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Wavelet gated multiformer 
for groundwater time series 
forecasting
Vitor Hugo Serravalle Reis Rodrigues 1,5, Paulo Roberto de Melo Barros Junior 2,5, 
Euler Bentes dos Santos Marinho 3,5 & Jose Luis Lima de Jesus Silva 4,5*

Developing accurate models for groundwater control is paramount for planning and managing life-
sustaining resources (water) from aquifer reservoirs. Significant progress has been made toward 
designing and employing deep-forecasting models to tackle the challenge of multivariate time-series 
forecasting. However, most models were initially taught only to optimize natural language processing 
and computer vision tasks. We propose the Wavelet Gated Multiformer, which combines the strength 
of a vanilla Transformer with the Wavelet Crossformer that employs inner wavelet cross-correlation 
blocks. The self-attention mechanism (Transformer) computes the relationship between inner 
time-series points, while the cross-correlation finds trending periodicity patterns. The multi-headed 
encoder is channeled through a mixing gate (linear combination) of sub-encoders (Transformer and 
Wavelet Crossformer) that output trending signatures to the decoder. This process improved the 
model’s predictive capabilities, reducing Mean Absolute Error by 31.26 % compared to the second-best 
performing transformer-like models evaluated. We have also used the Multifractal Detrended Cross-
Correlation Heatmaps (MF-DCCHM) to extract cyclical trends from pairs of stations across multifractal 
regimes by denoising the pair of signals with Daubechies wavelets. Our dataset was obtained from a 
network of eight wells for groundwater monitoring in Brazilian aquifers, six rainfall stations, eleven 
river flow stations, and three weather stations with atmospheric pressure, temperature, and humidity 
sensors.

Groundwater resources1 are among the most critical life-sustaining2 assets for communities worldwide. Aquifer 
reservoirs play a crucial role in irrigated agriculture3, water supply4,5, and industrial development6. The ground-
water level measurements are vital for water management systems7,8 since they indicate availability, accessibility, 
and possible disruptions9,10. Therefore, an accurate forecast of groundwater levels can also provide policymakers 
with insights for planning strategies and management of water resources that secure sustainable development 
in different regions11,12. These systems are usually integrated across specific areas through wells connected to 
the main reservoir. However, due to the complexity and nonlinearity in nature, such as weather fluctuations, 
groundwater recharge and discharge rate of rivers, various topography, human activities such as aquifer reser-
voir operations, and changes in atmospheric pressure, precipitation, temperature, and distinct hydrogeological 
conditions and their interactions can profoundly affect the predictions of groundwater levels13,14.

Numerous approaches have been proposed for modeling, simulating, and predicting groundwater levels 
using conceptual models15, finite difference16, and finite element17,18 approaches. Although classical models can 
be reliable for predictions, large volumes of data are necessary. Furthermore, aquifers have different proper-
ties, such as various boundary conditions underlying geological structures, porous media diffusion rates, and 
topography affecting reservoirs. Physical-based models can track water conditioning to forecast spatiotempo-
ral distributions19,20. However, the complexity and computational costs are exceptionally high since the solu-
tion of partial differential equations can take several days. Therefore, designing machine learning models to 
simulate groundwater levels that capture non-linear dynamics of reservoirs by identifying intrinsic patterns in 
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the time-series data without underlying physical processes is paramount for water management systems21–24. 
Physics-informed neural networks have also been used to simulate the physical process governing aquifers25–27. 
Furthermore, advances have been made in deep-learning-based methods for groundwater prediction28,29, 
genetic algorithms30,31, support vector machine (SVM)32–34, convolutional (CNN) and temporal convolutional 
network35,36, recurrent neural network, gated recurrent unit (GRU) and long short-term memory (LSTM)37–39, 
and graph neural networks based on Wavenets40,41 to include spatiotemporal patterns for groundwater forecasting.

Recent progress has been made toward developing deep-forecasting models to tackle the challenge of multi-
variate time series forecasting42. Most of these models initially taught to only optimize tasks in natural language 
processing are being efficiently adapted for applications in multiple fields43,44. The Transformers45, architectures 
based on the self-attention mechanisms, have shown remarkable improvement in quality and performance for 
various tasks in machine translation and computer vision46–48. These models can capture long-range dependen-
cies, interactions, and relationships in sequential data, an intrinsic characteristic of time series. Since transform-
ers for time series is an emerging subject49, many variants have been proposed for deep-forecasting50, anomaly 
detection51,52, classification53, seasonality trends54, and data augmentation55. The most recent Transform-based 
models include the Autoformer56, which explores the concept of autocorrelation to rewrite the self-attention 
block. These unique autocorrelation blocks increase robustness and provide faster and more accurate results than 
the original Transformer. Additionally, the Informer57 replaces self-attention with the Probspace self-attention 
mechanism to handle the challenges of quadratic time complexity and memory usage in the vanilla Transformer. 
Furthermore, since most time series have a sparse representation in Fourier transform, FEDformer58 introduces 
the Frequency Enhanced Block and Frequency Enhanced Attention to expand the original model and achieve 
an even higher performance in some applications.

This work proposes the Wavelet Gated Multiformer for groundwater time-series forecasting. Our method 
combines the strength of vanilla Transformer45 concepts behind the Autoformer56. It also introduces wavelet 
autocorrelation blocks in the encoder and decoder for denoising the signals. Furthermore, the self-attention 
mechanism is responsible for computing the relationship between points inside the time series. At the same 
time, the autocorrelation finds periodicity patterns (trends) inside the time series, and these mechanisms are 
mixed through a gate (linear combination) into a single encoder to improve pattern recognition. A multi-
headed encoder with gate mixing sub-encoders (Transformer and Wavelet Crossformer) can give the decoder 
a more concise signature of trending signals and improve the model’s predictive capabilities. Multifractal cross-
correlation analysis has been used successfully in a range of studies involving time series pattern investigations, 
including economic trends59,60 and climate61. This work also includes the multifractal analysis of cyclical patterns 
across multifractal regimes between pairs of time-series (stations) through the Multifractal Detrended Cross-
Correlation Heatmaps (MF-DCCHM)62 with Daubechies 4 Wavelets for high-frequency filtering.

The Geological Survey of Brazil (SGB) has developed a network of wells for groundwater monitoring in 
aquifers all over Brazil, also known as the Integrated Groundwater Monitoring Network, or RIMAS. The Uru-
cuia Aquifer System (UAS), located in the west of Bahia state, has over 60 wells for groundwater monitoring 
and a consistent booming in the agricultural economy over the last decades in its region. The economic boom 
came with a subsequent increase in demand for water supply. Furthermore, the groundwater from UAS has also 
been crucial for maintaining the flow of essential affluents of the São Francisco River, the most vital river in the 
northeast of Brazil. Hence, continued monitoring of groundwater levels in the Urucuia Aquifer is essential. In 
this work, we have investigated eight wells obtained from a publicly available dataset at RIMAS63, six rainfall 
stations, and eleven river flow stations from the National Hydrometeorological Network (RHN) provided by the 
Brazilian National Water Agency64, and datasets from National Institute of Meteorology (INMET)65 with three 
weather stations including atmospheric pressure, temperature, and humidity sensors (UTM location and alias 
used for sensors in Tables S1–S4 in Supplementary Materials), as shown in Fig. 1. The data collected has daily 
sampling and ranges from 1 January 2016 to 31 December 2019. For the station data, we perform aggregation 
and normalization using an exponential distance factor to reduce the total volume of input data while consider-
ing the relative position information of the stations concerning each well. The following section will discuss the 
main results and their trends.

Results
MF‑DCCHM for groundwater level pattern recognition.  We have employed the Multifractal 
detrended cross-correlation heatmaps (details in the  “Methods” section), a technique based on the detrended 
cross-correlation coefficients that can map the relationships between pairs of fluctuations across different multi-
fractal regimes. We have used sliding boxes with sizes of up to 5 % of the entire series for local analysis. After the 
main computations, the images are generated from tensors and plotted using Python66 and matplotlib package67. 
The plots are finally post-processed with Inkscape68 to generate the diagrams and heatmaps. These heatmaps 
can uncover non-explicit cyclic patterns between signals obtained from a combination of sensors under specific 
constraints. Figure 2 represents the Multifractal Detrended Cross-correlation heatmaps with an average over the 
intensity of the cross-correlation coefficients for each day on top of the maps. The average can provide a peculiar 
view of positive and negative trends over multiple regimes considering all possible windows and sliding boxes. 
The importance of the previous assumption relies on the possibility of uncovering and inferring cyclical patterns 
across multiple regimes for the time series of groundwater level measured from well sensors as compared to 
other regional well data, local pressure, humidity data, river levels, or weather attributes such as the local rainfall 
acquired through sensors from different stations. Our dataset is composed of daily time series from multiple 
sensors ranging from 1 January 2016 to 2019: (i) eight data series (W1–W8) representing the groundwater levels 
from the sensor inside the well logs, (ii) six data series to measure the rainfall (R1–R6) from weather stations, 
(iii) eleven data series (RI1–R11) measuring the river levels, (iv) three data sets representing the atmospheric 
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pressure (P1–P3) in different locations, (v) three data series for the local temperature (T1–T3), and (vi) three 
data series for the local humidity (H1–H3).

Figure 2a represents the cross-correlation between two wells, W1 and W8. The x-axis represents the temporal 
variation (daily time series). In contrast, the vertical axis symbolizes the variation of the scale ν considering the 
interval 10 ≤ ν ≤ 60 with a fixed-sized sliding box. The colors correspond to the variation in the intensity of 
σ , representing the cross-correlation coefficients between wells W1 and W8. The computed detrended cross-
correlation coefficients are in the interval of −1 ≤ σ ≤ 1 , as shown in the sidebar of each heatmap. On top, the 
vertical axis describes the average σ (cross-correlation coefficients) for the entire map scope. This chart is crucial 
since we can focus on identifying cyclical trends due to oscillations and uncover the trend for the entire period 
(averaged persistence or anti-persistence). These time series will have strong or weak detrended cross-correlated 
characteristics depending on the color and uniformity, given a vertical range for all scales ν.

The MF-DCCHM for the pair of wells W1 and W8 shown in Fig. 2a displays periodicity for σ > 0 and ν > 25 , 
which represents approximately 6 months by taking Pcp as a starting point ≈(2016.7;25), where Pcp denotes the 
values with positive cross-correlation coefficients. Additionally, we have identified a cyclical pattern for σ < 0 
and ν > 30 , representing approximately 8 months, where the reference value is Pcn ≈(2017.1;30) for the negative 
cross-correlation coefficients. On top of the heatmap, the averaged detrended cross-correlation coefficients (verti-
cally) show an exact cyclical pattern due to the oscillations for the entire period. Therefore, the groundwater level 
in these two wells (W1 and W8) follows a similar trend of fluctuations for the period with positive coefficients. 
In contrast, its fluctuations have an inverse relationship for negative coefficients. Furthermore, we have found 
residual cross-correlation coefficients exhibiting weak correlations, hovering around σ ≈ 0.

We have also obtained similar results for all combinations of pairs considered (eight wells) distributed in the 
region. Our results indicate that the closer the wells are to each other, the greater the probability of these wells 
following the same fluid volume fluctuations during specific periods. Figure 2b shows the MF-DCCHM for wells 
W1 and W6, which have a similar pattern as compared to the pair of wells shown in Fig. 2a (W1 and W8) in the 
time interval between January and August of 2016. However, we have detected anomalies for the entire period 
of August 2016. Figure 2b shows a uniform green color from 2016 to the end of 2019, with coefficients σ ≈ 0 , 

Figure 1.   Map diagram with the stations and wells represented in green (W1–W8), rivers stations in red, 
rainfall stations in yellow and weather stations (atmospheric pressure, humidity, and temperature) in blue. See 
Table S1 (Supplementary material) for information on latitude and longitude. The map diagram was generated 
with ArcGIS 10.876 and post-processed with Inkscape68 (Open Source Software licensed under the GPL). The 
dataset is publicly available and can be obtained from the Geoscience system of the Geological Survey of Brazil 
(GeoSGB)77. The license is Creative Commons Attribution NonCommercial 4.0 International.
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for any P ≈ (t > 2016.7; ν ), where t is the temporal variable. After conducting a detailed analysis of the conditions 
regarding all the wells, the anomaly in well W6 suggests a massive influx of water due to regular groundwater 
pumping from a nearby well (around 800 m distant, according to observations in the field).

Figure 2c shows the MF-DCCHM for river two (RI2) and river ten (RI10). Our results indicate direct and 
indirect proportionality trends related to the fluid volume in different sensors across the rivers for different 
periods. By analyzing the MF-DCCHM of eleven data series (sensors), we have discovered a standard direct 
proportionality signature (positive σ ) between the fluctuations in the rivers’ fluid level every 3 months, a char-
acteristic of the region. We have also observed a periodic abnormal pattern in the MF-DCCHM associated with 
rainfall data series. Figure 2d show the MF-DCCHM for stations R1 and R4, with an atypical pattern between 
February and March. These periodic intervals coincided with the four bands shown on the map, indicating the 
non-occurrence of rain in the period.

We have also examined the MF-DCCHM of nine data series from pressure, temperature, and humidity col-
lected in three locations. We have constructed the maps for all pairs of signals. Figure 2e represents the cross-
correlation mapping between temperature and humidity series from stations T1 and H1. The map contains 

Figure 2.   Multifractal Detrended Cross-correlation Heatmaps between the attributes: (a) W1 and W8, (b) W1 
and W6, (c) RI2 and RI10, (d) R1 and R4, (e) T1 and H1 (f) T1 and H2.
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cyclical patterns composed of bands in red where σ > 0.8 for the entire length of the series 10 ≤ ν ≤ 60 , showing 
a substantial proportionality across all regimes. We have also found the same behavior when comparing tem-
perature at T1, humidity at H1, and rain at R1 with humidity at H1. These high cross-correlated cyclical patterns 
indicate a signature that the air can saturate under high relative humidity. At a particular temperature, the air is 
unable to hold water content leading to the formation of clouds and precipitation. The temperature where the air 
gets saturated (unable to hold moisture) is also known as the dew point. However, we have noticed a weakening 
of the detrended cross-correlation coefficients affecting the direct proportionality when considering different 
locations, which can be characterized as a regional effect. Figure 2f shows the MF-DCCHM for temperature and 
humidity at stations T1 and H1. The average period for direct and inverse proportionality events is approximately 
6 months, with attenuation for different distances.

Figure 3a shows the cross-correlations for well W1 and rainfall R4 data series. In addition to the periodic-
ity reported for σ < 0 and σ > 0 , the maps can show bands composed of the absence of rain with patterns of 

Figure 3.   Multifractal Detrended Cross-correlation Heatmaps between the attributes: (a) W1 and R4, (b) 
W1 and RI10, (c) P1 and T1, (d) W1 (Simple Filter) and RI, (e) W1 (WaveLet Filter 0.35) and RI and (f) W1 
(WaveLet Filter 0.70) and RI.
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0.5 cycle/year considering σ ≈ 0 and 10 ≤ ν ≤ 60 . Figure 3b represents the MF-DCCHM for the pair well W1 
and river RI10. This result shows an intrinsic relationship in the cross-correlation between the river and well 
levels. The closer the well is to the river, the greater the cross-correction between them since interconnection 
through regional channels can provide different delays of influx and outflux of water, raising groundwater levels 
at different rates. However, factors such as rainfall intensity in the region considerably impact the affinity between 
the measurement levels from wells and river stations.

Figure 3d–f were obtained from the pair of variables well and river, including a low-pass filter with Daubechies 
4 wavelets. In Fig. 3e, f, we have used a filtering threshold of 0.35 for Fig. 2e and 0.70, respectively. After removing 
white noise, we can observe an increase in explicit uniform bands across the maps with stronger positive and 
negative cross-correlation periodicities. Therefore, by reducing high-frequency fluctuations, our signal carries 
seasonal trends characteristics of low frequencies, which can be relevant for determining the cycles. The filter-
ing helps uncover significative trends extending across multiple regimes since extracting white noise generates 
more uniform distributions along the vertical axes. It is crucial to highlight the influence of high-frequency 
fluctuations for pattern recognition and the sensitivity of the MF-DCCHM for capturing seasonal trends after 
filtering the noise.

Figures S8 and S9 (Supplementary Material) show the DFA0 and DFA1 analyses for all the series in Figs. 2 and 
3. The vertical axis represents the fluctuation, the horizontal axis represents the window size, and the vertical 
bar on the side shows the symbol and color associated with each attribute. In Figs. 2 and 3, the MF-DCCHM 
captured signatures of two regimes. We have also obtained similar curves for the DCCA0 and DCCA1 analy-
ses. These regimes can be described by the multiscale exponents shown in Tables S5–S13. These results show 
the autocorrelation and cross-correlation exponents with indications of negatively correlated ( 0.0 < α < 0.5 ), 
close to uncorrelated ( α ≈ 0.5 ), and positively correlated ( 0.5 < α < 1.0 ) patterns. Tables 1 and 2 also show an 
exponent of α > 1.0 for well W8 in the second regime represented by region II. For the DFA1 , we have found 
river RI35 in region I and river RI70 in both regions I and II. We have also obtained a multifractal exponent of 
α > 1.0 . The occurrence of α > 1.069 can also be associated with levels of high-frequency noise in the linear trend. 
Therefore, we have employed the Daubechies 4 low-pass filter and managed to amplify critical cyclical signatures, 
denoise the fluctuations, and, in the case of well W8, reduce the multifractal exponents for less than one. That is 
a highly significant result since we have shown that the MF-DCCHM is very sensitive to high-frequency noise, 
and denoising with specific thresholds can assist in uncovering low-frequency trends.

Table 1.   Cross-correlation exponents considering wells W1 and W8.

Method/time-series Region I Region II

DFA1/Well 1 (W1) 0.115± 0.005 0.54± 0.02

DFA1/Well 8 (W8) 0.35± 0.02 1.26± 0.02

DFA0/Well 1 (W1) 0.50± 0.02 0.976± 0.003

DFA0/Well 8 (W8) 0.944± 0.003 0.810± 0.009

DCCA1/W1 and W8 0.181± 0.006 0.90± 0.01

DCCA0 / W1 and W8 0.72± 0.01 0.042± 0.002

DFA1/Well 1 (W1) Wavelet Filter 0.35 0.115± 0.005 0.54± 0.02

DFA1/River 1.46± 0.02 0.76± 0.01

DFA0/Well 1 (W1) Wavelet Filter 0.35 0.50± 0.02 0.976± 0.003

DFA0/River 0.74± 0.02 0.47± 0.01

DCCA1/W1 and RI 0.907± 0.009 0.76± 0.01

DCCA0/W1 and RI 0.725± 0.008 0.800± 0.009

Table 2.   Cross-correlation exponents considering the well W1 and River RI (Wavelet Filter 0.70).

Method/time-series Region I Region II

DFA1/Well 1 (W1) Wavelet fILter 0.70 0.115± 0.005 0.54± 0.02

DFA1/River 1.44± 0.02 1.11± 0.02

DFA0/Well 1 (W1) Wavelet filter 0.70 0.50± 0.02 0.976± 0.003

DFA0/River 0.867± 0.007 0.56± 0.02

DCCA1/W1 (Wavelet filter 0.70) and RI 0.915± 0.007 0.939± 0.008

DCCA0/W1 (Wavelet filter 0.70) and RI 0.768± 0.008 0.83± 0.01

DFA1/Well 8 (W8) Wavelet filter 0.70 0.114± 0.005 0.74± 0.02

DFA1/Well 1 (W1) 0.145± 0.008 0.75± 0.01

DFA0/Well 8 (W8) Wavelet filter 0.70 0.44± 0.01 0.993± 0.001

DFA0/Well 1 (W1) 0.39± 0.01 0.999± 0.002
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Groundwater well‑log deep‑forecasting.  We have also predicted the most probable time series for a 
length I given an input signal L and a multivariate dataset obtained from multiple stations. We have proposed the 
Wavelet Gated Multiformer (details in the “Methods” section), which introduces a wavelet decomposition block 
for multivariate time-series forecasting inside the encoder. This approach simultaneously employs the advan-
tages of past information from multiple sub-encoders through a mixing gate ⊕ , as shown in Fig. 4. This proce-
dure carries a combination of Transformer-based techniques since the output from the encoder has information 
regarding the relationship between scattered points (point-wise dependencies discovery) from the self-attention 
family50,57, aggregation of selected points by dot-product, and accumulation of similar sub-series from different 
periods through the time delay block (Wavelet Crossformer). Our approach can also be extended for application 
in other fields since the deep model provides higher accuracy for some well-logs.

Figure 4 shows the decomposed signal into trend-cyclical (long-term progression) and seasonal parts to 
understand the temporal patterns during the forecasting. The Wavelet Crossformer progressively uses a decom-
position block similar to the Autoformer to pull the long-term stationary trend from intermediate predictions. 
However, instead of moving the average, we denoise the signal with a low-pass wavelet filter based on Daubechies 
4 to concentrate on the long-term trends. Removing high-frequency noise has proven to be an essential factor 
for trend feature extraction. We have performed multiple experiments with eight wells by training a sequence of 
180 time steps (days) to predict the next 30 and 60 time steps (days). The results are summarized in Table 3. The 
proposed Wavelet Gated Multiformer was also compared against the vanilla Transformer45, Autoformer56, and 
Informer57 using two different metrics: (i) Mean Squared Error (MSE), and (ii) Mean Absolute Error (MAE). 
The Wavelet Gated Multiformer, which takes advantage of the Cross-correlation Blocks, was considerably ahead 
of different transformers in wells W1 and W8. However, we have obtained mixed performance for the other six 
wells without a dominant architecture concerning the metrics MSE and MAE (Fig. 5).

Comparing the predictions of these three transformer-like architectures can also shed light on their capa-
bilities. Figure 6 shows the predictions for the well W1, with the Wavelet Gated Crossformer providing better 
performance (MSE and MAE) for an input length of 180 days and prediction length of 30 days (left) and 60 days 
(right). However, the Transformer’s prediction falls entirely out of the signal trend, and the Autoformer fails to 
stabilize the signal over the curve. The Wavelet Gated Crossformer has shown higher variance, which can be 
induced by the selected Daubechies 4 wavelet, which provides the decomposed signal in trend and seasonal parts. 
Figure 7 shows the predictions on the well W4, where the Wavelet Gated Crossformer had the worst performance 
compared to the other transformers. However, the Wavelet Gated Crossformer still captures the general trend 
in its prediction for both 30 days and 60 days prediction lengths.

Figure 4a highlights the schematics of our encoder, composed of parallel N layers of multiple sub-encoders. 
The output of each sub-encoder is then mixed through a linear combination represented by the mixing gate ⊕ . 

Figure 4.   Wavelet Gated Multiformer with (a) Encoder, (b) random batch output signal from Wavelet 
Crossformer and (c) Transformer, and (d) signal after mixing gate. The Encoder’s output (e) wavelet cyclical 
trend, (f) seasonal trend, and (g) Decoder with inner cross-correlation blocks.
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Table 3.   Time series forecasting results for wells W1–W8 with a predictive length of 30 and 60 days.

Well Crossformer Transformer Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE

W1
30 0.00925 0.07237 0.34608 0.52766 0.00987 0.08355 0.70871 0.80611

60 0.00788 0.06840 0.27607 0.48360 0.01371 0.09950 0.85244 0.89560

W2
30 0.52115 0.61905 0.06888 0.20957 0.52275 0.67489 0.09626 0.26674

60 0.46397 0.59317 0.09144 0.25529 0.74217 0.83077 0.10765 0.27641

W3
30 0.77759 0.82393 0.15215 0.33716 0.11117 0.27986 0.34037 0.55363

60 0.61682 0.66926 0,19980 0.39619 0.11153 0.27952 0.33302 0.53747

W4
30 1.04818 0.82515 0.28464 0.39411 0.50697 0.53996 0.30920 0.43256

60 1.29363 0.90303 0.24663 0.43913 0.36481 0.45908 0.58123 0,66646

W5
30 0.17268 0.36590 0.13576 0.32643 0.30318 0.52543 0.11061 0.27344

60 0.23629 0.41187 0.14203 0.32898 0.46962 0.66320 0.07404 0.22836

W6
30 0.44984 0.53776 0.29903 0.47785 0.36899 0.48609 0.17024 0.33234

60 0.44194 0.53514 0.23976 0.40862 0.22982 0.38238 0.20286 0.36610

W7
30 1.29190 0.98086 2.24612 1.46903 0.41498 0.54960 3.99748 1.97288

60 – – 2.78741 1.64702 0.15280 0.31165 4.86198 2.17386

W8
30 0.43957 0.50853 0.61219 0.74156 0.45841 0.52169 0.42389 0.60369

60 0.48149 0.54576 0.58423 0.74164 0.54797 0.57954 0.52142 0.67114

Figure 5.   Wavelet Cross-correlation Block with (a) layer’s internal operations and self-attention input for 
(b) Queries and (c) Keys (K). Random batch tensor before and after denoising with wavelet db4 filter for (d, 
e) Queries and (f, g) Keys, respectively. (h) Represent a random batch for the Q-K cross-correlation using an 
average filter and wavelet db4.
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Figure 4b–d show the output Wavelet Crossformer sub-encoder, the Transformer sub encoder, and the result 
of utilizing past information from multiple sub-encoders through the Mixing Gate ⊕ , respectively. The Wavelet 
Crossformer uses progressive decomposition blocks similar to the Autoformer to deal with long-term stationery 
trends with a low-pass wavelet filter based on Daubechies 4 to denoise the output signals and extract long-term 
trends. High-frequency signal denoising has proven to be an essential step for feature extraction inside the blocks. 
Furthermore, the Mixing Gate combines the trending output of the Transformer embeds information concerning 
the relationship between scattered points (point-wise dependencies discovery) from the self-attention family50,57 
and aggregation of selected points by dot-product, and the accumulation of similar sub-series from different 
periods through the time delay block (Wavelet Crossformer). Figure 4d clearly shows the weighted characteristics 
of both sub-encoders after the Mixing Gate. 4e, f show the decomposed signal into trend-cyclical (long-term 
progression) and seasonal parts to understand the temporal patterns. Our proposed encoder and its operations 
are detailed in the “Methods” section.

Our Decoder is shown in Fig. 4g, detailed in the “Methods” section, which has M layers and two different 
inputs, a trend cyclical and seasonal (residual) derived from the encoder input. From Fig. 4e, the cyclical trend 
part, one can see that the signal has a lower frequency (long-term tendencies) as compared to the signals in 
Fig. 4f, where fast oscillations are dominant. Our Decoder also includes the wavelet denoising through the 
Wavelet Decomposition Block. The Decoder extracts the trend from the hidden variables and allows the Wavelet 
Gated Multiformer to refine the trend prediction by denoising the signals with wavelet filters for period-based 
pattern recognition inside the Wavelet Auto-Correlation block.

The cross-correlation block from Wavelet Gated Crosformer significantly improves the removal of high-
frequency noise, as seen in Fig. 5. Before effective cross-correlation, both Q and V, as seen in Fig. 5b, c, are filtered 
with Wavelet Shrinkage Denoising using Daubechies 4 wavelet with a soft threshold for coefficients estimations. 
Fig. 5d shows the effect of wavelet filtering in two random batches with Q tensor samples. The high-frequency 
noise content is removed from the original signal under a specific threshold. The same outcomes are observed 
for K in Fig. 5f. Figure 5e, g, with the signal in the frequency domain, also supports the enhancement in quality 
provided by wavelet filtering. Finally, the outcomes of QK cross-correlation with and without wavelet denoise 
are compared in Fig. 5h, with explicit attenuation of white noise on the former. This process provides effective 
results once these signals are cross-correlated and better estimations for the TopK values used in time-delay 
aggregation of the value component V.

The deep forecasting models were trained with a multivariate dataset of rain, climate (atmospheric pressure, 
temperature, and humidity sensors), river, and well-log data that comprises 4 years of continuum daily measures 
from 34 sensors with a total of 49708 data points. We have calibrated the dataset with standardization (mean 
equal to zero and standard deviation equal to one). The input has a sequence length of 180 and a prediction 
length of 30 and 60 days. We have split the dataset with 70% for training, 10% for validation, and 20% for testing 
purposes. We have also fine-tuned and adjusted the following parameters for the validation: (i) input sequence 
length of 180, (ii) batch size of 32, (iii) encoder input and output size of 34, and (iv) 15 training epochs. For each 

Figure 6.   Predictions of 30 and 60 days for groundwater well P1 with (a, d) Wavelet Gated Multiformer, (b, e) 
Transformer, and (c, f) Autoformer with input size of 180 days, respectively.
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epoch, we have assessed the loss function concerning the training, validation, and testing to understand pos-
sible bias-variance tradeoffs and overfitting issues. Furthermore, we have also used a dropout of 0.05 to improve 
the convergence. These models were also trained with L2 loss function, ADAM70 optimizer with a learning rate 
of 10−4 and batch sizes 32 for all experiments. The training process stopped within 15 epochs. All experiments 
were implemented in PyTorch71 and executed on multiple single GPUs, NVIDIA A100, with 40 GB VRAM 
each. The hyper-parameter threshold for the wavelet db4 was fixed at 0.5, and the mixing gate coefficient for the 
Transformer was set at 0.4. The Wavelet Gated Multiformer contains two encoder layers with two sub-encoders 
in parallel and one decoder layer.

Figure 7.   Predictions of 30 and 60 days for groundwater well P4 with (a, d) Wavelet Gated Multiformer, (b, e) 
Transformer, and (c, f) Autoformer with input size of 180 days, respectively.
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Discussion
We have explored the MF-DCCHM to discover zero-order (around the mean) and first-order (around the 
first-degree polynomial) cyclical patterns and trends among all pairs of signals in our dataset. These results 
showed the local and global behavior related to dependence for all pairs of physical quantities analyzed. The 
main result can be verified in the heatmaps from Figs. 2 and 3 with the attenuation variance after filtering the 
trend, employing a sliding window, and obtaining, for all scales, all intensity levels related to correlation coef-
ficients. Therefore, the heatmap was built with much more information when compared with previous works1,2. 
Furthermore, the heatmaps provided seasonal trends and cycles of 90 and 180 days, guiding our decision to use 
the deep-forecasting models with 30 and 60 days prediction lengths. It is essential to highlight that applying the 
Daubechies (db4) wavelet filters can reduce the noise and increase the magnitude of low-frequency signals to 
uncover cyclical trends. We have also shown that using the low-pass wavelet-based filters allows one to denoise 
the fluctuations and, in the case of well W8, to reduce the multifractal exponents for less than one. We have 
also found high cross-correlated cyclical patterns indicating a signature compatible with weather anomaly. In 
this case, the air can saturate under high relative humidity, and at a particular temperature, the air cannot hold 
water content, leading to clouds and further precipitation, also known as the dew point. Furthermore, we have 
also noticed a weakening of the detrended cross-correlation coefficients when considering different locations. 
Figure 2f shows the MF-DCCHM for temperature and humidity at stations T1 and H1. The average attenuates 
for different distances. However, the period for events is of approximately 6 months.

Regarding the multivariate time-series deep-model forecasting approach, Fig. 4 shows our proposed Wavelet 
Gated Crossformer, which takes advantage of multiple sub-encoders with the mixing gates. Our model carries 
information regarding all parallel sub-encoders, and it can be generalized for multiple sub-encoders and decod-
ers, possibly extrapolating the capacities of any single transformer-like architecture. Additionally, wavelet decom-
position blocks provide another route to separate signals in trend and seasonal parts as the moving average from 
the Autoformer suffers from the border effect at the beginning and later parts of the curve. Furthermore, Wavelet 
Shrinkage Denoising can overcome this limitation on capturing trend signals by extracting wavelet coefficients 
associated with higher frequencies. The proposed architectures also implement a new Wavelet Cross-Correlation 
Block that employs wavelets to denoise the signal before the inner QK cross-correlation. The improved signal 
quality concatenates the cross-correlation and provides better estimations for the time delay aggregation. The 
Wavelet Gated Multiformer has provided better results in two of the eight wells when compared to the Autofor-
mer and Transformer, reducing Mean Absolute Error (MAE) by 31.26 % compared to the second-best performing 
transformer-like models evaluated. Nevertheless, considering only predictions trends, our approach efficiently 
captures long-term patterns and has the potential for application in other fields.

Deep learning has been successfully used to uncover subtle and hidden patterns in time series data. Deep 
Learning models have been used to understand traffic flow and congestion (time series) and have shown promise 
in time-series forecasting. The most recent deep-forecasting models can outperform statistical methods for large 
multivariate datasets. Transformers are used to perform natural language processing (NLP) tasks, with several 
architectures for long-term forecastings, such as FEDformer, PatchTST, Informer, Autoformer, and Transformer. 
Our article provides a new deep-forecasting model to predict groundwater level from a multivariate dataset 
which includes rain, climate (atmospheric pressure, temperature, and humidity sensors), river, and well data and 
comprises 4 years of continuum daily measures from 34 sensors (or 49708 data points). However, performance 
is a key limitation of Wavelet Gated Multiformer because of its parallel encoder structures and the additional 
wavelet denoise shrinkage. Future works could focus on computational costs, benefit from the new approach, 
and explore combinations of different transformers-like models. Furthermore, research prospects in this field 
could investigate the potential of the Wavelet Gated Multiformer for Time Series Forecasting using open-source 
benchmarks such as the Electricity Transformer Temperature (ETT), a crucial indicator in long-term electric 
power deployment.

Methods
Encoder.  The encoder shown in Fig.  4 is decomposed into two sub encoders (Wavelet Crossformer and 
Transformer) and mixed through a linear combination represented by the mixing gate ⊕ after N blocks. Inside 
the sub-encoder Wavelet Crossformer, the trending part of the signal is discarded at the Wavelet Decomposition 
block, while the seasonal part remains. The input of the sub-encoder is composed of the past input-I time steps 
Xen ∈ RI ,d . Let � represent the Wavelet-Correlation Block and Ŵ the Wavelet Decomposition Block, the overall 
equation of the l-th Crossformer sub encoder layer can be expressed as follows:

where Tl,1
en represents a removed trend signal from the Crossformer, χ l

i = Sl,2en such that l = {1, ..,N} represents 
the outcome of the l-th sub-encoder layer and X0

en is the embedded Xen . The seasonal component after the first 
or second k = {1, 2} series wavelet decomposition block in the l-th sub-encoder layer is represented by Sl,ken.

On the other hand, in the Transformer encoder, there is no Wavelet Decomposition, and the signal is fully 
considered. Its equations have the following operations:

(1)
Sl,1en ,T

l,1
en = Ŵ(�(χ l−1

en )+ χ l−1
en )

Sl,2en ,T
l,2
en = Ŵ(FeedForward(Sl,1en )+ Sl,1en )

(2)
Al,1
en = Norm(MultiHeadAttention(χ l−1

en )+ χ l−1
en )

Al,2
en = Norm(FeedForward(Al,1

en)+ Al,1
en)



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12726  | https://doi.org/10.1038/s41598-023-39688-0

www.nature.com/scientificreports/

where χ l
j = Al,2

en represents the outcome of the l-th Transformer layer. The final operation in the mixing gate 
χ l
en = χ l

i ⊕ χ l
j  can be expressed as:

and Gen is the Encoder output trend, composed of a linear combination of parallel sub-encoders. The model is 
not restricted to only two sub-encoders as it can be generalized for a linear combination of multiple encoders.

Decoder.  In this model, the decoder input is divided in two: a seasonal part χdes ∈ R( I2+O)xd and a cyclical 
trend part χdet ∈ R( I2+O)xd , each of which is formulated by a specific rule. χdes is the concatenation of the latter 
half of the seasonal part of the encoder’s input with O zeros, and χdet is the concatenations of the latter half of 
the trend part of the encoder’s input with O values representing the average of the encoder’s input χen . One can 
put it formally as:

where χens,χent ∈ R
I
2 xd are the seasonal and trend parts of χen , respectively, and χ0,χMean ∈ ROxd represent 

placeholders filled with zero and the mean of χen , respectively.
Figure 4 shows the decoder with two components: the trend-cyclical accumulated over the decoder and a 

seasonal part stacked in a series of blocks. We have introduced wavelet denoising in the Wavelet Decomposition 
Block to replace the original Series Decomposition block from Autoformer. Inside the decoder, information 
from the encoder is integrated as K and V on one of its Autocorrelation blocks with wavelet denoising. The 
decoder extracts the trend from the hidden variables and allows the Wavelet Gated Multiformer to refine the 
trend prediction by denoising the signals with wavelet filters for period-based pattern recognition inside the 
Wavelet Cross-Correlation block. The decoder has M layers and receives input χ l

en from the encoder, and past 
information from the decoder, such that the l-th decoder layer can be represented by χ l

de = Decoder(χ l−1
de ,χN

en) , 
where the internal operations can be described as:

where χ l
de = Sl,3de , l ∈ {1, ...,M} is the output of l-th decoder layer. χ0

de is embedded from χdes and T0
de = χdet . There-

fore, the decoder’s prediction output is represented by the sum of two decomposed components WS ∗ χ
M
de + TM

de  , 
where WS indicates the projection of seasonal components XM

de  to the proper output dimension and M is the 
number of decoder layers. The variables Sl,3de and Tl,3

de  characterize the seasonal and trend-cyclical components 
for the first, second, and third wavelet-series decomposition block, respectively. The Wl,i represents the projec-
tion for the trend Tl,i

de , where i = {1, 2, 3} is directly associated with the first, second, and third decoder’s inner 
wavelet-series decomposition block.

Wavelet decomposition block.  Wavelet shrinkage denoising.  Wavelets form a basis in the space of in-
tegrable square functions and, as other approaches like Fourier series, local polynomials, splines, and kernels, 
can be used to represent unknown functions. One advantage of wavelets over the other approaches is that they 
are localized in time, as this property substantially decreases the computational cost in the representation of the 
functions. The Wavelet Transform (WT) coefficients of a signal x(t) are obtained from the following equation:

where ψ(t) is the continuous root wavelet scaled by a factor a and mapped with factor b. The continuous repre-
sentation has infinite coefficients a and b mapped through the Continuous Wavelet Transform (CWT). However, 
due to the intense computational cost, the CWT is only feasible when considering discrete signals with limited 
coefficients. Instead, most applications use the Discrete Wavelet Transform (DWT). In DWT, the efficiency comes 
from the increase of a and b factors based on the power of two.

Some of these decomposed wavelet coefficients correspond to signal averages, and others are associated with 
details on the original signal. DWT coefficients are filtered with a threshold to denoise or recover the partial 
trend. Additionally, we apply an inverse wavelet transform to restore the filtered signal to the time domain, a pro-
cess known as wavelet shrinkage denoising. Based on the methodology developed by Donoho and Johnstone72, 
we have employed soft threshold to estimate the wavelet coefficients of the trending signal.

Wavelet decomposition.  We have used the decomposition to cluster the signal in two subgroups repre-
senting a long-trend pattern with low frequency and a seasonal part with higher frequency and more fluctua-
tions. Unlike Autoformer, which computes an average of a padded signal, we have proposed the low-pass filter 

(3)Gen = α ∗ SN ,2
en + β ∗ AN ,2

en

(4)

χens ,χent = Ŵ(χen I
2 :I
)

χdes = Concat(χens ,χ0)

χdet = Concat(χent ,χMean)

(5)

Sl,1de ,T
l,1
de = Ŵ(�(Xl−1

de )+ Xl−1
de )

Sl,2de ,T
l,2
de = Ŵ(�(Sl,1de ,X

N
en)+ Sl,1de )

Sl,3de ,T
l,3
de = Ŵ(FeedForward(Sl,2de )+ Sl,2de )

Tl
de = Tl−1

de +Wl,1 ∗ T
l,1
de +Wl,2 ∗ T

l,2
de +Wl,3 ∗ T

l,3
de

(6)Xw(a, b) =
1

|a|1/2

+∞∫

−∞

x(t)ψ(
t − b

a
)dt,
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based on wavelet decomposition, which removes the need for paddings. For a signal χ ∈ RLxd the decomposition 
process is:

where S and T denote the seasonal and trend-cyclical signals, respectively, and the soft threshold72 is employed 
to filter the wavelet coefficients of the trending signal. For the sake of simplicity, the decomposition blocks were 
denoted as S,T = Ŵ(χ) in the previous sections.

Wavelet cross‑correlation block.  The Wavelet Cross-correlation Block is an extension of the autocor-
relation block introduced by the Autoformer architecture56. Figure 5 shows that, in Wavelet Cross-correlation 
Block, the components Q and K are denoised through wavelet shrinkage before the autocorrelation computation. 
The cross-correlation is done in three steps for better computation efficiency: (i) Fast Fourier Transform, (ii) 
multiplication in the frequency domain, and (iii) an inverse Fast Fourier Transform. The Wavelet cross-correla-
tion block also discovers period-based dependencies by aggregating sub-series with the time-delay mechanism. 
The time delay aggregation is responsible for rolling the series based on selected time delay τ1, ..., τn . Therefore, 
the block aligns similar sub-series with a subsequent aggregation through the softmax normalized confidences. 
For a series X with length L and a single head, we can replace the self-attention mechanism considering that Q,K, 
and V values are obtained through the following operations:

where argmax Topk(·) represents the arguments of the Topk cross-correlations, RQ,K  is cross-correlation, 
Roll(V , τi) represents the operation where V is shifted left by τi , during which elements that are shifted beyond 
firs position are placed at last position. Furthermore, K, V are from the encoder XN

en , which is resized to length 
O, and Q comes from the previous block of the decoder. Additionally, the multi-head would include the Qi , , 
Ki , and Vi , for i = {1, ..., h} , where h represents the number of heads. The i-th head contains Qi ,Ki ,Vi ∈ R

dmodel
h  , 

where dmodel represent the channels.

Multifractal detrended cross‑correlation heatmaps.  The Multifractal Detrended Cross-Correlation 
Heatmaps were strictly computed according to Paulo et al.62. The procedure is to first obtain the long-range cor-
relation through the Detrended Fluctuation Analysis (DFA)69,73. Additionally, we have estimated the Detrended 
Cross-Correlation Analysis (DCCA)74 for long-range cross-correlation memories. Finally, we compute the aver-
age over the fluctuations F2X for all m-ith sliding boxes with different sizes v over the entire series, such that:

f 2X (m, v) represents the variance and covariance of fluctuations, Mv is the number of windows inside the entire 
series, and X characterizes the methods DFA and DCCA​.

The computed variance and covariance can be characterized by a power-law FX ≈ vα where v represents the 
box size. The scaling factor α was obtained by linearization log(FX)X log(v) , where α = � corresponds to the 
cross-correlation. Therefore, we can classify anti-persistent and persistent patterns based on the multifractal scal-
ing factor α . The trend can reverse shortly for 0 < α < 0.5 . However, white noise could affect the integrated series 
and provide 0 cross-correlations for α = 0.5 . The integrated signal continues the previous trend for 0.5 < α < 1.0.

The final mapping quantifies the cross-correlation from a pair of non-stationary signals75 through its coef-
ficients across multifractal regimes. We compute the Cross-Correlation Coefficient (CCC) as follows:

where i = {0, 1} , and σDCCAi (v, t) varies in the interval −1 ≤ σDCCAi ≤ 1 . The values of σDCCAi = {1, 0,−1} 
represents maximum cross-correlation, no cross-correlation and anti-cross-correlation. This method allows 
one to observe potential cyclical patterns for different scales and multifractal regimes in one map and their 
consistency. The average sampling of DCCA over all possible windows of size v is shown on top of the cross-
correlation heatmap.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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(7)
T = WaveletDecomp(χ , threshold)

S = χ − T

(8)

τ1, ..., τk = argmax Topk(RQ,K (τ ))

R̂Q,K (τ1), ..., R̂Q,K (τn) = SoftMax(RQ,K (τ1), ...,RQ,K (τn))

CC(Q,K ,V) =

k∑
i=1

Roll(V , τi)R̂Q,K (τi)

(9)F2X =
1

Mv

Mv∑
m=1

f 2X (m, v)
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