 
terms. Regression methods are useful for expediting the optimization process since their ML assessment is much 
quicker than the numerical solution of a physical simulation  model45. Regression models also help isolate the 
role of each design element in producing the desired results.

The methodology is composed of two separate sections. In the initial step of the process, the simulation 
software known as CST is used to build the antenna to operate at a frequency in the middle of the 5G spectrum 
and to extract the dataset produced through a parametric sweep.The next step is to train the dataset to apply 
machine learning models and to forecast which model will work best.

The methodology that is displayed in Fig. 17 will now be discussed in further detail. In the beginning deter-
mine the frequency of the middle band of the 5G application, which is 3.5 GHz. Utilize CST to design the antenna 
at frequencies where the performance of the antenna is satisfactory. With the use of a parametric sweep, it is 
possible to export the simulated parameters of CST, such as the length of the director, the size of the dipole, and 
the length of the ground and the reflector. Larger datasets can be helpful for regression machine learning algo-
rithms in some cases, although this is not always the case. Several factors, including the problem’s complexity, 
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the dimensionality of the input characteristics, and the model’s complexity, influence how much a larger dataset 
affects a regression model. In the end, 141 data samples are collected via the simulation with the aid of CST 
MWS, and a variety of regression machine learning (ML) methods are utilized to predict the gain and resonant 
frequency of the suggested Yagi antenna.

The present study employs nine distinct machine-learning algorithms to generate predictions. The regression 
models under consideration include Linear Regression, Random Forest Regression, Decision Tree Regression, 
Lasso Regression, Ridge Regression, XGB Regression, Bayesian Linear Regression, Gaussian Process Regression, 

Figure 13.  Measured 3D radiation pattern for (a) 3.4 GHz bottom view, (b) 3.4 GHz top view, (c) 3.5 GHz 
bottom view, (d) 3.5 GHz top view, (e) 3.6 GHz bottom view and (f) 3.6 GHz top view.
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and Support Vector Regression Machine. These algorithms are selected based on their ability to perform regres-
sion analysis on non-linear datasets. Regression is the most suitable approach for implementing predictions, 
as the intended outcome is numerical values. A primary statistic in regression analysis, an error is so named 
due to its ubiquity. The flowchart depicted in Fig. 18 illustrates the development process of a machine learning 
algorithm. Upon analyzing the dataset, it was partitioned into two distinct segments that were obtained through 
a parametric sweep conducted on the CST simulation software.

All the machine learning study was conducted on Google’s simulated Python environment, termed google 
colab. To efficiently construct the Regression models, we used the sci-kit learn machine learning framework. 
Matplotlib was used for every analysis and visualization, but notably in the conclusion. The dataset can be divided 
into training and testing subgroups using the train-test split method. In this method, the data is split at random 
into two categories: training the model and testing its accuracy on new data. The following is an example from 
our linear regression technique showing how we use the scikit-learn module in Python to partition our data:

Figure 14.  Equivalent circuit model of proposed antenna.

Figure 15.  Simulated reflection coefficient of equivalent circuit in ADS and CST.
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Figure 16.  The development of the Yagi antenna’s equivalent circuit: (a) the reflector circuit model, (b) the 
dipole element circuit model, (c) the directors circuit model, (d) the final equivalent circuit model.

Figure 17.  Data acquisition workflow for machine learning.
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In the above bit of code, X stands for the feature matrix (the variables that serve as inputs), and y indicates 
the target variable (the variable whose value we wish to predict). When we specify that the test size should be 0.2, 
we set aside 20% of the data for testing while devoting the balance, or 80%, of the data to the process of model 
training. By fixing the random seed, the random state parameter guarantees reproducibility. We need a certain 
split between training and testing; therefore, we adjust the test_size option accordingly. After we have partitioned 
the data, we can use X_train and y_train to train our regression model, and then we can use X_test and y_test 
to evaluate the model’s performance on data for which it has not been trained.

As per the suggestion made  in46, the first part of the study involved selecting 80% of the total dataset for train-
ing purposes, while the remaining 20% was reserved for testing in the second part. Subsequently, the training 
dataset is subjected to a machine-learning algorithm incorporating various features and labels. Upon completion 
of model training and cross-validation, the model can be effectively utilized to forecast the resonant frequency 
and realized gain for the intended inputs. Machine learning (ML) enables faster and more accurate predictions 

Figure 18.  Flowchart illustrating the implementation of a machine learning algorithm.
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than results obtained through computer simulation technology (CST). As per the forecast, the optimal model 
for resonant frequency is Linear Regression, whereas, for realized gain, it is Gaussian Process Regression.

Machine learning model selection
The availability of a diverse range of models is of great value in attaining outstanding results. Regression evalu-
ation, a statistical method, can be utilized to assess the connections among variables.47 Regression analysis is 
employed due to its ability to effectively address the issue at hand. Nine machine learning regression models are 
utilized that were deemed most effective, as illustrated in Fig. 19. The subsequent text provides a brief under-
standing of each of these.

Linear regression Linear regression, as described in  reference48, establishes a linear relationship between 
the independent and dependent variables. Therefore, independent variables exhibit a corresponding alteration 
with respect to dependent factors. One vital assumption is that errors, which refer to the differences between 
anticipated and observed values, follow a normal distribution and exhibit uniform variance.

Random forest regression The process of classification and regression using random forests entails creating 
a group of tree forecasts. Each tree forecaster is constructed using an unknown vector that is selected autono-
mously of the input vector. The regression with tree forecasting method involves the substitution of class labels 
with values in numbers. The random forest regression algorithm builds a decision tree by utilizing variables at 
each node, as stated in  reference49.

Decision tree regression According to  literature50, regression trees are utilized for the prediction of constant 
target variables, such as numerical values. Supervised machine learning utilizing decision tree regression is a 
method for predicting constant target variables. This is a variant of the decision tree method that is used for 
tasks such as classification.

Lasso regression The Lasso regression technique is a form of linear regression which utilizes a reduction 
approach. Lasso regressions are frequently employed by researchers in modelling environments that involve 
numerous  characteristics51, owing to their effectiveness in performing attribute selection.

Ridge regression Ridge regression is a useful technique when dealing with a substantial number of vari-
ables and aiming to minimize the coefficients of less important characteristics to zero. In the field of antenna 

Figure 19.  Splitting of regression algorithms.
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architecture, various input attributes are taken into account, some of that may not have a significant impact on 
the  outcome52.

XGB regression XGBoost’s internal optimizations accelerate the training process when dealing with large 
datasets. The software provides advanced functionalities such as regularization, parallel processing, and handling 
of incomplete data. Antenna developers have the ability to utilize either simulated or observed data in order to 
forecast antenna characteristics such as directivity, gain, and distributions of radiation through the assistance 
of  XGBoost53.

Bayesian linear regression The Bayesian approach to linear regression involves the estimation of prior prob-
abilities for the model variables, as opposed to the determination of the ideal value for stated  variables54. An 
advantage of employing Bayesian Linear Regression lies in the ability to utilize the distribution that follows for the 
purpose of measuring the level of ambiguity in the forecasts made by the model. The utilization of probabilistic 
comprehension in the interpretation of forecasts can yield advantageous outcomes.

Gaussian process regression Gaussian process regression, often known as GPR, is a type of supervised 
machine learning approach that can be applied to activities including regression as well as classification. The 
use of ground-penetrating radar (GPR) has a number of advantages, including the fact that it can produce 
satisfactory findings even when working with a restricted collection of data and that it can provide measures of 
ambiguity for  predictions55.

Support vector regression machineSupport Vector Regression Machine is a machine learning technique 
that is utilized for the purpose of regression analysis. This methodology utilizes the principles of Support Vec-
tor Machines (SVM) in order to make predictions of continuous numerical values. Support Vector Regression 
Machine (SVRM) aims to identify an optimal hyperplane by minimizing the number of margin violations. It 
achieves this by incorporating kernel functions to account for non-linear relationships. Support Vector Regres-
sion Machine (SVRM) is utilized in various domains, encompassing finance, time series analysis, and regression 
tasks requiring accurate numerical  predictions56.

Eight independent statistics. The mean absolute error (MAE), the mean squared error (MSE), the root 
mean square error (RMSE), the root mean squared logarithmic error (RMSLE), the mean percentage error 
(MPE), the mean absolute percentage error (MAPE), the coefficient of determination (R2), and the variance 
score-were used to evaluate the accuracy of the predictions. Mean absolute error (MAE) figures out the aver-
age difference between the values that were calculated and the values that were found. Equation (9) depicts the 
 MAE57 formulation.

Where n = number of errors 
∣

∣yi − ŷi
∣

∣ = error absolute
The mean squared error (MSE), is the type of regression loss function that is utilized most. The loss is the 

mean overseen data of the squared differences between true and predicted values. The  MSE58 formulation is 
shown in Eq. (10).

Root mean squared error (RMSE) restores the unit to its original value by taking the Root of MSE. Equation (11) 
illustrates  RMSE59 expression.
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equation is shown in Eq. (12).

Root Mean Squared Logarithmic Error (RMSLE) restores the unit to its original value by taking the Root of 
MSLE. The equation of  RMSLE61 is shown in Eq. (13).

The mean absolute percentage error (MAPE) can be computed by first determining the difference between the 
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formula.
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The R-squared value indicates the accuracy of your model fit. When R 2 is close to 1, it indicates that the model 
provides a good fit for the data, whereas when it’s closer to 0, it indicates that the model isn’t all that good. When 
a model predicts an absurd outcome, R-squared can be negative. R-squared63 is expressed in Eq. (15).

The explained variance  score64 describes the error dispersion in each dataset. It is defined as in Eq. (16).

Result analysis M/L
Table 2 compares the nine regression models’ abilities to predict resonant frequency using eight different param-
eters. The mean absolute error (MAE) and the mean absolute percentage error (MAPE) are both lowest when 
using the Gaussian Process Regression method, coming in at 0.3172% and 0.0903%, respectively. The mean 

(15)R2
= 1−

∑N
i=1

(

yi − ŷi
)2

∑N
i=1

(

yi − ȳi
)2

(16)explained varience (y, ŷ) = 1−
Var(y − ŷ)

Var(y)

Table 2.  The resonant frequency prediction performance.

Algorithms MAE (%) MSE (%) RMSE (%) MSLE (%) RMSLE (%) MAPE (%) R-Square (%) Var Score (%)

Linear Regression 0.3177 0.0014 0.3802 0.0001 0.0842 0.0904 99.7976 99.8975

Random Forest Regression 0.3191 0.0023 0.4752 0.0001 0.1050 0.0907 99.6838 99.6921

Decision Tree Regression 0.4279 0.0028 0.5251 0.0001 0.1151 0.1206 99.6139 99.6148

Lasso Regression 5.3217 0.5772 7.5973 0.0277 1.6644 1.4952 19.1839 19.1984

Ridge Regression 0.3250 0.0015 0.3827 0.0001 0.0847 0.0923 99.7949 99.8918

XGB Regression 0.4315 0.0026 0.5056 0.0001 0.1112 0.1219 99.6421 99.6421

Bayesian Linear Regression 0.3451 0.0016 0.3990 0.0001 0.0882 0.0980 99.7771 99.8720

Gaussian Process Regres-
sion 0.3172 0.0015 0.3887 0.0001 0.0862 0.0903 99.7885 99.8909

Support Vector Regression 
Machine 0.7815 0.0079 0.8865 0.0004 0.1948 0.2211 98.8997 98.9471

Figure 20.  Simulated vs. predicted frequency using Linear Regression.
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squared error (MSE), root mean squared error (RMSE), and root mean squared absolute error (RMSLE) values 
for Linear Regression are 0.0014%, 0.3802%, and 0.0842%, respectively. When it comes to R-squared and variance 
score, Linear Regression has the highest accuracy at 99.7976% and 99.8975%, respectively. The fluctuation of the 
simulated and predicted frequency difference was depicted by the graph in Fig. 20 using Linear Regression. In 
the investigation, we tune between 3.35 and 3.75 GHz. We have 28 test observations. Table 3 shows the expected 
and simulated resonance frequencies and their values. Observations 12 and 15 had the highest and lowest dis-
crepancies between simulated and predicted values, 0.0077 and 0.0001. Based on this data, LR is chosen because 
it predicts frequency more accurately than other ML models. Gain prediction accuracy for the nine regression 
models is compared in Table 4. Furthermore, eight distinct criteria were used to make this comparison. The MSE, 
MSLE, and MAPE values of 0.0375%, 0.0007%, and 0.1978%, respectively, are quite close to those found in both 
Gaussian Process Regression and Linear Regression, respectively. However, Gaussian Process Regression has 
the lowest error in terms of MAE and RMSE, and has the best accuracy for R-squared and variance score, with 
98.4022% and 98.4200%, respectively. The graph in Fig. 21 depicts the volatility of the simulated and predicted 
gain difference using Gaussian Process Regression. Table 5 compares predicted and simulated gain. Observa-
tions 12 and 16 had the highest and lowest variances, 0.0617 and 0.0004, respectively. GPR was chosen because 
it predicts gain better than other ML models.

In22, the authors utilized machine learning regression models to forecast the Return loss level. The Mean 
Squared Error (MSE) has been computed for error estimation, while the R2 Score has been exclusively utilized for 
accuracy evaluation. The crucial variance score for accuracy prediction is disregarded by them. The Mean Squared 
Error (MSE) and R-squared (R2) metrics are computed in the context of Random Forest Regression, Decision 
Tree Regression, and XGB Regression. The error rate exhibits a significant elevation across all models. The per-
centage exceeds 50%. The table displays numerical values. Resonant frequency prediction was conducted in a 
previous research  study65 utilizing Random Forest Regression, Decision Tree Regression, and XGB Regression. 
The R-squared values for all models are greater than 97%, and the Random Forest Regression exhibits an error 
rate of 32%. The Decision Tree Regression model yielded a percentage score of 51%, while the XGB Regression 
model produced a score of 33%. The authors  in66 employed six machine learning regression models to forecast 
the resonant frequency. The Variance score is utilized for precision evaluation while R2 is disregarded. The Linear 
Regression model exhibits an accuracy of approximately 76% and an error rate of 52.2%, while the Decision 
Tree Regression model demonstrates an accuracy of 99% and an error rate of 0.71%. In a previous  study67, it 
was reported that the Decision Tree Regression Model exhibited an error rate of 11.33% and an accuracy rate 
of 67.5%. The prediction of return loss is performed  in68. An accuracy rate of approximately 57.49% has been 
attained, while a significant error rate of approximately 62.2% is evident. This study employs several regression 
models, namely Linear Regression, Random Forest Regression, Decision Tree Regression, Ridge Regression, XGB 
Regression, Bayesian Linear Regression, and Gaussian Process Regression. The regression methods are utilized 
to predict both the resonant frequency and gain. The presented material exhibits a superior level of precision and 
a lower margin of error compared to other sources in all regards as discussed and presented in table 6.

Table 7 presents a comparative analysis of the computational performance between the proposed approach 
and the model based on the CST EM Simulator according to the analysis done by the authors  in69–71. The simula-
tions were conducted utilizing the specified simulation setup. The system is equipped with an Intel(R) Core (TM) 
i3-8145U CPU operating at a frequency of 2.10 GHz. Additionally, it has a total of 12.0 GB of RAM installed. 
The provided information includes descriptions of a model consisting of a single unit element and a set of 8 
regression models. Additionally, the total duration required to obtain optimized models using both the CST EM 
Simulator-based model and the proposed approach is provided.

The overall cost of the proposed approach can be determined through the utilization of total RAM and the 
duration of time. A total of 141 data samples were utilized to assess the performance of the regression models. The 
verification process utilizes a total of 28 samples, while the training process involves 113 data points. To obtain 
the output of regression models, Google Collab was utilized, resulting in an approximate memory consumption 

Table 3.  Simulated and predicted resonant frequency comparison on Test set using Linear Regression.

No. Simulated frequency (GHz) Predicted frequency (GHz) Difference (GHz) No. Simulated frequency (GHz) Predicted frequency (GHz) Difference (GHz)

1 3.5151 3.5203 0.0052 15 3.6516 3.6517 0.0001

2 3.4498 3.4526 0.0028 16 3.5195 3.521 0.0015

3 3.5024 3.5035 0.0011 17 3.3617 3.3623 0.0006

4 3.5404 3.543 0.0026 18 3.4815 3.4844 0.0029

5 3.5744 3.5768 0.0024 19 3.5913 3.5934 0.0021

6 3.5066 3.5105 0.0039 20 3.494 3.5003 0.0063

7 3.4827 3.4864 0.0037 21 3.5234 3.526 0.0026

8 3.508 3.5121 0.0041 22 3.4915 3.4952 0.0037

9 3.4037 3.4074 0.0037 23 3.4388 3.4413 0.0025

10 3.6751 3.6749 0.0002 24 3.6222 3.6225 0.0003

11 3.5689 3.5712 0.0023 25 3.7307 3.7271 0.0036

12 3.5178 3.5255 0.0077 26 3.4967 3.5022 0.0055

13 3.4884 3.4974 0.009 27 3.5017 3.5053 0.0036

14 3.713 3.7097 0.0033 28 3.4835 3.4853 0.0018
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of 200 MB. The retrieval of output for each regression model was accomplished within a time frame of 0.1–0.2 
s. In contrast, the time required to obtain output in CST EM Simulator Models and achieve the desired result is 
approximately 2 min 52 s for Single unit element CST EM Simulator, 10 min 31 s for Single unit element CST 
EM Simulator (Medium Complexity Mesh Configuration) and, 25 min 10 s for Single unit element CST EM 
Simulator (High Complexity Mesh Configuration). The proposed method demonstrates a significant increase in 
speed compared to the design approach based on CST EM Simulator Models. In particular, the observed time 
difference between the two methods is nearly 100-fold, with the first method taking approximately 25 min in 
high complexity mesh configuration and the second method requiring a mere 0.2 s. Performance evaluation of 
the suggested method and the CST EM Simulator based design with respect to the overall design process and 
simulation cost.

Conclusion
The performance of the proposed antenna is evaluated in this study by utilising a variety of methodologies, 
including simulation, measurement, the development of an RLC equivalent circuit model, as well as machine 
learning strategies for prediction. The antenna works in the Sub-6 GHz (n78) band for 5G applications. It has 
a maximum gain of 6.57 dB, a directivity of 6.79 dBi, and an efficiency of 97%.In both the ADS and the CST 
simulations, it has been noticed that the bandwidth of the n78 band is practically identical to one another.The 

Table 4.  The gain prediction performance.

Algorithms MAE (%) MSE (%) RMSE (%) MSLE (%) RMSLE (%) MAPE (%) R-Square (%) Var Score (%)

Linear Regression 1.2613 0.0375 1.9370 0.0007 0.2599 0.1978 98.4001 98.4177

Random Forest Regression 2.9294 0.6479 8.0491 0.0118 1.0872 0.4522 72.3752 74.7430

Decision Tree Regression 5.5339 2.2167 14.8887 0.0418 2.0449 0.8533 5.4812 14.7092

Lasso Regression 8.8406 2.0092 14.1748 0.0372 1.9288 1.3811 14.3286 18.2315

Ridge Regression 1.2658 0.0377 1.9420 0.0007 0.2605 0.1985 98.3920 98.4105

XGB Regression 2.6690 0.3121 5.5870 0.0056 0.7507 0.4148 86.6906 87.4399

Bayesian Linear Regression 1.2632 0.0376 1.9393 0.0007 0.2602 0.1981 98.3964 98.4144

Gaussian Process Regres-
sion 1.2610 0.0375 1.9358 0.0007 0.2598 0.1978 98.4022 98.4200

Support Vector Regression 
Machine 3.4624 0.4739 6.8843 0.0085 0.9239 0.5339 79.7920 81.9157

Figure 21.  Simulated vs. predicted gain using Linear Regression Gaussian Process Regression (GPR).
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reflection coefficient, gain, efficiency and radiation pattern that were produced as a result of the simulation are 
pretty comparable to the ones that were produced as a consequence of the measurements. In addition, nine 
machine learning algorithms were designed to calculate the Yagi-Uda antenna’s resonance frequency and gain. In 
terms of predicting the resonant frequency, the predicted results show that the error performances of the Linear 
regression (LR) model are relatively better than other models. On the other hand, when it comes to predicting 

Table 5.  Simulated versus predicted gain using linear regression gaussian process regression (GPR).

No. Simulated gain (GHz) Predicted gain (GHz) Difference (GHz) No. Simulated gain (GHz) Predicted gain (GHz)
Difference 
(GHz)

1 6.2993 6.3079 0.0087 15 6.472 6.4676 0.0044

2 6.229 6.2253 0.0037 16 5.9963 5.9959 0.0004

3 6.2798 6.2835 0.0037 17 6.1429 6.1142 0.0287

4 6.3281 6.3352 0.0071 18 6.5091 6.5668 0.0577

5 6.3698 6.3753 0.0055 19 6.3916 6.394 0.0024

6 6.3718 6.3679 0.0039 20 6.3688 6.3659 0.0029

7 6.2631 6.2667 0.0037 21 6.3078 6.3148 0.007

8 6.1731 6.1902 0.0171 22 6.1387 6.1551 0.0164

9 6.1841 6.1698 0.0143 23 6.2177 6.2114 0.0063

10 6.5027 6.4966 0.0061 24 6.4323 6.4304 0.0019

11 6.3627 6.3688 0.006 25 6.5796 6.561 0.0186

12 6.5907 6.529 0.0617 26 6.3282 6.3336 0.0053

13 6.4537 6.4344 0.0192 27 6.2839 6.2912 0.0073

14 6.5544 6.5397 0.0147 28 6.0192 6.0008 0.0184

Table 6.  Machine learning performane comparison.

Ref Model
Linear 
Regression

Random 
Forest 
Regression

Decision Tree 
Regression

Ridge 
Regression

XGB 
Regression

Bayesian 
Linear 
Regression

Gaussian 
Process 
Regression

Support 
Vector 
Regression 
Machine

Ref.22
Return Loss 
Prediction

R
2 Score N/A 96.1% 91.9% N/A 93.9% N/A N/A N/A

V-Score N/A N/A N/A N/A N/A N/A N/A N/A

MSE N/A 50.9% 93.3% N/A 79.4% N/A N/A N/A

Gain Prediction N/A

Ref.65

Resonant 
Frequency 
Prediction

R
2 Score N/A 99% 97% N/A 98% N/A N/A N/A

V-Score N/A N/A N/A N/A N/A N/A N/A N/A

MSE N/A 32% 51% N/A 33% N/A N/A N/A

Gain Prediction N/A

Ref.66

Resonant 
Frequency 
Prediction

R
2 Score N/A N/A N/A N/A N/A N/A N/A N/A

V-Score 76% 98% 99% 76% 99% N/A N/A N/A

MSE 52.2% 3% 0.71% 51% 1% N/A N/A N/A

Gain Prediction N/A

Ref.67

Resonant 
Frequency 
Prediction

R
2 Score N/A N/A N/A N/A N/A N/A N/A N/A

V-Score N/A 79.9% 67.5% N/A 83.9% N/A N/A N/A

MSE N/A 6.88% 11.33% N/A 5.56% N/A N/A N/A

Gain Prediction N/A

Ref.68

Resonant 
Frequency 
Prediction

R
2 Score N/A 99.96% N/A N/A 97.52% 57.49% N/A N/A

V-Score N/A N/A N/A N/A N/A N/A N/A N/A

MSE N/A 0.04% N/A N/A 3% 62.2% N/A N/A

Gain Prediction N/A

Proposed

Resonant 
Frequency 
Prediction

R
2 Score 99.7976% 99.6838% 99.6139% 99.7949% 99.6421% 99.7771% 99.7885% 98.8997%

V-Score 99.8975% 99.6921% 99.6148% 99.8918% 99.6421% 99.8720% 99.8909% 98.9471%

MSE 0.0014% 0.0023% 0.0028% 0.0015% 0.0026% 0.0016% 0.0015% 0.0079%

Gain Prediction
R
2 Score 98.4001% 72.3752% 5.4812% 98.3920% 86.6906% 98.3964% 98.4022% 79.7920%

V-Score 98.4177% 74.7430% 14.7092% 98.4105% 87.4399% 98.4144% 98.4200% 81.9157%

MSE 0.0375% 0.6479% 2.2167% 0.0377% 0.3121% 0.0376% 0.0375% 0.4739%
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the gain, the Gaussian Process Regression (GPR) model shows better performance than other models. It has 
covered 14.77% of the bandwidth between 3.26 GHz and 3.78 GHz, making it a promising candidate for the n78 
band in the 5G communication system.In light of the fact that the simulated and measured results correlate very 
well and that the constructed Yagi antenna provides complete coverage of all n78 frequency bands, it is possible 
to see this antenna as an ideal model for applications operating at sub-6 GHz frequencies.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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