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Genetic descriptor search algorithm 
for predicting hydrogen adsorption 
free energy of 2D material
Jaehwan Lee 1,2,5, Seokwon Shin 1,2,5, Jaeho Lee 3, Young‑Kyu Han 3*, Woojin Lee 4* & 
Youngdoo Son 1,2*

Transition metal dichalcogenides (TMDs) have emerged as a promising alternative to noble metals in 
the field of electrocatalysts for the hydrogen evolution reaction. However, previous attempts using 
machine learning to predict TMD properties, such as catalytic activity, have been shown to have 
limitations in their dependence on large amounts of training data and massive computations. Herein, 
we propose a genetic descriptor search that efficiently identifies a set of descriptors through a genetic 
algorithm, without requiring intensive calculations. We conducted both quantitative and qualitative 
experiments on a total of 70 TMDs to predict hydrogen adsorption free energy ( �G

H
 ) with the 

generated descriptors. The results demonstrate that the proposed method significantly outperformed 
the feature extraction methods that are currently widely used in machine learning applications.

The discovery of  graphene1 has drawn significant interest to the study of the chemical properties of two-dimen-
sional (2D) materials. Among 2D materials, transition metal dichalcogenides (TMDs) have attracted significant 
attention due to their unique electronic and optical properties, thus making them promising candidates for 
various applications in the field of nanoelectronics, optoelectronics, and energy storage. These properties make 
TMDs suitable for various applications, such as catalysis, energy storage, and sensing. As a result, many recent 
 studies2–4 in materials science have focused on the synthesis, characterization, and applications of TMDs.

In the electrocatalytic hydrogen evolution reaction (HER), the hydrogen adsorption free energy on the sur-
face of TMDs substantially determines their catalytic  performance5,6. This parameter reflects the strength of 
the interaction between the TMD surface and hydrogen atoms during the HER process. The optimal hydrogen 
adsorption free energy value for a catalyst should be close to thermo-neutral, meaning that the catalyst should 
bind hydrogen with neither too strong nor too weak a force. The optimal hydrogen adsorption free energy value 
ensures that the catalyst can effectively facilitate hydrogen-related reactions with optimal catalytic  activity7,8. 
Therefore, it is crucial to have a thorough understanding of the hydrogen adsorption free energy on TMD surfaces 
for optimizing their catalytic performance in HER.

The quantum mechanical model is often used to predict the chemical properties, such as the hydrogen 
adsorption free energy, of materials. This model predicts properties by simulating the surface density of charges 
within the atoms with respect to their potential functions. The most widely adopted model among the quantum 
mechanics-based methods is the density functional theory (DFT)9,10, which calculates the electron density and 
electronic structure through wave functions. While DFT calculations has been applied to study HER in various 
systems, this approach remains computationally  expensive10–15.

Various deep learning-based approaches have been used to predict chemical properties to address computa-
tional challenge. Advances in deep learning algorithms and methods for representing the structure of chemical 
molecules, such as the simplified molecular-input line-entry system (SMILES)16–18 and molecular  graph19–21, have 
led to significant performance improvements in chemical property prediction. However, deep neural network-
based approaches require extensive training datasets to avoid overfitting, and they may not generalize well 
without sufficient training samples.

Another approach, descriptor search, aims to identify new descriptors that can represent chemical properties 
by combining the known primary features of chemicals (e.g., number of electrons, period, atomic weight). In Ran 
et al.22, 5 of the 27 fundamental chemical properties were selected by applying Pearson correlation screening and 
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gradient boosting to data composed of 70 TMD materials to explore the property most related to the hydrogen 
adsorption free energy of the TMD material. Subsequently, 5 selected properties and 12 prototypical functions 
were used to construct the 954 combinations as candidates. Then, LEF, LEs, and Vtmx were selected as the 
optimal descriptors combination which are the most suitable combination for hydrogen adsorption free energy 
prediction using linear regression (see Table in SI22). Recently, sure-independence screening and sparsifying 
operator (SISSO)23, an effective descriptor search method, has been introduced and successfully applied to 
various material science  tasks5,24,25. One of SISSO’s strengths lies in its optional capability to leverage domain 
expertise and prior knowledge in the descriptor selection process. By utilizing their understanding of underlying 
principles and properties of the domain, users can guide the algorithm to focus on relevant primary features, 
leading to potential improvements in predictive performance and interpretability of the results. However, when 
using the SISSO, it is essential to consider the computational efficiency due to the potentially huge search space 
for descriptor selection.

Therefore, in this study, we propose an efficient and effective descriptor search algorithm called Genetic 
Descriptor Search (GDS), which overcomes the computational limitations of SISSO by efficiently exploring the 
feature space through symbolic regression based on genetic algorithms to find optimal descriptors. To validate 
the efficacy of the proposed algorithm, we conduct experiments on the prediction of hydrogen adsorption free 
energy of TMDs. The results demonstrate that GDS outperforms various feature selection methods commonly 
used in machine learning and SISSO. Additionally, we perform a qualitative evaluation using t-SNE26 visualiza-
tion on the descriptor set obtained through the proposed algorithm.

The main contributions of this study are as follows.

• We propose a novel descriptor search method, GDS, which does not need to explore all possible immense 
feature space, making the descriptor search for TMDs’ hydrogen adsorption free energy more computation-
ally efficient.

• GDS outperforms other feature selection and descriptor search algorithms in predicting �GH of 70 TMD 
materials on the quatitative evaluations.

• The qualitative analysis through visualization verifies that the descriptors obtained by GDS can represent the 
intrinsic relationship between �GH and TMD.

• Finally, GDS finds the reasonable descriptors that are matched to the relevant literature without using domain 
expertise.

Preliminaries
In this section, we describe fundamental parts of the proposed method. First, we explain the symbolic regression 
utilized by our proposed algorithm for descriptor search, and we then describe the genetic algorithm used to 
increase the efficiency of the symbolic regression.

Symbolic regression. Symbolic regression  analysis27 is a method for finding a mathematical expression 
that accurately models a dependent variable. The expressions are initially generated through a random combina-
tion of mathematical components such as operators, constants, and independent variables. This approach avoids 
the existence of human bias in the modeling process and can therefore be implemented without prior knowledge 
of the domain. It also enables the identification of intrinsic relationships between the independent and depend-
ent variables, thus allowing the model to capture the underlying relationships presented in the dataset.

In contrast to traditional regression analysis, which finds the optimal parameters based on a predetermined 
model structure with fixed independent variables, symbolic regression is more flexible and adaptable approach 
that directly obtains the optimal model structure and parameters from the data. This increases the search space 
complexity, potentially leading to an infinite number of possible solutions, which highlights the need for the 
implementation of appropriate constraints or algorithms to ensure efficiency.

An example of symbolic regression analysis is depicted in Fig. 1. The mathematical function can be repre-
sented through an expression tree, which consists of a binary tree of operators and operands. The operators 

Figure 1.  Examples of expression tree with (a) a single operator and (b) six operators including the root node.
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are represented as branch nodes, while the operands are represented as unconditional leaf nodes. In Fig. 1a, 
the expression tree represents the formula X1 + X4 , similarly, in Fig. 1b, the tree represents the formula 
X2logX3 + cos(logX9 − X2) . Symbolic regression analysis ultimately aims to select the expression, composed of 
independent variables, that provides the best representation of the dependent variable.

Genetic algorithm. Genetic algorithm (GA)28 is a population-based meta-heuristic optimization tech-
nique that emulates the process of natural evolution. Inspired by Darwin’s theory of evolution, GA operates on 
the principle of survival of the fittest, where the fittest individuals have higher chances of reproducing and pass-
ing their beneficial genes to the next generation.

GA has been successfully applied in a wide range of fields, including engineering, humanities, natural sciences, 
and even video  games29–33. The algorithm has proven to be an effective method for solving complex optimization 
problems in which, the solution space is vast and so traditional optimization techniques may not work effectively.

The core idea behind GA is to encode potential solutions as a set of chromosomes and use genetic operators, 
such as crossover and mutation, to generate offspring that inherit traits from their parents. The fitness function 
is used to evaluate the chromosomes and determine their suitability for the problem at hand. Over multiple 
generations, the population of chromosomes evolves, as the fittest individuals are selected to produce offspring 
and pass their genes to the next generation. The goal of GA is to find the global optimization by gradually refin-
ing the population through this process.

The GA process can be divided into four stages: initial population generation, fitness evaluation, parent 
selection, and offspring generation through genetic operators. The present study uses a complexity-penalized 
coefficient of determination as the fitness function and tournament  selection29 as the parent selection method. 
This ensures that the GA process remains diverse and well-balanced, which leads to a higher probability of 
finding the global optimization. The implementation of the GA process of the proposed method is described in 
detail in the next chapter.

Proposed method
In this section, we introduce our proposed algorithm, GDS, which is designed to obtain a descriptor set, D , 
for predicting chemical properties such as the hydrogen adsorption free energy of TMDs. The main goal of 
GDS is to generate a set of descriptors that have a high correlation with the chemical property being predicted, 
which would improve the accuracy of the predictions. To achieve this goal, GDS repeats a three-step descriptor 
exploration process, which we describe in this section. The iteration is repeated until GDS obtains the desired 
number of M descriptors.

This section begins by discussing the fitness score that we defined, which is a key component of our algorithm. 
We then provide a detailed description of each step that make up the overall process for obtaining the descriptor 
that best fits the target residual. The overall procedure to obtain the descriptor set is summarized in Algorithm 1.

Fitness score. The fitness score for a genetic algorithm is a metric used to evaluate the effectiveness of a 
specific solution for a given task. In this study, we use a tree as a candidate solution for the descriptor set, and the 
task is to utilize this set to predict the hydrogen adsorption free energy. In GDS, the descriptors are represented 
as an expression tree with a maximum depth of lambda, which is obtained by symbolic regression. Increasing 
the depth of the tree can improve its relationship with the hydrogen adsorption free energy. However, there is a 
trade-off between depth and complexity. The tree becomes more complex as the depth increases, which nega-
tively impacts the algorithm’s computational cost and interpretability.

To evaluate the impacts of both depth and the relationship with the hydrogen adsorption free energy, we 
defined the fitness scores of each tree, pi , for the m-th iteration of the descriptor exploration as follows:

where y is the target property and �Dm is the target residual calculated using ( m− 1)-descriptors set, Dm−1.
In Eq. (1), the first term is the coefficient of determination, which is commonly used in regression analysis 

to measure the fitness between the dependent and independent  variables34. Notably, GDS measures the fitness 
between each tree and the target residual obtained using Eq. (2) with given m− 1 descriptors, rather than the 
fitness between the hydrogen adsorption free energy and each tree. The second term regularizes the complex-
ity of the expression tree by penalizing the fitness with the depth with the control parameter � to prevent the 
bloat phenomenon, which means the evolution keeps increasing the size of trees without a significant increase 
in fitness score.

Initialization of population. In the first step of descriptor exploration, GDS creates the population P1 with 
given primary features of TMDs, which are represented as X ∈ R

N×p , where N and p denote the numbers of the 

(1)score si = R2
(

�Dm , pi
)

− �× depthi

(2)�Dm = y − ŷm−1

(3)ŷ0 = 0

(4)ŷm =
(

Dm
T
Dm + αI

)−1

Dm
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TMD materials and their primary features, respectively. The initial population is obtained by randomly generat-
ing Npop trees from the combination of primary features and operator set H, defined as

Specifically, the initialization of the population is equal to creating Npop expression trees in Fig. 1. The leaf nodes 
of trees are randomly selected from the primary features, and other nodes are selected from the operator set H 
in Eq. (5).

Evolution using tournament selection. In the evolution step, GDS iteratively evolves the initialized 
population using the fitness score and genetic algorithm. We use the tournament selection  strategy29 for the 
genetic algorithm to guarantee diversity in the population, and there is an increased possibility of premature 
convergence to sub-optimal solution.

The tournament selection is a useful and robust selecting strategy that randomly selects τ-trees from the cur-
rent population to form a sub-group and run a tournament among them. The winner of the tournament is a can-
didate with the highest fitness score and it becomes a parent tree that leaves a child for the next generation. In this 
way, weaker candidates have a chance of being selected, as they do not need to compete with stronger ones unless 
they are in the same sub-group. To attain a consecutive population, the sub-group needs to be randomly selected 
Npop times, which reveals the importance of choosing appropriate Npop to reduce the computation burden.

Specifically, we apply the tournament selection strategy to select parent trees with the highest fitness scores 
from the current population. To generate offspring, the selected parent trees undergo genetic variation, which is 
achieved by applying genetic operators chosen from the set Ŵ . In our study, Ŵ includes reproduction, crossover, 
and three different mutation methods, which are detailed in Fig. 2.

Reproduction simply clones the parent tree and adds it to the next population unchanged, thus preserv-
ing the characteristics of the original population. Crossover (Fig. 2a) combines two parent trees by randomly 
selecting subtrees from each and swapping them to create a new offspring. Subtree mutation (Fig. 2b) selects a 
random subtree from the parent trees and replaces it with a new one that has been randomly generated. Point 
mutation (Fig. 2c) selects a random node from the parent tree and replaces it with one of the operators specified 
in (5). Lastly, hoist mutation (2d) involves selecting a random subtree and one of its own subtrees. The original 
subtree is then replaced by this second subtree, which reduces the complexity in the tree and mitigates the bloat 
phenomenon.

Update of descriptor set. Once GDS reaches one of the stopping criteria, such as the maximum number 
of iterations, a tree in the final population with the highest fitness score is chosen as the descriptor, d. In our 
implementation, we use the pre-defined number of generations as the stopping criterion. Then, GDS adds the 
descriptor d to the descriptor set D and updates the target residual, �Dm for the next iteration. Finally, GDS 
obtains a set of M desired descriptors by repeating the three-step descriptor exploration.

(5)H ≡
{

I ,+,−,×,÷,
2
,
−1

,
√
, log , sin, cos, tan, exp, ||

}

.

Figure 2.  Illustrations of genetic operators: (a) crossover needs of two parents, while (b–d) can be applied to a 
single parent.
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Results
The performance of the proposed descriptor search algorithm in predicting the hydrogen adsorption free energy 
( �GH ) of TMDs was evaluated using a dataset of 70 TMDs and their corresponding chemical properties. The 
evaluation was conducted using both quantitative and qualitative approaches. For the quantitative evaluation, the 
performance of the prediction model using the descriptors from GDS was compared to other relevant methods. 
Meanwhile, the qualitative analysis involved visualizing the descriptor distribution through the t-SNE26, as well 
as examining the meaning of the chemical properties utilized in the generated descriptors.

Dataset description. In this study, data was collected for 70 TMDs, as was done in a previous  study22. In 
total, 27 features were selected as primary features, as outlined in Table SI322. The process of data collection is 
detailed below:

15 features (Rtm, Etm, Wtm, Qtm, Vtm, VEtm, VFtm, Vx, Qx, Wx, WFx, Rx, DVEx, EIx, and EItm) out of 
the 27 primary features were obtained from publicly available  databases35,36. Another eight features (Ntm, Ntmf, 
Nx, Nxs, Nxf, Cx, and Covh), which were related to the number of transition metal or chalcogenide atoms, were 
extracted from the structure utilized in prior  study22. The remaining five features (Ctm, LEs, LEf, Vtmx, and 
BEtmx) were derived through calculation.

Quantitative evaluation. In this section, we provide a quantitative analysis of which descriptors-that have 
either been selected from other algorithms such as machine learning feature extraction methods or generated by 
GDS for the �GH prediction of TMDs-, can achieve higher predictive performance. We divided the dataset of 70 
TMDs, 52 samples for training and 18 samples for test. We employed ridge regression to ensure reliable conver-
gence across all methods. We progressively increased the number of descriptors from 1 to 10 and compared their 
performance for each method. For a fair comparison, we repeated the experiment five times, each time using 
different splits of the dataset. The results obtained from these iterations were averaged to provide a representative 
measure of performance. The comprehensive results are reported in Fig. 3 and detailed information of results are 
reported in Tables SI1 and SI2.

We used six feature extraction methods along with  SISSO23 for comparison. The six feature extraction meth-
ods comprising three principal component analysis (PCA) methods:  FastICA37,  SparsePCA38, and  KernelPCA39, 
and three manifold learning method: multi-dimensional  scaling40(MDS),  Isomap41, and spectral  embedding42. 
These feature extraction methods are widely used in the field of machine  learning43,44.

As depicted in Fig. 3, the addition of descriptors generally improves the predictive performance for all models. 
Nonetheless, the prediction model with the proposed method can be seen to outperform all of the comparison 
algorithms, regardless of the number of descriptors used. Moreover, it is worth emphasizing that while SISSO 
exhibits initial performance improvements, it eventually reaches a point where further enhancements are not 
observed. In contrast, our algorithm consistently demonstrates a continuous improvement over the number of 
descriptors, maintaining a steady and progressive enhancement. These results highlight that the proposed algo-
rithm is capable of generating descriptors that are substantially related to �GH from primary features.
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Furthermore, some comparison methods tend to represent unstable performance with large variations when 
a large number of descriptors are included in the prediction model (typically six or more) due to noise or overfit-
ting. On the other hand, in the case of the prediction model using the proposed method, it performed sufficiently 
well with only a few descriptors and showed stable performance with an increasing number of descriptors. This 
property can be attributed to the inherent randomness in the descriptor search process of the proposed algorithm, 
which allows for various aspects of the data to be examined. The genetic algorithm at the core of the proposed 
algorithm generates various descriptors, even with the same selected primary features, thus making it suitable for 
constructing  ensemble45 models, the result of which is also shown in Fig. 3. Averaging three regression models 
learned with different descriptor sets, the ensemble model highlights the benefits of the inherent randomness 
in the proposed algorithm. Moreoever, as the number of descriptors increased, the variance of the performance 
based on GDS decreased, while the variance of other algorithms increased, as can be seen in the table in the 
supplementary material. This result can be considered to represent an improvement in the regression model’s 
robustness, which can be attributed to the complementary descriptors generated by the proposed algorithm.

Qualitative analysis based on t‑SNE visualization. To verify how the descriptors generated by the 
proposed algorithm were related to the target, �GH , we compared the primary features of 2D-TMDs and the 
descriptors by visualizing them using the t-SNE method. The visualization result is shown in Fig. 4, where the 
x-axis and y-axis of each figure are arbitrary axes without any inherent meaning or unit, and the position of the 
data point on the 2-dimensional space of each figure is determined by the similarity between data points on the 
feature space. In addition, the scaled �GH of each data point is expressed in color.

In Fig. 4a, no relationship can be found between the distributions of the primary features and �GH ; the raw 
primary features have little direct relationship with the �GH . The visualization results for the generated descrip-
tors are shown in 4b and 4c. In 4b, it can be seen that a small number (3) of descriptors make the samples form 
one cluster and are simultaneously aligned in accordance with �GH , while 4c shows that the number and shape of 
clusters change when the descriptors are added. Nevertheless, the samples are aligned with the �GH in the same 
way in both situations. Moreover, as shown in 4c, data of high �GH and low �GH can be more clearly separated 
when the number of descriptors is large. Through these results, we found that the proposed algorithm successfully 
generates the descriptors with a meaningful relationship with the target, �GH , by using the primary features. 
Although Fig. 4b shows that only a small number of descriptors can also have a clear relationship with the target 
variable, adding more descriptors to the predictor can result in performance improvement as shown in Fig. 3.

Analysis of generated descriptors. 
We analyzed the effectiveness of descriptors generated by the proposed genetic algorithm by utilizing relevant lit-
erature in the field. As genetic algorithm utilized in GDS has inherent randomness, there may be variances in the 
descriptor search results across multiple trials. To account for the variability, we sampled two sets of descriptors 
for analysis. The results of 10D descriptors obtained through GDS and the coefficient values of ridge regression 

Figure 3.  Comparison of R-squared values of ridge regression models for the proposed and comparison 
methods. Green and black lines are R-squared values of PCA and manifold learning based method, respectively. 
Red lines are R-squared values of method based on GDS.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12729  | https://doi.org/10.1038/s41598-023-39696-0

www.nature.com/scientificreports/

model are presented in Table 1. By examining the regression coefficients in the 1, it can be inferred that there is 
no evidence of overfitting in the model. The results of descriptor search through comparative methods are pre-
sented in Table SI4 in supplementary materials and unreported results are the results of methods for generating 
descriptors that are not explicitly expressed through mathematical formulas.

In both trials, the proposed method used Rx, Vtmx, and DVEtm to create the 1D descriptors. In one trial, 
Rtm was included as an additional feature in the descriptors, while the other trial used Qtm instead.

Rx represents the radius of the covalent bond of the chalcogen element. Through various experiments and 
theoretical studies, it has been proved that the �GH can be controlled by changing the chalcogen atom in TMD 
 materials7,46–52. It has been reported that MS2 exhibits stronger hydrogen adsorption than MSe2 and MTe2 , (M 
= transition metals), because S has a much shorter covalent radius compared to Se and  Te7.

Vtmx refers to the average valence electron number of TM-X bond(where TM is the transition metal and X is 
the chalcogenide element in TMD materials). Studies by Liu et al.53 reported the hydrogen adsorption mechanism 
due to the interaction of the chalcogen element with the outermost valence electron of TM. Li et al.54 reported 
experimental results of controlling the hydrogen adsorption energy in a wide range by adjusting the electron 
density at the adsorption site by changing the average number of valence electrons in TM and X.

DVEtm is the distance to the outermost electron of the transition metal element, while Rtm is the covalent 
radius of the transition metal element. When TM-X forms a bond in a TMD material, it forms in two phases: 
trigonal prism (H phase) and octahedral prism (T phase), which is determined by the radius ratio of TM and 
X of the TM-X  bond55. In the TMD system, the �GH substantially changes according to the phase change, and 
the 1T structure is known to have a very strong hydrogen adsorption  strength56–58. In general, the chemical 
bonds between atoms in a TMD material are known to have a nature that is both ionic and  covalent59,60, and the 
ionic characteristics are interpreted as described by DVEtm, while the covalent characteristics are interpreted 
as described by Rtm.

Qtm is the principal quantum number of the transition metal. The transition metals mainly used in the 
TMD system are divided into three periods with 3d, 4d, and 5d orbitals. Many studies have been conducted in 
attempts to control �GH of TMD materials by varying the principal quantum number in one group of transition 

Figure 4.  t-SNE visualization of raw data and descriptors. (a) is directly from the raw data, and plots (b, c) are 
from the descriptors we found.

Table 1.  10 descriptors obtained from each dimension level and the coefficients of ridge regression model.

Dimension Trial 1 coefficient Trial 2 coefficient

1 Rx
Rtm−Vtmx2+DVEtm×Vtmx

−0.190 Qtm
Vtmx2−DVEtm×Vtmx−Rx

0.173

2 |Ntmf |
Vtm−WFx

0.075 BEtmx×Qx
Vtm×Wtm

0.320

3 Rx
Vtm×Etm×Wtm

−0.042 Rx
Vtm2×Wtm

0.001

4 Rx
Vtm2×Wtm

−0.012 Rx×BEtmx
Wtm×Vtm

0.017

5 tan
(

BEtmx
Wtm×Vtm2

)

−0.002 Qtm
DVEtm−WFtm

0.000

6 Qx2

WFtm×Vtm2
0.025 Rx

(Ctm−Nxf )×(Qx−Vtm)
0.069

7 Rx
Vtm2×Wtm

−0.079 Vtm−DVEx
Wtm−Qx

−0.001

8 Covh
(Ctm−Qx)×(Cx−Vtmx)

0.000 −0.108

Qtm−Vtmx
0.042

9 Vtm×Wtm
Qx

0.108 cos(LEf + Rtm) 0.002

10 log
(

Rx
Vtm×(Ntm+Wtm)

)

−0.059 Etm
Qtm−WFtm

0.052
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 metals61–67. Chia et al. calculated the MX2 system (M = V, Nb, and Ta) and reported that the �GH was signifi-
cantly changed by the change of the principal quantum  number67.

In addition to the features described above, Vtm and Wtm are repeatedly included for the entire descriptors. 
Vtm means the number of valence electrons of a transition metal element. In the periodic table, transition met-
als are divided into groups according to the number of electrons in their valence shell. Groups 4, 5, and 6 are 
called early transition metals, and groups 7–12 are typically classified as late transition metals. In Lee et al.68’s 
study, early TM MX2 (M = group 4–6) is a metallic system, whereas late TM MX2 (M = group 7–12) is a semi-
conducting system, so hydrogen adsorption is preferred in the early TM MX2  system68. Several research groups 
have also reported that the difference in the number of electrons in the outermost shell greatly affects �GH

68,69.
Wtm is the atomic weight of transition metal. Since the atomic weight is set as a unique value for each element, 

it corresponds to a unique feature, like a fingerprint, of a transition metal, unlike other primary features. That is, 
the change in Wtm is correlated with the change in all physical properties of the transition metal, including the 
atomic radius, principal quantum number, and valence electron number described above. Although the atomic 
radius, principal quantum number, and valence electron count typically appear as overlapping values in several 
TMs, the atomic weight is significantly different for each TM. Therefore, Wtm can be an important primary 
feature when describing �GH by the change in transition metal atoms.

Conclusion
In this paper we present Genetic Descriptor Search (GDS), a new descriptor search algorithm that predicts 
TMD’s property using self-exploring scheme through a genetic algorithm. GDS first create an initial population 
of trees and evolve them iteratively using the genetic process. Then, GDS select the tree that best describes the 
target property as the descriptor. This process is repeated until the desired number of descriptors is obtained. 
Our experimental results demonstrated both the effectiveness and explainability of the proposed method on the 
property prediction task. We also verified that the obtained descriptors contain variables that are consistent with 
chemical knowledge. Consequently, the proposed method, GDS, is a highly effective approach that improves 
both the performance and computational efficiency of existing descriptor search algorithms. In fields of the 
development of new 2D materials, GDS enables efficient screening and accurate prediction of material properties 
and provides valuable insights into the relationship between material structure and properties. In our case, we 
analyzed the relationship between the primary features of 2D TMD materials and the hydrogen adsorption free 
energy, and the ridge regression model with GDS selected  MnS2 with chalcogen vacancy,  FeS2 with chalcogen 
vacancy, and  TaS2 with chalcogen vacancy as the best materials for catalytic performance. Detailed the hydrogen 
adsorption free energy prediction results are reported in Table SI5 in Supplementary materials. The proposed 
algorithm, GDS, can also leverage the domain expertise in several ways such as restricting the primary feature 
and operations included in the same subtree. Thus, the performance of GDS can further be improved by utilizing 
the domain knowledge in future studies. In addition, since the GDS is not task-specific, it can be applied to the 
diverse tasks and chemical properties.

Data availability
The codes for the proposed method and dataset used in this study are readily accessible at https:// github. com/ 
andre w0411/ BRL_ proje ct2_ GDS/ tree/ main.

Received: 8 April 2023; Accepted: 29 July 2023

References
 1. Geim, A. K. Nobel lecture: Random walk to graphene. Rev. Mod. Phys. 83, 851 (2011).
 2. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional 

transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
 3. López, L. E. P., Rosławska, A., Scheurer, F., Berciaud, S. & Schull, G. Tip-induced excitonic luminescence nanoscopy of an atomi-

cally resolved van der waals heterostructure. Nat. Mater. 22, 482–488 (2023).
 4. Trallero-Giner, C., Santiago-Pérez, D. G. & Fomin, V. M. New magneto-polaron resonances in a monolayer of a transition metal 

dichalcogenide. Sci. Rep. 13, 292 (2023).
 5. Yang, T. T., Patil, R. B., McKone, J. R. & Saidi, W. A. Revisiting trends in the exchange current for hydrogen evolution. Catal. Sci. 

Technol. 11, 6832–6838 (2021).
 6. Yang, T. T. & Saidi, W. A. Reconciling the volcano trend with the butler-volmer model for the hydrogen evolution reaction. J. Phys. 

Chem. Lett. 13, 5310–5315 (2022).
 7. Wang, J. et al. The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst. 

Phys. Chem. Chem. Phys. 19, 10125–10132 (2017).
 8. Cho, J. et al. Activation of nitrogen species mixed with AR and h2s plasma for directly n-doped TMD films synthesis. Sci. Rep. 12, 

10335 (2022).
 9. Parr, R. G. Density functional theory of atoms and molecules. In Horizons of Quantum Chemistry 5–15 (Springer, 1980).
 10. Yang, T. T. & Saidi, W. A. Simple approach for reconciling cyclic voltammetry with hydrogen adsorption energy for hydrogen 

evolution exchange current. J. Phys. Chem. Lett. 14, 4164–4171 (2023).
 11. Saidi, W. A., Nandi, T. & Yang, T. Designing multinary noble metal-free catalyst for hydrogen evolution reaction. Electrochem. Sci. 

Adv., e2100224 (2022).
 12. Yang, T. T. et al. Computationally guided design to accelerate discovery of doped β-mo2c catalysts toward hydrogen evolution 

reaction. ACS Catal. 12, 11791–11800 (2022).
 13. Yang, T. T., Tan, T. L. & Saidi, W. A. High activity toward the hydrogen evolution reaction on the edges of mos2-supported platinum 

nanoclusters using cluster expansion and electrochemical modeling. Chem. Mater. 32, 1315–1321 (2020).
 14. Yang, T. T. & Saidi, W. A. Tuning the hydrogen evolution activity of β-mo 2 c nanoparticles via control of their growth conditions. 

Nanoscale 9, 3252–3260 (2017).

https://github.com/andrew0411/BRL_project2_GDS/tree/main
https://github.com/andrew0411/BRL_project2_GDS/tree/main


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12729  | https://doi.org/10.1038/s41598-023-39696-0

www.nature.com/scientificreports/

 15. Yang, T. T. & Saidi, W. A. Graphene activation explains the enhanced hydrogen evolution on graphene-coated molybdenum carbide 
electrocatalysts. J. Phys. Chem. Lett. 11, 2759–2764 (2020).

 16. Weininger, D. Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. 
Inform. Comput. Sci. 28, 31–36 (1988).

 17. Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C. & Laino, T. “Found in translation’’: Predicting outcomes of complex organic chemistry 
reactions using neural sequence-to-sequence models. Chem. Sci. 9, 6091–6098 (2018).

 18. Hamzehali, H., Lotfi, S., Ahmadi, S. & Kumar, P. Quantitative structure-activity relationship modeling for predication of inhibition 
potencies of imatinib derivatives using smiles attributes. Sci. Rep. 12, 21708 (2022).

 19. Mahmood, O., Mansimov, E., Bonneau, R. & Cho, K. Masked graph modeling for molecule generation. Nat. Commun. 12, 1–12 
(2021).

 20. Liu, Q., Allamanis, M., Brockschmidt, M. & Gaunt, A. Constrained graph variational autoencoders for molecule design. Adv. 
Neural Inform. Process. Syst. 31 (2018).

 21. Lee, S. et al. Multi-order graph attention network for water solubility prediction and interpretation. Sci. Rep. 13, 957 (2023).
 22. Ran, N. et al. Identifying metallic transition-metal dichalcogenides for hydrogen evolution through multilevel high-throughput 

calculations and machine learning. J. Phys. Chem. Lett. 12, 2102–2111 (2021).
 23. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. Sisso: A compressed-sensing method for identifying 

the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 083802 (2018).
 24. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).
 25. Bartel, C. J. et al. Physical descriptor for the gibbs energy of inorganic crystalline solids and temperature-dependent materials 

chemistry. Nat. Commun. 9, 1–10 (2018).
 26. Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9 (2008).
 27. Augusto, D. A. & Barbosa, H. J. Symbolic regression via genetic programming. In Proceedings Vol. 1. Sixth Brazilian Symposium 

on Neural Networks 173–178 (IEEE, 2000).
 28. Holland, J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and 

Artificial Intelligence (MIT press, 1992).
 29. Golberg, D. E. Genetic algorithms in search, optimization, and machine learning. Addion Wesley 1989, 36 (1989).
 30. Haupt, R. L. & Haupt, S. E. Practical Genetic Algorithms (Wiley, 2004).
 31. Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford 

University Press, 1996).
 32. Pizzuti, C. Ga-net: A genetic algorithm for community detection in social networks. In International Conference on Parallel Problem 

Solving From Nature 1081–1090 (Springer, 2008).
 33. Rostami, M., Berahmand, K. & Forouzandeh, S. A novel community detection based genetic algorithm for feature selection. J. Big 

Data 8, 1–27 (2021).
 34. Gujarati, D. N. Basic Econometrics (Prentice Hall, 2022).
 35. Database on properties of chemical elements (2020). Data retrieved from A.A. Baikov Institute of Metallurgy and Materials Science 

https:// phases. imet- db. ru/ eleme nts/ mendel. aspx? main=1.
 36. Global Integrated Drought Monitoring and Prediction System (gidmaps) Data Sets. https:// www. knowl edged oor. com/.
 37. Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 

(1999).
 38. Zou, H., Hastie, T. & Tibshirani, R. Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286 (2006).
 39. Schölkopf, B., Smola, A. & Müller, K.-R. Kernel principal component analysis. In International Conference on Artificial Neural 

Networks 583–588 (Springer, 1997).
 40. Cox, M. A. & Cox, T. F. Multidimensional scaling. In Handbook of Data Visualization 315–347 (Springer, 2008).
 41. Tenenbaum, J. B., Silva, Vd. & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 

2319–2323 (2000).
 42. Belkin, M. & Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 

(2003).
 43. Velliangiri, S. et al. A review of dimensionality reduction techniques for efficient computation. Proced. Comput. Sci. 165, 104–111 

(2019).
 44. Turchetti, C. & Falaschetti, L. A manifold learning approach to dimensionality reduction for modeling data. Inform. Sci. 491, 16–29 

(2019).
 45. Dietterich, T. G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems 1–15 (Springer, 

2000).
 46. Wang, R., Han, J., Zhang, X. & Song, B. Synergistic modulation in MX 2 (where m = mo or w or v, and x = s or se) for an enhanced 

hydrogen evolution reaction. J. Mater. Chem. A 6, 21847–21858 (2018).
 47. Pu, M., Guo, Y. & Guo, W. Wrinkle facilitated hydrogen evolution reaction of vacancy-defected transition metal dichalcogenide 

monolayers. Nanoscale 13, 20576–20582 (2021).
 48. Rohaizad, N., Mayorga-Martinez, C. C., Sofer, Z., Webster, R. D. & Pumera, M. Layered platinum dichalcogenides (pts2, ptse2, 

ptte2) for non-enzymatic electrochemical sensor. Appl. Mater. Today 19, 100606 (2020).
 49. Chen, X. et al. High electrocatalytic activity of defected MX2/graphene heterostructures (m = mo, w; x = s, se) for hydrogen evolu-

tion reaction. J. Phys. Chem. C 125, 15292–15300 (2021).
 50. Anantharaj, S. & Noda, S. Layered 2d ptx 2 (x = s, se, te) for the electrocatalytic her in comparison with mo/wx 2 and pt/c: Are we 

missing the bigger picture?. Energy Environ. Sci. 15, 1461–1478 (2022).
 51. Kong, D. et al. Synthesis of mos2 and mose2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).
 52. Padmajan Sasikala, S. et al. Longitudinal unzipping of 2D transition metal dichalcogenides. Nat. Commun. 11, 1–8 (2020).
 53. Liu, M., Hybertsen, M. S. & Wu, Q. A physical model for understanding the activation of mos2 basal-plane sulfur atoms for the 

hydrogen evolution reaction. Angew. Chem. 132, 14945–14951 (2020).
 54. Li, F. & Tang, Q. Modulating the electronic structure and in-plane activity of two-dimensional transition metal dichalcogenide 

 (MoS2,  TaS2,  NbS2) monolayers by interfacial engineering. J. Phys. Chem. C 124, 8822–8833 (2020).
 55. Gamble, F. Ionicity, atomic radii, and structure in the layered dichalcogenides of group ivb, vb, and vib transition metals. J. Solid 

State Chem. 9, 358–367 (1974).
 56. Voiry, D. et al. Conducting mos2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).
 57. Qi, K. et al. Decoration of the inert basal plane of defect-rich mos 2 with pd atoms for achieving pt-similar her activity. J. Mater. 

Chem. A 4, 4025–4031 (2016).
 58. Hinnemann, B. et al. Biomimetic hydrogen evolution: Mos2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 

127, 5308–5309 (2005).
 59. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 

(2013).
 60. Lv, R. et al. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few-layer nanosheets. 

Acc. Chem. Res. 48, 56–64 (2015).

https://phases.imet-db.ru/elements/mendel.aspx?main=1
https://www.knowledgedoor.com/


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12729  | https://doi.org/10.1038/s41598-023-39696-0

www.nature.com/scientificreports/

 61. Saifi, S., Dey, G., Karthikeyan, J., Sinha, A. & Aijaz, A. Mos2 and ws2 nanosheets decorated on metal-organic framework-derived 
cobalt/carbon nanostructures as electrocatalysts for hydrogen evolution. ACS Appl. Nano Mater. 5, 10696–10703 (2022).

 62. Urbanová, V. et al. Positive and negative effects of dopants toward electrocatalytic activity of mos2 and ws2: Experiments and 
theory. ACS Appl. Mater. Iinterfaces 12, 20383–20392 (2020).

 63. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der waals layered materials. 
Nat. Phys. 13, 931–937 (2017).

 64. Chen, T.-Y. et al. Comparative study on mos2 and ws2 for electrocatalytic water splitting. Int. J. Hydrogen Energy 38, 12302–12309 
(2013).

 65. Wu, L. et al. Cu electrodeposition on nanostructured mos2 and ws2 and implications for her active site determination. J. Electro-
chem. Soc. 167, 116517 (2020).

 66. Toh, R. J., Sofer, Z. & Pumera, M. Catalytic properties of group 4 transition metal dichalcogenides (MX 2; M= Ti, Zr, Hf; x = S, Se, 
Te). J. Mater. Chem. A 4, 18322–18334 (2016).

 67. Chia, X., Ambrosi, A., Lazar, P., Sofer, Z. & Pumera, M. Electrocatalysis of layered group 5 metallic transition metal dichalcogenides 
(MX 2, M = V, Nb, and Ta; x = S, Se, and Te). J. Mater. Chem. A 4, 14241–14253 (2016).

 68. Lee, J. et al. Hydrogen evolution reaction at anion vacancy of two-dimensional transition-metal dichalcogenides: Ab initio com-
putational screening. J. Phys. Chem. Lett. 9, 2049–2055 (2018).

 69. Chen, X. et al. Origin of hydrogen evolution activity on Ms 2 (M = Mo or Nb) monolayers. J. Mater. Chem. A 3, 18898–18905 
(2015).

Acknowledgements
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Min-
istry of Science and ICT (MSIT) of Korea (Nos. RS-2023-00208412 and 2022R1F1A1074393), and also by the 
MSIT of Korea, under the ITRC (Information Technology Research Center) support program (IITP-2023-
2020-0-01789), and the Artificial Intelligence Convergence Innovation Human Resources Development (IITP-
2023-RS-2023-00254592) supervised by the IITP (Institute for Information & Communications Technology 
Planning & Evaluation).

Author contributions
J.L., S.S., and Y.S. conceived the experiments, J.L., S.S., and J.L. conducted the experiments, Y.-K.H., W.L., and 
Y.S. supervised the experiments, J.L., S.S., and W.L., and Y.S. analyzed the results. All authors wrote and reviewed 
the manuscript. J.L., S.S., W.L., and Y.S. revised the manuscript.

Competing Interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 39696-0.

Correspondence and requests for materials should be addressed to Y.-K.H., W.L. or Y.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-39696-0
https://doi.org/10.1038/s41598-023-39696-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Genetic descriptor search algorithm for predicting hydrogen adsorption free energy of 2D material
	Preliminaries
	Symbolic regression. 
	Genetic algorithm. 

	Proposed method
	Fitness score. 
	Initialization of population. 
	Evolution using tournament selection. 
	Update of descriptor set. 

	Results
	Dataset description. 
	Quantitative evaluation. 
	Qualitative analysis based on t-SNE visualization. 
	Analysis of generated descriptors. 

	Conclusion
	References
	Acknowledgements


