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Leveraging an epidemic–economic 
mathematical model to assess 
human responses to COVID‑19 
policies and disease progression
Wisdom S. Avusuglo 1, Nicola Bragazzi 1, Ali Asgary 2,4, James Orbinski 3,4, Jianhong Wu 1,4 & 
Jude Dzevela Kong 1,4*

It is imperative that resources are channelled towards programs that are efficient and cost effective 
in combating the spread of COVID‑19, the disease caused by the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS‑CoV‑2). This study proposed and analyzed control strategies for that purpose. 
We developed a mathematical disease model within an optimal control framework that allows us 
to investigate the best approach for curbing COVID‑19 epidemic. We address the following research 
question: what is the role of community compliance as a measure for COVID‑19 control? Analyzing 
the impact of community compliance of recommended guidelines by health authorities—examples, 
social distancing, face mask use, and sanitizing—coupled with efforts by health authorities in areas 
of vaccine provision and effective quarantine—showed that the best intervention in addition to 
implementing vaccination programs and effective quarantine measures, is the active incorporation 
of individuals’ collective behaviours, and that resources should also be directed towards community 
campaigns on the importance of face mask use, social distancing, and frequent sanitizing, and any 
other collective activities. We also demonstrated that collective behavioral response of individuals 
influences the disease dynamics; implying that recommended health policy should be contextualized.

The damage caused by infectious diseases since the dawn of mankind cannot be overemphasized—their destruc-
tion of health, economies and social life is crippling. They leave chaotic trails in their wake; some enter the human 
population and vanish progressively with time; others enter and stay: the need for the study of their transmis-
sion and control is ever-pressing. The world is saddled with another infectious disease—the novel “Coronavirus 
Disease 2019” (COVID-19). Numerous mathematical models that address its transmission and control have 
been studied in its wake (see, for  example1,2 for extensive reviews on these models). Some of these mathematical 
models are chiefly concerned with forecasting the future of the epidemics, and are devoid of the effectiveness of 
health policy interventions in dampening the spread of the  disease3; others (such  as4,5) also incorporate possible 
health policy framework in the models. Even though these studies have provided some insightful approaches to 
the containment of the disease, one aspect that to the best of our knowledge appears to often been ignored is the 
incorporation in these studies individuals-collective behavioural responses (we hereby refer to as community 
compliance).

The approaches prescribed by these studies in most cases are viewed from the perspectives of public health 
authorities. Some of these models (see, for  example6–8) look at the impact of social distancing and face mask use 
on the spread of the disease without incorporating explicitly community compliance with such measures, and 
therefore the associated impact on the disease transmission; for instance, the boycotts and demonstrations against 
such measures in some jurisdictions attest to the vital role individuals play in the disease spread. The introduc-
tion of the pharmaceutical measures does not offer complete guarantee for disease containment as individuals 
in the population have to decide whether to be vaccinated or not. Moreover, vaccinations do not provide perfect 
immunity in some cases. Factors as these contribute to the spread of the disease; for  example9–12 showed that a 
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well-intentioned public health policy may fail if individual behavioural responses to disease infectivity are not 
factored into policy framework. This suggests that public health policy should be contextualized within individu-
als’ reaction to disease outbreak. These are important aspects worth taking note of in addressing the transmission 
and control of COVID-1913–16. To this end, this study addresses the COVID-19 infectivity and control within 
optimization framework, where the focal parameter is community compliance rate combined with vaccination 
coverage and effective quarantine. Among others, we look at the efficiency and cost effectiveness of combining 
strategically these control measures. The remainder of the paper is organized as follows:

“Methods” gives a description of the model; the model assumptions and parameters are described, epidemio-
logical suitability of the model is established and discussed. It also discusses the optimal control problem; the 
existence of an optimal control solution path and its characterization is proven. The numerical analysis and its 
discussion are presented in “Result and Discussion”. Here, we estimated the values of the model parameters that 
are not currently reported in the literature; this estimation is based on some reasonable assumptions. We then 
use these estimates to numerically simulate the optimality system. Also, the section discusses the various strate-
gies proposed in the study; their efficiency and cost effectiveness calculated. Finally, "Conclusion" summarizes 
our findings, and  policy recommendations provided thereof.

Methods
Mathematical model formulation. We employed a disease compartmental model in our study. Consider 
the flow diagram presented in Fig. 1: the figure is a schematic representation of the COVID-19 transmission 
mechanism within a population. The modelling framework assumes the absence of vital statistics such as birth 
and death rate; demographic parameters such as birth and natural death rates can be excluded from mathemati-
cal models when investigating disease dynamics occurring within few weeks or months (see the works by, for 
 example6,17–22 . In particular, the works outlined  by6,18,20–22 provided studies relating to COVID-19 by considering 
dynamic systems excluding demographic effects such as birth and natural death rate. Moreover, mathematical 
models without demographic parameters have been used extensively in studying dynamics of disease epidemics. 
Models of this nature (epidemic models) are used to model rapid outbreaks that happen in less than a  year19. For 
this reason, given the time frame considered for the purpose of the study, (approximately 4 months) excluding 
these demographic parameters from our proposed model is a reasonable assumption. Moreover, we modelled 
human responses to the epidemic period of an infectious outbreak: as such, the time period of an outbreak is 
relatively short compared to demographic (i.e., death and birth) processes.

The population is stratified into 7 mutually exclusive sub-populations: Susceptible (S), Vaccinated (V), 
Exposed (E), Infected and Symptomatic but Not Quarantined ( INQ ), Infected and Symptomatic but Quarantined 
( IQ ), Infected and Asymptomatic ( IA ), and Removed/Recovered (R). S captures the individuals in the popula-
tion that have not yet been exposed to the disease and are susceptible; V is the group within the population that 
have received vaccination. INQ are those infected and symptomatic individuals that are not quarantined. These 
individuals interact with the general population; they may or may not be aware of their status. IQ is the infected 
group of individuals that are aware of their status and are removed from the general public. The quarantine could 
be in a hospital, residence or any facility that serves that purpose. This group does not interact with the general 
population and it is a measure imposed by the health care authority. The IA group comprises of individuals who 
are infected but do not exhibit symptoms of the disease and are infectious, and the R group are those eliminated 
from the other disease categories by way of treatment or disease induced death. Recovered individual suscepti-
bility period to disease (or to be proned reinfection) is very high-usually after 40  weeks23,24. Consequently, we 
assume that recovered individuals remain immune to the disease during the epidemic period, given the duration 
of time under discussion.

ν1 is the per capita rate of vaccination. We assumed that the time period of the disease dynamics does not 
account for waning period of vaccine where a proportion of the vaccinated population loses immunity and 
become susceptible. ν1 is time dependent, and is a control variable. Susceptible and vaccinated individuals enter 
the exposed group at the rate β1 and β2 , respectively. β1 and β2 are modelled as
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Not Quarantine INQ

Exposed E
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Figure 1.  Flow diagram demonstrating the COVID-19 transmission model.
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and

Here, we assume that transmission is frequency dependent. The denominator accounts for that part of the 
population that does not contribute to infection, which is the quarantine population IQ . 0 ≤ ν2 ≤ 1 measures 
the effectiveness of quarantine. For instance, a value of ν2 = 0 implies ineffective quarantine measures in the 
prevention of transmission of the disease and ν2 = 1 suggests highly effective quarantine measures. It captures  
the effort by health authorities to make sure that quarantine measures produce expected results and reflects the 
level of resources committed; it is the cost associated with implementing quarantine measures. This parameter, 
therefore, evolves with time and it is a control variable within our modelling set up.

Vaccination induces protection against the disease and can reduce or eliminate the incidence of infection. 
Thus, we assume that β2 ≤ β1 , which is captured by 0 ≤ ω ≤ 1 . �INQ , �IA , and �Q are the effective contact rates 
associated with the INQ, IA , and IQ , respectively. 0 ≤ κ ≤ 1 measures the effectiveness of community compliance 
and 0 ≤ x ≤ 1 captures the community compliance rate for susceptible and vaccinated individuals. Compliance 
could be adhering to social distance, hand sanitizing, face mask use, and any other preventive protocols within 
the collective control by individuals. The product xκ indicates the overall effect of the community compliance, 
where κ serves as the lever for such effectiveness; high values of κ implies high effectiveness of community com-
pliance. As an example, suppose a representative community is complying with face mask usage, say 70% of the 
time in a time period; the effectiveness of this action is measured by κ and the success 70% times of usage per 
the period is captured by x. Within the modelling framework, x is one of the system’s control variables, hence 
it evolves with time.

We assume that γ proportion of individuals remain asymptomatic after infection, and that on average the 
latency period is 1

δ
—the number of days between the event of individuals transitioning from the exposed com-

partment to the infectious compartment ( INQ, IQ , and IA ) is modelled as an exponential distribution. This implies 
that 1− γ is the proportion of individuals who become symptomatic after the latency period. Let ε be the pro-
portion of the quarantined symptomatic infectious individuals, so that (1− ε) is the unquarantined proportion 
of symptomatic infectious individuals. Then (1− γ )(1− ε)δE , (1− γ )εδE and γ δE enters the symptomatic 
and not quarantined, symptomatic and quarantined, and asymptomatic infectious compartment, respectively. 
A total of δE individuals leave the exposed compartment. Finally, we assume an infectious period of 1

η
 days for 

symptomatic infectious and unquarantined, symptomatic infectious and quarantined, and asymptomatic infec-
tious individuals. System (3) is the mathematical representation of the model. Table 1 lists the model parameters.

(1)β1 = (1− xtκ)
�INQ INQ + �IA IA + (1− ν2,t)�IQ IQ

N − ν2,t IQ

(2)β2 = (1− ω)β1.

Table 1.  Description of model parameters.

Parameter Description

γ Proportion of individuals who remain asymptomatic after infection

1− γ Proportion of individuals who become symptomatic infectious after infection

δ Latency rate

ε Proportion of quarantined symptomatic infectious individuals

1− ε Proportion of unquarantined symptomatic infectious individuals

η Removal rate for symptomatic infectious not quarantined, symptomatic

infectious and quarantined, and asymptomatic infectious individuals

β1 Susceptible-exposed transmission rate

β2 Vaccinated-exposed transmission rate

κ Measure of effectiveness of compliance rate

ω Measure of effectiveness of vaccine

�INQ Effective contact rate of symptomatic infectious not quarantined individual

�IQ Effective contact rate of symptomatic infectious quarantined individuals

�IA Effective contact rate of asymptomatic infectious individuals

Control parameters (or variables) Description

ν1 Per capita rate of vaccination

ν2 Measure of effectiveness of quarantine controls

x Community compliance rate
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with initial condition

Positivity and boundedness. To prove that System (3) satisfies epidemiological requirements, observe 
that the System satisfies the property

Now, consider the first expression in the inequality above:

then we have

Since S(0) ≥ 0 , S(t) is positive for all t > 0 . This property holds for the other expressions in the above ine-
quality, hence V(t),E(t), INQ(t), IQ(t), IA(t) are positive for all t > 0 . Also R(t) is positive for all t > 0 , since 
R(t) = N(t)− S(t)− E(t)− INQ(t)− IQ(t)− IA(t) , where N(t) is the total population at time t assumed as 
constant.

Theorem 1 Given that the initial data X(0) of System3 are positive, its solutions are positive for all t > 0.

We can show that the right hand side of the inequality has bounded solutions, therefore making use of Gron-
wall’s  inequality25,26, we deduce the following:

Lemma 1.1 The region � = {(S,V ,E, INQ , IQ , IA,R) ∈ R7
+ : N = N ′} is positively invariant for System (3) and 

attracts all solutions. N ′ is some positive constant.

Optimal strategy. Assessing the impact of the interplay of the collective efforts by individuals (examples, 
social distancing, face mask use, etc.) and health authority (examples, vaccination, quarantine, hospitalization, 
etc.) on the disease transmission and control requires that decision makers choose control parameters such that 
social and economic cost of the disease over the epidemic period is minimized. The control parameters within 
this modelling framework are {νi}i=1,2 and x. The parameter νi are within the control of health authority. As 
noted in the preceding section, ν1 is the per capita rate of vaccination and ν2 is the effectiveness of instituted 
quarantine measures. They capture the associated cost of these control measures, for example, cost of materials, 
facilities, and labor used. x is the collective contributions of the individuals toward the reduction of the spread of 
the disease. We define the objective functional as

(3)

dS

dt
= −(β1 + ν1)S,

dV

dt
= −β2V + ν1S,

dE

dt
= −δE + β1S + β2V ,

dINQ

dt
= −ηINQ + (1− γ )(1− ε)δE,

IQ

dt
= −ηIQ + (1− γ )εδE,

IA

dt
= −ηIA + γ δE,

dR

dt
= ηINQ + ηIQ + ηIA,

(4)X(0) = (S(0),V(0),E(0), Inq(0), Iq(0), Ia(0), ,R(0)) ∈ R
7
+.

(5)



































dS
dt ≥ −β1S,
dV
dt ≥ −β2V ,
dE
dt ≥ −δE,
dINQ
dt ≥ −ηINQ ,

dIQ
dt ≥ −ηIQ,
dIA
dt ≥ −ηIA.

dS

dt
≥ −β1S,

S(t) ≥ S(0) exp

(

−

∫ t

0
β1ds

)

.
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where 0 ≤ t ≤ T . The function f (·) is the associated social and economic cost that have to be minimized over 
the epidemic period, and is governed by

and the control set

{Ai}i=1,2,3 are the fixed cost associated with being infected by the disease, which includes the pain, discomfort and 
lost labor income or leisure; B is the fixed cost corresponding to community compliance with health directives, 
and {Ci}i=1,2 are the fixed cost for vaccination and effectiveness of quarantine. Observe that the cost describing 
the controls are expressed as quadratic function of the controls ( Bx2t ,C1ν

2
1,t ,C2ν

2
2,t ). We specify the cost func-

tion by choosing a linear function for the infection cost and quadratic function for controls cost in line with 
work done  in27–31. The choice has the implication that highlights the increasing cost associated with each of the 
controls. Implying the marginal cost associated with each of the efforts to reducing infection is increasing in 
nature. This formulation of the cost function assumes that the cost per treatment of COVID-19 per infected per 
unit time is an increasing cost; the vaccination cost is an increasing function of the coverage of the vaccination 
program; the compliance rate and effort put into the effectiveness of the quarantine measure is also an increasing 
cost. Thus, the associated marginal cost to the controls are increasing as increase in the control measures adds 
to the cost of their execution.

The parameter 0 ≤ ρ ≤ 1 is the discount factor. The discount factor accounts for the present value of the future 
cost of the intervention by the individuals and health authority. Our modelling framework assumes a constant 
non-zero discount factor.

Existence of optimal control. To demonstrate the existence of optimal control for the control system we use the 
theorem outlined  in32, Theorem III.4.1) which requires we show that the following properties hold: 

1. The control set Z and associated state variables is non empty.
2. The control set Z is convex and closed.
3. The state system is bounded by a linear function in the state and control on the right hand side.
4. The integrand of the objective functional is concave on Z.
5. There exist constants c1 > 0, c2 > 0, and θ > 1 such that the integrand of the objective functional satisfies 

Using the result  in33, we can demonstrate that system (3) has solution with bounded coefficients and by definition 
the control set Z is convex and bounded, thus conditions 1 and 2 are met. From Theorem 1 and Lemma 1.1 the 
state System (3) has a bounded solution on the finite time interval [0 T] ; for this reason the right hand side of 
the state system (3) satisfies condition 3. Finally, the integral of the objective functional is convex on the control 
set, with an additional property that the integrand of the objective functional is bounded below by

for c1 > 0, c2 > 0 and θ > 1 , since the state variables are bounded. Furthermore, ρ ≥ 0 . Against this background, 
We formally present the following theorem:

Theorem 2 Consider the control problem with system (3). There exist ζ ∗ = (x∗, ν∗1 , ν
∗
2 ) ∈ Z such that

Characterizing the optimal control. 

Theorem  3 Given optimal control ζ ∗ = (x∗, ν∗1 , ν
∗
2 ) and solutions (S∗,V∗,E∗, I∗NQ , I

∗
Q, I

∗
A) of the corresponding 

state system (3), there exist adjoint (or costate) variables �1, �2, �3, �4, �5, �6 and �7, satisfying

(6)J(xt , ν1,t , ν2,t) =

∫ T

0
e−ρt f

(

xt , ν1,t , ν2,t
)

dt,

(7)f (x, ν1, ν2) = A1INQ,t + A2IQ,t + A3IA,t + Bx2t +

2
∑

i=i

Ciν
2
i,t ,

Z = {(x, ν1, ν2)| each controll is Lebesgue measurable on [0 T], 0 ≤ x, ν1, ν2 ≤ 1}.

A1INQ + A2IQ + A3IA + Bx2 +

2
∑

i=i

Ciν
2
i ≥ c1

(

|x|2 +

2
∑

i=i

|νi|
2

)

θ
2

− c2.

c1

(

|x|2 +

2
∑

i=i

|νi|
2

)

θ
2

− c2

min
(x,ν1,ν2)∈Z

J(x, ν1, ν2) = J(x∗, ν∗1 , ν
∗
2 ).
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where

with transversality conditions

In addition, the optimal controls satisfy

where

and ξ∗ = (x∗, ν∗1 , ν
∗
2 , I

∗
NQ , I

∗
A, I

∗
Q).

Proof We prove Theorem 3 by first recognizing that the necessary conditions an optimal control must meet is 
derived from the Pontryagin’s Maximum  Principle34. We set the current-value Hamiltonian (see, for  example35 
for a quick review) for the control problem as follows:

with optimality condition

We note that Ṡ = ∂H
∂S , V̇ = ∂H

∂V , Ė = ∂H
∂E , İNQ = ∂H

∂INQ
, İQ = ∂H

∂IQ
, İA = ∂H

∂IA
 , and Ṙ = ∂H

∂R  . The conditions defining 
the adjoint variables �i,i = 1, 2, . . . , 7 are given as

  �

(8)

d�1

dt
= ρ�1 + (β1 + ν1)�1 − ν1�2 − β2�3,

d�2

dt
= ρ�2 − ψν1�1 + (β + ψν1)�2 − β2�3,

d�3

dt
= ρ�3 + δ�3 − (1− γ )(1− ε)δ�4 − (1− γ )εδ�5 − γ δ�6,

d�4

dt
= ρ�4 − A1 +

∂β1

∂INQ
(S�1 + (1− ω)V�2)−

∂β1

∂INQ
(S + (1− ω)V)�3 + η1�4 − η1�7,

d�5

dt
= ρ�5 − A2 +

∂β1

∂IQ
(S�1 + (1− ω)V�2)−

∂β1

∂IQ
(S + (1− ω)V)�3 + η5�7 − η2�7,

d�6

dt
= ρ�6 − A3 +

∂β1

∂IA
(S�1 + (1− ω)V�2)−

∂β1

∂IA
(S + (1− ω)V)�3 + η3�6 − η3�7,

d�7

dt
= ρ�7,

(9)



















∂β1
∂INQ

= (1− xκ)
�INQ

N−ν2IQ
∂β1
∂IA

= (1− xκ)
�IA

N−ν2IQ
∂β1
∂IQ

= (1− xκ)
�

(1−ν2)�IQ
N−ν2IQ

+
(�INQ INQ+�IA IA+(1−ν2)�IQ IQ)ν2

(N−ν2IQ)2

�

,

(10)�i(T) = 0, for i = 1, 2, . . . , 7.

(11)
2Bx∗ − gx(ξ

∗)(S∗�1 − (1− ω)V∗
�2)+ gx(ξ

∗)(S∗ + (1− ω)V∗)�3 = 0,

2C1ν
∗
1 − (S∗ − ψV∗)�1 − (ψV∗ − S∗)�2 = 0,

2C2ν
∗
2 − gν2(ξ

∗)(S∗�1 − (1− ω))V∗
�2)+ gν2(ξ

∗)(S∗ + (1− ω)V)�3 = 0,

(12)















gx(ξ
∗) =

∂β1
∂x

�

�

ξ=ξ∗
= −κ

�

�INQ I
∗
NQ+�IA I

∗
A+(1−ν2)�IQ I

∗
Q

N−ν∗2 I
∗
Q

�

gν2(ξ
∗) =

∂β1
∂ν2

�

�

ξ=ξ∗
= −(1− x∗κ)

�

�IQ I
∗
Q

N−ν2I
∗
Q
−

(�INQ I
∗
NQ+�IA I

∗
A+(1−ν∗2 )�IQ I

∗
Q)I

∗
Q

N−ν∗2 I
∗
Q

� ,

(13)H = f (x, ν1, ν2)+ �1Ṡ + �2V̇ + �3Ė + �4 İNQ + �5 İQ + �6 İA + �7Ṙ,

(14)
∂H

∂x
=

∂H

∂ν1
=

∂H

∂ν2
= 0.

(15)















































d�1
dt = ρ�1 −

∂H
∂S

d�2
dt = ρ�2 −

∂H
∂V

d�3
dt = ρ�3 −

∂H
∂E

d�4
dt = ρ�4 −

∂H
∂INQ

d�5
dt = ρ�5 −

∂H
∂IQ

d�6
dt = ρ�6 −

∂H
∂IA

d�7
dt = ρ�7 −

∂H
∂R

.
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Remark 1 To characterize the optimal control we need to solve Eq. (11) on the interior of the control set and 
follow the approach  in27,36–38. The bounds on the controls are then imposed on the solution. Observe from Eq. 
(11) that obtaining explicit expressions for the controls x and ν2 is unobtainable and that has to be computed 
numerically. The control ν1 has its expression as

Remark 2 The costate variables {�i}i=1,2,...,7 are current value marginal cost associated with each of the disease 
states. These costs are obtained by solving System (8). The resulting solution evaluated at the optimum is the 
optimal marginal cost {�∗i }i=1,2,...,7 of the disease states.

Ethical approval and consent.  All authors have been personally and actively involved in substantial 
work leading to the paper, and will take public responsibility for its content. The method employed in this work 
are in accordance with all the relevant guidelines and regulations. Observe that the method outlined above does 
not involve experimentation with humans.

Result and discussion
Our goal in this section is to provide the numerical simulation of the optimality system—System (3), (8), and 
(11). We use the steepest descent approach prescribed  in39 in simulating the optimality system; as also used 
 in27,30,40,41. Adopting the MATLAB code  in42, we iteratively solve the optimality system using the Runge-Kutta 
fourth order procedure. Starting with a guess for the controls, the state system (3) is solved forward in time and 
then the co-state system (8) backward in time due to the transversality conditions.

Since the literature does not contain all the values of the baseline parameters in the state system (3), some of 
the parameters in the model are estimated. The estimation is done in two folds: 

1. The case where vaccination and quarantine measures are in place. This is to allow for studies on how collec-
tive individual behaviors affect the dynamic of the disease. This is discussed in “Community influence on 
disease dynamics via compliance rate”. Here, the controls, compliance rate (x), vaccination ( ν1 ) and effective 
quarantine ( ν2 ) parameters are estimated. The objective is to show why although infections happens at the 
population level, decisions to prevent infections lie at the individual level. It is therefore imperative these 
additional dynamics are incorporated into disease models. Note that the compliance rate within this model-
ling framework is at the community level. We focus on the collective effort on compliance of individuals in 
the population (community).

2. The case where vaccination, quarantine, and compliance measures are not present in the population. This 
permits combination of the different controls, which then allows us to study their impacts on the disease 
dynamics and the associated social and economic costs, as the objective of the study dictates. None of the 
controls are estimated. “Control strategies” has detailed discussion on this.

The unestimated baseline parameters are presented in Table 2. We assumed that the disease has short epidemic 
period and that when one is vaccinated, the vaccine confers permanent immunity. Since the data set used for 
our study is based on COVID-19 cases in Nigeria, we assume the COVAX vaccine (the vaccine used in Nigeria) 
efficacy ω as 91% (which is same as that of BNT162b2—91% (89.0–93.2%))43) as at the time of study there is 
not conclusive evidence on the vaccine efficacy; this assumes vaccinated individuals have received two doses. 
The fixed costs A1,A2,A3,B, and C2 are arbitrarily chosen. The value for ρ is converted from the recommended 
annual rate of 3.5%44 to its daily equivalent. We assume the same removal rate η = 1/9 for each of the infectious 
classes. The implication of removal/recovered rate is that the transitioning from the infected compartments to the 
Removed/Recovered compartment occurs either via the disease induced death or recovery from the disease upon 
infection. So, setting η = 1/9 , implies that infected individuals recover or die on average 9 days upon infection. 
Given no conclusive report on the length of days to die from the disease, coupled with no data on the removal rate 
(per definition in this study), and the objective of our studies, we deemed it reasonable to assume the above value 
for η . This is consistent with a published estimate of 9.78 ( 95% confidence interval 8.45–21.78) days after the onset 
of  symptoms45. Furthermore, several studies have found a quicker time to recovery in African countries, probably 
reflecting the younger affected population  (see46,47). Now, uncertainty quantification in mathematical models is 

(16)ν1 = max

{

min

{

1,
�1(S

∗ − ψV∗)+ �2(ψV∗ − S∗)

2C1

}

, 0

}

.

Table 2.  Unestimated baseline parameters.

Parameter Value References

δ 1

5.2
 daily 51

η 1

9
 daily 45–47

ω 0.91 Assumed

N 211184869 52

ρ 0.009% daily 44

C1 $3.7 53
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crucial in assessing their accuracy as the obtained measurements upon which their calibrated are in most cases 
noisy. The goal of statistical analysis of these models is to measure the uncertainty in them, which occurs at the 
model estimation stage via model parameter estimation. In this section, we quantify such uncertainty in System 
(3) using Markov Chain Monte Carlo (MCMC). The estimation is based on the daily reported COVID-19 cases 
on  Nigeria48. We employed the MCMC estimation scheme based on the Delay Rejection Adaptive  Metropolis49 
by adopting the MATLAB package mcmcrun presented  by50. The likelihood function of the observed state, 
number of daily infections, is assumed as normal distribution. The prior distributions of the parameters are 
assumed normally distributed. The MCMC is run by first obtaining the Least Squares Estimates of parameters 
and the corresponding covariance matrix. The estimates are then used as initial guess in the MCMC algorithm, 
and the covaraince matrix used as the initial proposal covariance for the MCMC samples. Three runs of chains 
were run. The first run was used as the initial chain for the second, and the second run was used for the initial 
chain of the third. In all, there were 75,000 simulations with each run of chains constituting 25,000 simulations.

We assessed the goodness of fit by employing the normalized mean square error (NMSE), expressed as follows:

where || · || denotes the 2-norm of a vector. NMSE is in the interval [−∞, 1] , where −∞ indicates a bad fit and 
1 a perfect fit.

Community influence on disease dynamics via compliance rate. Health policies prescribed based 
on traditional mathematical disease models are from public health authorities perspectives devoid of how indi-
viduals respond to such prescriptions; they are concerned with forecasting future epidemic, parameter estima-
tions for strategic choices, and the mechanism for their disease spread. The economic epidemiology models is a 
combination of traditional mathematical epidemiology and economic choice; they incorporate the interaction 
of economic incentives and behavioral responses to address how diseases are transmitted, and how individuals’ 
incentives affect disease spread and cost of health interventions.

This section compares numerical results under traditional (classical) mathematical and economic epidemiol-
ogy modelling framework; the goal is to show how the results and conclusions under these respective modelling 
framework differ. We achieve this by setting the compliance rate x as the control variable in the optimal control 
problem—this captures the individuals’ collective choice via community compliance. This is to say the community 
compliance rate in our modelling setting is within the remit of individuals, and this rate has to be determined 
optimally subjected to economic incentives. Against this background, the numerical results under traditional 
mathematical framework (system 3) are obtained by fixing—not evolving with time—all model parameters. The 
economic epidemiology framework, assumes fixed parameters for all parameters, except compliance rate x, which 
is a control variable. Summarizing, all model parameters are fixed, including community compliance rate x, in 
the traditional mathematical model (system 3). However, in the economic epidemiological model—the optimal 
control problem (System (3),(8), and (11)—we fixed all parameters except community compliance rate x. This 
allows for incorporation of collective decision making on the part of individuals.

We make use of the daily reported COVID-19 cases on  Nigeria48 from March 4, 2021 to June 27, 2021 in the 
parameter estimation procedure for this section. By considering a time window of March 4, 2021 to June 27, 2021, 
we assume that vaccination program is in effect and concurrent with various non-pharmaceutical interventions; 
which in our study are the compliance rate and quarantine effectiveness. Table 3 presents the estimates of the 
model parameters in the state system 3 with their corresponding estimation errors. The initial state values used 
are INQ(0) = 200, IQ(0) = 71, IA(0) = 100 , where that of E(0) and R(0) are, respectively, estimated as 121.3 and 
184.95, with corresponding estimate for S(0) = 211183465 . Note that in the numerical simulations the values 
of E(0) and R(0) are approximated as 121 and 185, respectively.

Figure 2 shows the fitted model. Now, using these estimated values, we then simulated the optimality sys-
tem using the compliance rate as the control. Figure 3 compares the daily infections obtained from traditional 

NMSE = 1−
||(actual number of cases)− (predicted number of cases)||2

||(actual number of cases)− (mean of actual number of cases)||2
,

Table 3.  Estimated parameters, where no presence of controls are considered: MCMC statistics, 25,000 
number of simulations.

Parameters Mean Standard deviation Markov chains error

�INQ 0.12849 daily 0.11878 0.016925

�IQ 0.14773 daily 0.11812 0.018374

�IA 0.51645 daily 0.37632 0.059863

γ 0.46963 0.2225 0.036122

ε 0.094872 0.10845 0.022947

ν2 0.44511 0.29083 0.056373

x 0.69463 0.2445 0.039404

ν1 0.20956 daily 0.15751 0.031465

κ 0.64311 0.24491 0.034543

E0 121.31 17.54 2.1927

R0 184.95 51.061 7.4022
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mathematical disease model (black line) where community compliance was not explicitly incorporated and 
the economic epidemiological model (red line) where economic choice in the form of community compliance 
is explicitly incorporated via optimal control framework. Figure 3a compares the simulation result based on 
traditional mathematical model using the estimated value of compliance rate ( x = 0.69463 ) and that of the 
economic epidemiological model. Observe the difference in the results; we record high values of infections 
from the traditional mathematical model. As an experiment, when one reduces the value of x—see Fig. 3b 
where x = 0.001—the gap increases. This is reflective of the cost imposed on individuals in complying with 
non-pharmaceutical directives. Over the epidemic period, individuals make collective decisions to minimize 
this cost. This result mirrors the findings  in9,10,54. Implying, health policy decisions based on estimates from tra-
ditional mathematical model may not yield required results. This highlights that in the effort of curbing disease 
epidemic, contextualizing health policies is imperative. And that COVID-19 control is very much dependent 
on the collective behavior of the population.

Control strategies. As noted in the introductory section of this document, the purpose of this study is to 
investigate some proposed strategies—Table 4—for combating the spread of COVID-19. We are also interested 
in the cost effectiveness of these decisions. For this purpose the estimation procedure considers a time series 
window from March 16, 2020 to June 29, 2020. This allows us to address the above objective—this is approxi-
mately the time when COVID-19 is officially recorded, and vaccination program and various non-pharmaceu-
tical interventions were not in effect, which in our study are the compliance rate and quarantine effectiveness.

Obtaining parameter estimates based on the above allows us to determine baseline values for the fixed 
parameters. For the purpose of our study the parameters that vary in the model are x, ν1, and ν2 ; these are the 
control variables.

The parameter values in Tables 2 and 5 are used in our analysis. Table 5 presents the means, standard devia-
tions, and the MC errors of the parameters of interest; which are �INQ , �IQ , �IA , γ , ε and κ . Figure 4 shows the fitted 
model-based on data set from March 16, 2020 to June 29, 2020. The model fitting (black line) was done using the 
respective means of the MC samples of the parameters. A 95% confidence band was constructed (grey area) to 
indicate the uncertainty in the model fit. The red dots are the real data on the daily confirmed cases in Nigeria. 
The initial state values are set at S = 211184868, INQ = 1 and the rest, E(0) = V(0) = IQ(0) = IA(0) = R(0) = 0.

Having these estimates, we solve the optimality system by using the initial values of the state variables: 
S = 211184868, INQ = 1,E(0) = V(0) = IQ(0) = IA(0) = R(0) = 0 . We run the simulation without control 

Figure 2.  Fitted (black line) new daily confirmed COVID-19 cases using Nigeria time 
series data (red dots) from March 4, 2021 to June 27, 2021. We assume the presence of 
all controls ( x, ν1, ν2) . The grey area is the 95% confidence bands. Initial state values: 
S(0) = 211183465, INQ(0) = 200, IQ(0) = 71, IA(0) = 100,E(0) = 121,R(0) = 185.

(a) community compliance x = 0.69463 (b) community compliance x = 0.001

Figure 3.  A comparison of community influence via compliance rate: with optimal control path 
(red curve) and without optimal control (black curve). The compliance rate (x) is the control 
variable. The values of the other model parameters are given in the tables above. Initial state values: 
S(0) = 211183465, INQ(0) = 200, IQ(0) = 71, IA(0) = 100,E(0) = 121,R(0) = 185.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12842  | https://doi.org/10.1038/s41598-023-39723-0

www.nature.com/scientificreports/

strategies from a period of 1 to 30 and then introduce the control strategies and run the simulation to the 180th 
day. We considered several values of the fixed cost in the objective functional (Eq. 6) to ascertain the sensitivity 
of the effectiveness of control strategies to these fixed costs; Figs. 5 and 6 demonstrate these sensitivity analyses. 
The sensitivity analyses consider two cases:

The first case assumes equal social and economic cost or burden of infections ( A1 = A2 = A3 ) and vary-
ing cost ( B,C1 , and C2 ) of the the controls; this is demonstrated in Fig. 5. The figure shows that when the fixed 
cost of infections are set equal to each other, couple with increasing values of the cost of the control, strategy 1 
performs better than the other other strategies—except for cases where we use small values for cost of control 
( B = C2 = $10,C1 = $3.7 ) and relative high values of the fixed cost of infections ( A1 = A2 = A3 = $100 ), 
Fig. 5c. This means that there are particular combinations of the cost of controls and infection cost that results 
in other control strategies performing better than the strategy 1. However, it is fair to argue that since cost of 
non-pharmaceutical interventions (quarantine and community compliance in our case) could be way above $10 
per person, we can therefore limit our study to values of B and C2 to $100 and above. Following same chains of 
reasoning for the fixed cost associated with infections, we limit the findings to cost of $100 and above. By this, 
we conclude that strategy 1 (red curve) dominates, followed by strategy 3 (blue curve), and then strategy 2 (black 
curve) in reducing the spread of the disease.

The second case assumes unequal social and economic costs or burden of infections ( A1,A2, and A3 are not 
necessarily equal) and varying costs ( B,C1 , and C2 ) of the controls; Fig. 6 compares the impact of the four control 
strategies using this case. We observe that strategy 1 (red curve) dominates in the reduction of the spread of the 
disease, followed by strategy 3 (blue curve), and then strategy 2 for the selected combined values of the various 
costs except for the case where the disease social and economic cost or burden associated with asymptomatic 
infection is less than that of symptomatic and unquarantine and quarantine infections accompany with small 
values of cost of controls, B = C2 = $10 (Fig. 6e: we have strategy 2 dominating strategy 3). As pointed out in the 

Table 4.  Different control strategies.

Strategy Description

Strategy 1 Compliance rate combined with vaccine and effectiveness of quarantine

Strategy 2 Vaccine combined with effectiveness of quarantine

Strategy 3 Compliance rate combined with vaccination

Strategy 4 Compliance rate combined with effectiveness of quarantine

Table 5.  Estimated parameters with presence of controls ( x = ν1 = ν2 = 0). Markov Chains Monte Carlo 
statistics; 25,000 simulations.

Parameters Mean Standard deviation Markov chain error

�INQ 1.8781 daily 0.15644 0.023264

�IQ 0.14338 daily 0.095303 0.013539

�IA 0.091648 daily 0.041714 0.0080053

γ 0.67797 0.12564 0.022458

ε 0.82454 0.098291 0.018048

κ 0.45556 0.28041 0.038937

Figure 4.  Fitted (black line) new daily confirmed COVID-19 cases using Nigeria time series data (green dots) 
from March 15, 2020 to June 29, 2020. We assume the absence of all controls ( x, ν1, ν2) . The grey areas are the 
95% confidence bands.
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first case (Fig. 6) that since the costs associated with non-pharmaceutical intervention are likely to be $100 and 
above, we conclude that by setting these costs along this range yields results consistent with what we observed 
in the first case: strategy 1 (red curve) dominates, followed by strategy 3 (blue curve), and then strategy 2 (black 
curve) in reducing the spread of the disease.

Summarizing, the sensitivity analysis indicates that for reasonable values of the cost of the controls ν1, ν2 and 
x control strategy 1 (red curve) is highly effective in eliminating COVID-19 from the population. This means 
that health policy directed at strengthening community compliance (this could be done via aggressive media 
campaigns) coupled with instituting effective quarantine and vaccination programs reduce the disease burden 
effectively. Even though strategy 4 (cyan curve) is the least effective control strategy it can reduce and probably 
eliminate the disease in the long run, thus making it desirable under certain settings where vaccination is hard 
to secure as in the case of some developing countries, of which Nigeria is not an exception; it reduces the disease 
burden in the long run. Thus, just effective compliance to non-pharmaceutical interventions may be sufficient. 
Strategy 3 (black curve) is the third best in curbing the spread of the disease. This strategy is most useful when 
health authority is unable to effectively put quarantine measures in place.

The ensuing subsections present efficiency analysis and incremental cost effectiveness ratio (ICER) for the pro-
posed strategies. For this purpose, we assume A1 = $100,A2 = A3 = $1000,C1 = $3.7,B = C2 = $100 , which 
corresponds to Fig. 6b. The corresponding optimal path for the control variables for each of the strategies are 
displayed in Fig. 7. The optimal paths are the optimal decisions corresponding to each time period. For example, 

(a) A1 = A2 = A3 = $10, B = C2 =
$10, C1 = $3.7

(b) A1 = A2 = A3 = $10,B = C2 =
$100, C1 = $3.7

(c) A1 = A2 = A3 = $100,B = C2 =
$10, C1 = $3.7

(d) A1 = A2 = A3 = $100,B = C2 =
$100, C1 = $3.7

(e) A1 = A2 = A3 = $1000, B = C2 =
$10, C1 = $3.7

(f) A1 = A2 = A3 = $1000,B = C2 =
$100, C1 = $3.7

Figure 5.  Daily confirmed infections for the different strategies. Parameter values used for graphs are presented 
in the tables above. S(0) = 211184868, INQ(0) = 1,V(0) = E(0) = IQ(0) = IA(0) = R(0) = 0 . We introduce 
strategies on the 31st day after the first record of the cases. The reference period is March 16, 2020 to June 19, 
2020. Note that the green line is the path of COVID-19 cases without strategies and that line runs to 180 days—
the graph presented a truncated version (cut-off is 100th day). This is to allow for showcasing the impact of the 
different control strategies (solid and dotted lines red, black, blue and cyan).
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consider the decision path for compliance rate (Fig. 7a): in period 0, it is optimal for community compliance rate 
to be 0.8; as time passes we see the rate decreasing with decreasing disease cases.

Efficiency analysis. This section compares the efficiency of the proposed strategies. We do this by introduc-
ing an efficiency index I that is a function of the cumulative number of daily confirmed cases during the time 
interval of the control strategies. This index is captured as

where the pair (EC ,E0) are the respective cumulative number of the new infectious individuals with and without 
the control strategies. The  formulas27,55,56

(17)I =

(

1−
EC

E0

)

× 100,

(18)

{

Ec =
∫ T
t δEcdt,

Ec =
∫ T
t δE0dt,

(a) A1 = 100, A2 = A3 = $1000, B =
C2 = $10, C1 = $3.7

(b) A1 = 100, A2 = A3 = $1000,B =
C2 = $100, C1 = $3.7

(c) A1 = 1000, A2 = 100, A3 =
$1000,B = C2 = $10, C1 = $3.7

(d) A1 = 1000, A2 = 100, A3 =
$1000,B = C2 = $100, C1 = $3.7

(e) A1 = A2 = $1000, A3 = $100, B =
C2 = $10, C1 = $3.7

(f) A1 = A2 = $1000, A3 = $100,B =
C2 = $100, C1 = $3.7

Figure 6.  Daily confirmed infections for the different strategies. Parameter values used for graphs are presented 
in the tables above. S(0) = 211184868, INQ(0) = 1,V(0) = E(0) = IQ(0) = IA(0) = R(0) = 0 . We introduce 
strategies on the 31st day after the first record of the cases. The reference period is March 16, 2020 to June 19, 
2020. Note that the green line is the path of COVID-19 cases without strategies and that line runs to 180 days—
the graph presented a truncated version (cut-off is 100th day). This is to allow for showcasing the impact of the 
different control strategies (solid and dotted lines red, black, blue and cyan).
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are the areas between the curve of the new infectious individuals and the time axis [t T] . The pair (Ec ,E0) are 
the exposed population size corresponding to infections with and without control strategies. The strategy with 
the biggest index is the best. Table 6 lists the efficiency index corresponding to each of the strategies I . We see 
that even though I is highest for strategy 1, the gap is marginal.

Cost effectiveness analysis. When there are competing health strategies, it is best practice to choose that 
intervention with the minimum cost and the best outcome. Cost effectiveness analysis helps do exactly that. 
Efficiency analysis provides insight on the most efficient strategy regardless of its associated cost. It is crucial to 
know which strategy is the most efficient and its associated cost. This section ranks the strategies listed in Table 4 
by their cost effectiveness and efficiency. That said, we follow the work in, for  example27,36 to determine the best 
strategies (1-4) with the optimal cost by conducting a cost effectiveness analysis via the Incremental Cost Effec-
tiveness Ratio (ICER). The ICER is applied to strategies i and j using the expression:

(19)
ICER(i) =

Total Cost(i)

Total infection averted(i)

ICER(j) =
Total cost ( j) - Total cost ( i)

Total infection averted ( j)-Total infection averted ( i)

,

(a) strategy 1 (b) strategy 2; x = 0

(c) strategy 3; ν2 = 0 (d) strategy 4; ν1 = 0

Figure 7.  Control functions: we introduce strategies on the 31st day after the first record of the 
cases. The reference period is March 16, 2020 to June 19, 2020; the values of the other model 
parameters are given in the tables above. A1 = $100,A2 = A3 = $1000,B = C2 = $100,C1 = $3.7 , 
S(0) = 211184868, INQ(0) = 1,V(0) = E(0) = IQ(0) = IA(0) = R(0) = 0.

Table 6.  Efficiency Index of new cases across the different strategies: we introduce 
strategies on the 31st day after the first record of the cases. The reference period is March 
16, 2020 to June 19, 2020; the values of the other model parameters are given in the 
Tables above. S(0) = 211,184,868, INQ(0) = 1,V(0) = E(0) = IQ(0) = IA(0) = R(0) = 0

.A1 = $100,A2 = A3 = $1000,B = C2 = $100,C1 = $3.7 . Note that total new cases are obtained by summing 
new cases from day 31 to 180.

Strategy Total new cases over period Efficiency index (%)

Strategy 1 28.9220 99.963

Strategy 2 33.2155 99.957

Strategy 3 29.1815 99.962

Strategy 4 508.6952 99.354

No control 78822 0.000
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where strategy i is the base strategy with the least utility; which in our case is the total number of new cases 
from period 31 to 180 days. ICER quantifies the additional cost incurred as a result of additional utility obtained 
for implementing a particular strategy. Table 7 gives the total infective cases and new cases, and total cost cor-
responding to each of the proposed strategy. We use the numerical results obtained in “Control strategies”. The 
period considered is between 31 and 180 days. The tables show that in terms of absolute total cost, strategy 1 has 
the least associated cost, followed by strategy 3, and then strategies 2 and 4. Also, we recorded the smallest total 
number of infective cases and new cases for strategy 1.

Now, to calculate ICER for each of the strategies, consider Table 8. The table ranks the total number of total 
new cases averted in increasing order. Notice that strategy 4 has the lowest total new cases averted, followed by 
strategy 2. We calculate ICER for the strategies as follow:

The value of ICER(4) in Table 8 is larger than that of ICER(2), indicative of strategy 2 dominating strategy 
4 with respective to cost effectiveness—strategy 4 is costly and less effective than strategy 2. So, we exclude 
strategy 4 from the competing strategies. Table 9 shows the list of recalculated ICER for strategies 2, 3, and 1. 
Again, comparing ICER across the competing strategies indicates that strategy 2 is expensive and ineffective to 
implement as it has ICER larger than that of strategy 3. We, therefore, exclude strategy 2 and recalculate ICER 
for strategy 3 and 1. The calculation shows that ICER for strategy 3 is bigger than that of strategy 1, indicative of 
ineffectiveness and more costly of strategy 3 compared to strategy 1; see Table 10. In fact, the calculation shows 
that $6799.582 is saved for implementing strategy 1 over strategy 3. Consequently, strategy 1 (combining compli-
ance with vaccination program and effective quarantine) is the best strategy in terms of both cost effectiveness 
and efficiency curbing the spread of COVID-19.

(20)

ICER(4) =
3.677514× 106

78313.022
= 46.959,

ICER(2) =
4.184846× 105 − 3.677514× 106

78789.502− 78313.022
= −6854.194,

ICER(3) =
3.896050× 105 − 4.184846× 105

78792.536− 78789.502
= −7159.191,

ICER(1) =
3.878404× 105 − 3.896050× 105

78792.796− 78792.536
= −6799.582.

Table 7.  Cost effectiveness of strategies: we introduce strategies on the 31 st day after the first record of the 
cases. The reference period is March 16, 2020 to June 19, 2020; the values of the other model parameters 
are given in the Tables above. S(0) = 211,184,868, INQ(0) = 1,V(0) = E(0) = IQ(0) = IA(0) = R(0) = 0

.A1 = $100,A2 = A3 = $1000,B = C2 = $100,C1 = $3.7 . Note that total new cases are obtained by summing 
new cases from day 31 to 180.

Strategy Total infective cases Total new cases Total cost ($)

Strategy 1 411.162 28.9220 3.878404× 10
5

Strategy 2 445.378 33.3155 4.184846× 10
5

Strategy 3 413.263 29.1815 3.896050× 10
5

Strategy 4 3937.934 508.6952 3.677514× 10
6

Table 8.  Cost effectiveness in terms of total cases averted: we introduce strategies on 
the 31st day after the first record of the cases. The reference period is March 16, 2020 
to June 19, 2020; the values of the other model parameters are given in the Tables 
above. S(0) = 211,184,868, INQ(0) = 1,V(0) = E(0) = IQ(0) = IA(0) = R(0) = 0

.A1 = $100,A2 = A3 = $1000,B = C2 = $100,C1 = $3.7 . Note that total new cases are obtained by summing 
new cases from day 31 to 180. The averted cases for each strategy is calculated by subtracting the total 
number of new cases corresponding to the respective strategies from the total number of new cases when 
there are no controls. We have 78822 total number of new cases with associated social and economic cost 
of $4.094507714× 10

8 when no controls are in place. Strategies 1-4 are presented in increasing order of the 
number of infections averted

Strategy Total new cases Total cases averted Total cost ($) ICER

Strategy 4 508.6952 78,313.022 3.677514× 10
6 46.959

Strategy 2 33.3155 78,789.502 4.184846× 10
5 − 6854.194

Strategy 3 29.1815 78,792.536 3.896050× 10
5 − 7159.191

Strategy 1 28.9220 78,792.796 3.878404× 10
5 − 6799.582
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Conclusion
This paper discussed a COVID-19 deterministic optimal control model, of which we considered community 
compliance rate, vaccination coverage, and effective quarantine as control variables. These are time dependent 
variables for a finite time. The optimal solution path of the control system was derived, by way of establishing 
the existence of an optimal solution and then specifying the characteristics of the system by deriving the first 
order conditions. Using data set of COVID-19 daily confirmed cases, we estimated model parameters values for 
parameters values not currently found in the literature. We did this under two cases: One estimation procedure 
considered data points from March 4, 2021 to June 27, 2021, and the other, considered data points from March 
15, 2020 to June 29, 2020.

The first estimation approach was to compare traditional mathematical disease models where collective efforts 
of individuals are not explicitly accounted for and economic epidemiological model where individual collective 
efforts are incorporated in the modelling framework. Given that the time series data start from March 4, 2021, 
it takes into account all the three control measures—compliance rate, vaccination coverage,and effectiveness of 
quarantine, which permits such a comparison. The traditional model assumed all model parameters as fixed, 
while the economic model assumed all parameters fixed except for compliance rate. The numerical simulation 
indicates the disparity between these two models and that behavioral influence places major role in the eradica-
tion of the disease, as such health policy should be contextualized. This means, unilaterally imposing lockdowns, 
face masks usage, social distancing may not yield expected results as individuals act based on available incentives. 
This highlights the relevance of the explicit incorporation of collective individual responses in the estimation of 
the disease prevalence or number of infections when designing models to inform health policy as even though 
the disease transmission is a population level phenomenon, decisions to prevent or treat the disease are pre-
dominantly individually made. This work further strengthens the findings in, for  instance9–11,54, which points out 
inadequacies in the traditional mathematical models studied in,  say6–8, and others for informing health policies.

The second estimation procedure is to help address the objective of the study—establishing the best interven-
tion in terms of cost effectiveness and efficiency in curbing the spread of the disease. We addressed this problem 
by considering four strategies: strategy 1—combining community compliance rate with vaccination coverage and 
effective quarantine rate, strategy 2—combining vaccination coverage with effectiveness of quarantine, strategy 
3—combining community compliance rate with vaccination coverage, and strategy 4—combining community 
compliance rate with effectiveness of quarantine. From the numerical results, efficiency and cost effectiveness 
analysis, we concluded that implementing a vaccination program coupled with effective quarantine measures and 
strong campaign for adhering to the non-pharmaceutical interventions such as social distancing, face mask use, 
frequent sanitizing of hands etc. is the effective way of eradicating the disease. We also, note that, since access to 
vaccine in developing countries is proving challenging, aggressive campaign on complying to non-pharmaceutical 
interventions and instituting effective quarantine measures can in the long run eradicate the disease.

Even though there are  works6,36,57,58 that attempt to incorporate both governmental and individual level 
interventions into mathematical disease modelling framework, to the best of our knowledge these modelling 
frameworks fail to adequately account for the interplay of these interventions: the trade-off between, community 
compliance and vaccination program, community compliance and effective quarantine, and community compli-
ance and vaccination and effective quarantine program. This paper contributes to the literature by addressing 
this gap by presenting an optimal control problem that accounts for individuals’ collective economic choices 
and available incentives, and assessment of the effectiveness of these choices in tandem with governmental 
interventions.

Data availability
The datasets used in estimating the model during the current study are available at Our World in Data https:// 
raw. githu buser conte nt. com/ owid/ covid- 19- data/ master/ public/ data/ jhu/ new_ cases. csv.
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Table 9.  Comparison between Strategies 2 and 3.

Strategy Total new cases Total cases averted Total cost ($) ICER

Strategy 2 33.3155 78,789.502 4.184846× 10
5 5.311

Strategy 3 29.1815 78,792.536 3.896050× 10
5 − 7159.191

Strategy 1 28.9220 78,792.796 3.878404× 10
5 − 6799.582

Table 10.  Comparison between Strategies 3 and 1.

Strategy Total new cases Total cases averted Total cost ($) ICER

Strategy 3 29.1815 78,792.536 3.896050× 10
5 4.9446

Strategy 1 28.9220 78,792.796 3.878404× 10
5 − 6799.582

https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/jhu/new_cases.csv
https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/jhu/new_cases.csv
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