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Generative adversarial networks 
based skin lesion segmentation
Shubham Innani 1*, Prasad Dutande 1, Ujjwal Baid 1,2, Venu Pokuri 3, Spyridon Bakas 2, 
Sanjay Talbar 1, Bhakti Baheti 1,2,4 & Sharath Chandra Guntuku 3,4

Skin cancer is a serious condition that requires accurate diagnosis and treatment. One way to assist 
clinicians in this task is using computer-aided diagnosis tools that automatically segment skin lesions 
from dermoscopic images. We propose a novel adversarial learning-based framework called Efficient-
GAN (EGAN) that uses an unsupervised generative network to generate accurate lesion masks. It 
consists of a generator module with a top-down squeeze excitation-based compound scaled path, an 
asymmetric lateral connection-based bottom-up path, and a discriminator module that distinguishes 
between original and synthetic masks. A morphology-based smoothing loss is also implemented to 
encourage the network to create smooth semantic boundaries of lesions. The framework is evaluated 
on the International Skin Imaging Collaboration Lesion Dataset. It outperforms the current state-of-
the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and accuracy of 
90.1%, 83.6%, and 94.5%, respectively. We also design a lightweight segmentation framework called 
Mobile-GAN (MGAN) that achieves comparable performance as EGAN but with an order of magnitude 
lower number of training parameters, thus resulting in faster inference times for low compute resource 
settings.

Skin cancer results in approximately 91,000 deaths annually1. Early detection and regular monitoring are crucial 
in improving the quality of diagnosis, ensuring accurate treatment planning, and reducing skin cancer mortal-
ity rates2. A common detection method involves a dermatologist examining skin images to identify ambiguous 
clinical patterns of lesions that are often not visible to the naked eye. Dermoscopy, a widely used technique, helps 
dermatologists differentiate between malignant and benign lesions by eliminating surface reflections on the skin, 
thereby improving the accuracy of skin cancer diagnosis3.

Skin lesion segmentation, a method to differentiate foreground lesions from the background, has received a 
lot of attention for over a decade due to its high clinical applicability. Computer-aided diagnostic algorithms for 
automated skin lesion segmentation could aid clinicians in precise treatment and diagnosis, strategic planning, 
and cost reduction. However, automated skin lesion segmentation is challenging due to several factors7 such as 
(1) large variance in shape, texture, color, geographical conditions, and fuzzy boundaries, (2) the presence of 
artifacts such as hair and blood vessels, and (3) poor contrast between background skin and cancer lesions in 
addition to artifacts from image acquisition, as shown in Fig. 1.

Prior work.  Pixel-level skin lesion segmentation algorithms can be divided into approaches built upon (a) 
classical image processing and (b) deep learning-based architectures. Deep learning-based methods can be fur-
ther classified into Convolutional Neural Networks (CNN) and Adversarial Learning-based Generative Net-
works (GAN) based on the network topology. A brief review of a few prior works in these categories is presented 
in Table 1. The performance of classical image processing approaches heavily depends on post-processing, such 
as thresholding, clustering, and hole filling, tuning hyperparameters, and manual feature selection. Manually 
tuning these parameters can be expensive and could result in poor generalizability. Lately, deep learning-based 
approaches have surpassed several classical image processing-based approaches, mainly due to the wide avail-
ability of large labeled datasets and compute resources. Deep convolutional neural networks (DCNN) based 
methods gained a lot of popularity for skin lesion segmentation prior to the introduction of Transformer and 
GAN-based approaches in the field of medical imaging23–27.
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The success of prior DCNN-based approaches in skin lesion segmentation is primarily based on supervised 
methods that rely on large labeled datasets to extract features related to the image’s spatial characteristics and 
deep semantic maps. However, gathering a large dataset with finely annotated images is time-consuming and 
expensive. To address this challenge, Goodfellow et al.28 introduced Generative Adversarial Networks (GANs), 
which have gained popularity in various applications, including medical image synthesis, due to the lack of widely 
available finely annotated data. Several recent and relevant GAN-based approaches in skin lesion analysis from 
the literature are listed in Table 1. Unsupervised learning-based algorithms that can handle large datasets with 
precision and high performance without requiring ground truth labels carry significant promise in addressing 
real-world problems such as computer-aided medical image analysis.

In our work, we address the challenges of skin lesion segmentation by utilizing generative adversarial networks 
(GANs)28, which can generate accurate segmentation masks with minimal or no supervision. GANs work by 
training a generator and discriminator to compete against each other, where the generator tries to create real-
istic images, and the discriminator tries to differentiate between real and generated images (Fig. 2). However, 
designing an effective GAN for segmentation takes considerable time, as the performance is highly dependent 
on the architecture and choice of the loss function. Our study aims to optimize all three components (generator, 
discriminator, and loss function) for better segmentation results. The choice of the loss function is critical for 
the success of any deep learning architecture, and our approach takes this into account29.

Proposed work.  We propose two GAN frameworks for skin lesion segmentation. The first is Efficient-GAN 
(EGAN), which focuses on precision and learns in an unsupervised manner, making it data-efficient. It uses an 

Figure 1.   Challenges in skin lesion segmentation using dermoscopic images. First row: (a) minor variation in 
the lesion and skin color, (b) low contrast between wound and skin, (c) occlusion in lesions due to hair, and (d) 
artifacts from image acquisition. Second row: a few examples from the ISIC Lesion dataset4 used in this paper.

Table 1.   Related work on skin lesion segmentation with CNN and GAN-based approaches.

Model name/citation One phrase description Architecture

Saliency Maps5 Segmentation based on Supervised Saliency Maps Classical

UNet Segmentation6 Stochastic weight averaging using UNet CNN

Deep CNN7 Full Resolution Networks CNN

BLA-Net8 deformable convolution ResNet34 with auxiliary boundary learning network CNN

ERU9 EfficientNetB4 with UNet based encoder-decoder CNN

AS-Net10 Combines spatial and channel attention for learning CNN

Attention Network11 Attention mechanism with high resolution features CNN

SEACU-Net12 Squeeze and Excitation based Attentive ConvLSTM CNN

Conditional Random Fields13 Deep Learning Approach with Pre and Post Processing CNN

FAT-Net14 Feature Adaptive Transformers Transformer

DFE-Net15 CNN and Transformer based Feature extraction Transformer

SLT-Net16 CSwin Transformer replaced Conv module in UNet Transformer

cGAN17 Conditional Generative Adversarial Network GAN

Generative Network18 Decisive Generator for skin lesion segmentation GAN

DCGAN19 Generating Synthetic Skin Images GAN

FCA-Net20 Factorised channel attention and multi-scale features GAN

DAGAN21 Deep Neural Network with generative Networks GAN

UNet-SCDC GAN21 Leveraging power of discriminators GAN

SLS-Net22 Lightweight device model with GAN GAN
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encoder-decoder-based generator, patchGAN30 based discriminator and smoothing-based loss function. The 
generator architecture uses a squeeze and excitation-based compound scaled encoder and a lateral connection-
based asymmetric decoder. This architecture captures dense features to generate fine-grained segmentation 
maps, and the discriminator distinguishes between synthetic and original labels. We also implement a morpho-
logical-based smoothing loss function to capture fuzzy boundaries more effectively.

Although deep learning methods provide high precision for lesion segmentation, they are computation-
ally expensive, making them impractical for real-world applications with limited resources like dermatoscopy 
machines. This presents a challenge in contexts where high-resource devices are unavailable to dermatologists. To 
address this issue, various devices like MoleScope II, DermLite, and HandyScope have been developed for lesion 
analysis and support low computational resources. These devices use a special lens with a smartphone. To create a 
more practical model for such real-time applications, we propose Mobile-GAN (MGAN), which is a lightweight 
unsupervised model consisting of an Inverted Residual block31 with Atrous Spatial Pyramid Pooling32. With this 
model, we aim to achieve good segmentation performance in terms of the Jaccard score with lower resource 
strain. With only 2.2M parameters (as opposed to 27M parameters in EGAN), the model can run at 13 frames 
per second, increasing the potential impact of computer vision-based approaches in day-to-day clinical practice.

Results
Performance of CNN‑based models.  We implemented and analyzed the results of several CNN and 
GAN-based approaches for this task. Table 2 summarizes the evaluation of CNN and GAN-based approaches on 
the unseen test dataset. We started with one of the most popular architectures in medical imaging segmentation-
UNet33. Since this architecture is a simple stack of convolutional layers, the original UNet provided a baseline 
performance on ISIC 2018 dataset. We strategically conducted several experiments using deeper encoders like 

Figure 2.   Flowchart of the proposed framework. The generator module is an encoder-decoder network. The 
discriminator classifies the segmentation result as real or fake.

Table 2.   Results of CNN and GAN-based approaches including our proposed algorithms (MGAN and 
EGAN) on the ISIC 2018 test dataset. *Indicates the model was re-trained using the authors’ source code. ‘–’ 
indicates metrics not being reported.

Approach Network Dice coefficient Accuracy Jaccard Index Sensitivity Specificity

UNet*33 CNN 71.53 80.7 60.58 85.8 87.8

DeepLabV3+*37 CNN 76.3 91.4 77.3 87.8 88.1

FPN*38 CNN 84.46 92.4 73.76 88.2 87.8

Mobile-UNet*39 CNN 83.9 91.2 71.32 90 94.1

Res-UNet*39 CNN 86.3 90.8 76.77 90.9 93.7

Eff-UNet*40 CNN 89.56 92.2 81.42 90.7 92.6

CPFNet36 CNN 89.89 96.3 82.86 89.53 96.55

ERU9 CNN 88.12 94.35 80.56 90.32 96.92

FAT-Net14 Transformers 89.03 96.99 82 91 95.3

SEACU-Net12 CNN 87.58 93.60 78.12 – –

SLT-Net16 Transformer 82.85 – 71.51 – –

AS-Net10 CNN 88.07 94.66 80.51 89.92 95.72

cGAN21 GAN 83.8 90.2 74.8 89.2 92.9

DCGAN19 GAN 85.8 91.9 74.4 89.1 95.4

FCA-Net20 GAN 88.8 93.8 77.2 94.7 92.1

DAGAN21 GAN 88.5 92.9 82.5 95.3 91.1

MGAN (Ours) GAN 88.3 93.4 75.0 93.8 92.1

EGAN (Ours) GAN 90.1 94.5 83.6 93.6 95.5
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ResNet, MobileNet, EfficientNet, and asymmetric decoders (described in the Methods section). The concatena-
tion of low-level features is skewed, based on the number of output feature maps, rather than linking each block 
from the encoder, like in traditional UNet. Adding a batch normalization layer after each convolutional layer 
also helped achieve better performance. For detailed evaluation with CNN-based methods, we also experiment 
with DeepLabV3+32 and Feature Pyramid Network (FPN)34 decoders in combination with various encoders as 
described above, and the modification led to improved performance. These results on the ISIC 2018 test set from 
our experimentation, i.e., us running the authors’ code to train the proposed models, are listed with ∗ in Table 2.

Performance of GAN‑based models.  Table 2 also lists several results from recent literature on this data-
set for comparison completeness. Models trained by us are submitted to the evaluation server for a fair evalu-
ation. We then compare the results of various GAN-based approaches, as shown in Table 2. We observe that 
a well-designed generative adversarial network (GAN) improves performance compared to techniques based 
on CNNs for medical image segmentation. This demonstrates GANs ability to overcome the main challenge 
in this domain of not having large labeled training data. Our proposed EGAN approach outperforms all other 
approaches in terms of Dice coefficient. A few works8,9,35,36 report better performance compared to our results. 
But these works created and used an independent test split from ISIC training data and did not use the actual 
ISIC test data.

Performance of lightweight models.  We designed a lightweight generator model called MGAN, based 
on DeepLabV3+ and MobileNetV2, which achieves results comparable to our EGAN model in terms of Dice 
Coefficient with significantly fewer parameters and faster inference times. Table  3 compares various mobile 
architectures based on the Jaccard Index, the number of parameters in a million, and inference speed on the test 
dataset for a patch size of 512× 512 . As we can see from the table 3, MGAN has 2.2M parameters providing the 
Inference Speed of 13FPS. Even though SLSNet reports a higher performance in terms of the Jaccard Index, this 
result is evaluated on the independent validation test set.

Visualization of the learned representations.  One of the criticisms of deep neural networks, which 
can make valuable and skillful predictions, is that they are generally opaque, i.e., it is unclear how or why a 
particular prediction or decision is made. To address concerns about the opacity of deep neural networks, we 
utilized the internal structures of convolutional neural networks that work on 2D image data to investigate 
the representations learned by our unsupervised model. Figure 4 displays the segmentation results for visual 
interpretation. The proposed GAN framework also demonstrates better segmentation performance regardless 
of non-skin objects or artifacts in the image. We assessed and visualized the 2D filter weights of the model to 
explore the features learned by the model. Additionally, we investigated the activation layers of the model to 
understand precisely which features the model recognized for a given input image, and we visualized the results 
in Fig. 3. We selected the output of seven blocks of the encoder (Block1-Block7) and four output feature maps 
from the decoder (D1-D4) for visualization, as the model has numerous convolutional layers in each architec-
ture block.

Table 3.   Comparison of various Mobile networks at the task of skin lesion segmentation on the ISIC 2018 
dataset. The inference column indicates the Frames per Second (FPS) on original Images with a patch size of 
512× 512. Values of the proposed model MGAN are in bold.

Method Jaccard Index Parameters (M) Inference (FPS)

ENet41 72.7 0.36 27

SLSNet22 78.40 2.35 16

GAN FCN42 77.80 10.2 8

MGAN 75 2.2 13

Figure 3.   Visualization of the learned feature maps of the proposed EGAN architecture.
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Discussion
This paper has three main findings. First, we proposed a novel unsupervised adversarial learning-based frame-
work (EGAN) based on Generative Adversarial Networks(GANs) to segment skin lesions in a fine-grained 
manner accurately. In data-scarce applications such as skin lesion segmentation, the success of GANs relies on 
the quality of the generator, discriminator, and loss function used. One of the main challenges in the field of 
medical imaging is the availability of large annotated data, collecting which is a tedious, consuming, and costly 
task. To address the data-efficiency challenge, we trained our model unsupervised, allowing the generator module 
to capture features effectively and segment the lesion without supervision. Our patchGAN-based discriminator 
penalized the adversarial network by differentiating between labels and predictions. As we do not backpropagate 
the error during training in the discriminator, no such advancement is needed as PatchGAN-based architecture 
is powerful to classify between real and fake. In skin lesion segmentation, capturing contextual information 
around the segmentation boundary is crucial for improving performance8. To address this, we implemented the 
morphological-based smoothing loss to capture fuzzy lesion boundaries, resulting in a highly discriminative 
GAN that considers contextual information and segmented boundaries. The performance-exclusive EGAN 
approach outperforms prior works achieving improved performance with a dice coefficient of 90.1% on the 
ISIC 2018 test dataset when trained with adversarial learning and morphology-based smoothing loss function 
compared to using the dice loss alone, which achieved a dice coefficient of 88.4%. Our evaluation of the ISIC 
2018 dataset demonstrates significantly improved performance compared to existing models in the literature. 
Furthermore, the proposed framework’s potential can be extended to other medical imaging applications.

Second, we proposed a lightweight segmentation framework (MGAN) that achieves comparable results while 
being much less computationally expensive – with an order of magnitude lower number of training parameters 
and significantly faster inference time. The MGAN approach is suitable for real-time applications, making it 
a viable solution for cutting-edge deployment, for instance, in low compute resource contexts. Our proposed 
framework includes two generative models: EGAN and MGAN, which are designed to balance performance 
and efficiency. Integrating models like MGAN with dermoscopy devices has the potential to revolutionize the 
future of dermatology, enabling more efficient, accurate, real-time segmentation and accessible care for patients 
with skin lesions.

Third, our approach enables visualizing the learned representations of the model to interpret the predic-
tions. This is especially crucial for clinical algorithms-in-the-loop applications such as skin lesion segmentation, 
where the decisions of automated segmentation methods could be considered by clinicians in the context of the 
features learned by the model.

Limitations: Although our model achieved promising performance on ISIC 2018 dataset, the performance 
could not be evaluated on other datasets. We explored different datasets such as Derm7pt43, Diverse Dermatology 
Images44, and Fitzpatrick 17k45, among others, to assess the generalizability of the proposed approach. However, 
we noticed that segmentation masks were not available at the time of writing this paper. While segmentation 
masks were available for the PH2 dataset46, we could not access the dataset. Deep Learning models are compu-
tationally intensive and require significant resources. EGAN model is computationally heavy for deployment 
in real-time clinical applications. This can limit the use in resource constrained environments or devices with 
limited processing capabilities. In such scenarios, models such as MGAN could be utilized.

Figure 4.   Comparison of the segmentation by various CNN and GAN-based approaches. Each column serially 
depicts the input image, label, output of various CNN-based approaches, and output of proposed MGAN and 
EGAN. Ground truth and segmented lesions are marked with green and red curves respectively.
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Methods
The skin lesion GAN-based segmentation framework we propose in this work is shown in Fig. 2. The framework 
contains three main components: (1) the generator, which consists of an encoder to extract feature maps and a 
decoder to generate segmentation maps without supervision and adapt to variations in contrast and artifacts; 
(2) the discriminator, which distinguishes between the reference label and the segmentation output; and (3) 
appropriate loss functions to prevent overfitting, achieve excellent convergence, and accurately capture fuzzy 
lesion boundaries.

Dataset.  The proposed segmentation approach was evaluated using the ISIC 2018 dataset, a standard skin 
lesion analysis dataset. This dataset contains 2594 images with corresponding ground truth, of which 20% (514 
images) were used for validation. The images in the dataset vary in size and aspect ratio and contain lesions with 
different appearances in various skin areas. Some sample images from the dataset are shown in Fig. 1. To ensure 
a fair evaluation, the results of the test set were uploaded to the online server of the ISIC 20184 portal.

Generative adversarial network.  Goodfellow et al.28 first introduced Generative adversarial networks 
(GAN) to generate synthetic data. Labeling clinical information is a tricky and time-consuming task requiring 
a specialist. Several medical imaging applications lack adequately annotated data. Inspired by this, the proposed 
work leverages unsupervised GAN for skin lesion segmentation. To begin with the methodology, we first briefly 
discuss generator and discriminator concepts. An adversarial network comprises a generator (G) and a discrimi-
nator (D). The generator maps a random vector γ from source domain space α to generate the desired output in 
the target domain β and tries to fool the discriminator. D learns to classify whether β is real (reference ground 
truth) or fake (generated by (G)). The generator’s distribution pG learns over α data, input noise distribution is 
defined as Pγ(γ),which maps data space as (G)(γ ; θG ), where differentiable function (G) has parameters θG . (D)
(α ) is the probability distribution of α from the data instead of pG.

The adversarial training is represented by following equation28 which is minmax game between G and D :

where V is function of Discriminator (D), Generator (G),γ is from a input noise distribution Pγ (γ ) , true samples 
are from Pdata(α) and θG are generator paramaters and θD are discriminator paramaters.

Segmentation framework.  Generally, segmentation frameworks consist of encoder-decoder-based 
architecture. The encoder module is the block for feature extraction to capture spatial information within the 
image. It reduces the spatial size, i.e. the dimension of the input image, and decreases feature map resolution to 
catch significant level features. The decoder recuperates the spatial data by upsampling the feature map extracted 
by layers of the encoder and providing the output segmentation map. We propose to modify the architecture 
design of the encoder-decoder to capture the dense feature map rather than the traditional encoder and change 
the decoder appropriately, as shown in Fig. 5. Including squeeze and excitation-based compound scaled encod-
ers significantly improves efficiency in terms of results.

Design of encoder.  Advancement of CNN designs is dependent on the accessibility of infrastructure and, after-
ward, the scaling of the model in terms of width (w), depth (d), or resolution (r) of the network to accomplish 
further significant improvement in performance when there is an expansion in the availability of resources. 
Instead of doing this scaling manually and arbitrarily, Tan et al.47 proposed a novel systematic and automatic 
scaling approach by introducing a compound coefficient. The novel technique of compound coefficient φ to 
efficiently scale the network’s depth, width, and resolution with a proper arrangement of scaling factors is per 
the following equation:

The encoder is built using the above equation proposed by Baheti et al.40, consisting of seven building blocks. 
Each basic building block for this encoder model is squeezing, and excitation functions48 with mobile inverted 
bottleneck convolution (MBConv), as shown in Fig. 5b. Also, swish activation is used in each encoder block, 
enhancing performance.

Design of decoder.  The encoder downsamples the input image to a smaller resolution and captures contextual 
information. A decoder block likewise called an upsampling path, comprises many convolutional layers that 
progressively upsample the feature map obtained from the encoder. The conventional segmentation framework 
like UNet33 has symmetric encoder and decoder architectures. The proposed architecture builds upon a com-
pound scaled squeeze & excitation-based encoder and decoder as an asymmetric network. The output features 
from the encoder are expanded in the decoder blocks consisting of bilinear upsampling. The low-level features 

(1)
min
G

max
D

V(D,G) = Eα∼Pdata(α)[logDθD (α)]

+ Eγ∼Pγ (γ )[log(1− logDθD (GθG (γ )))]

(2)

w : Network width = βφ

d : Networkdepth = αφ

r : Input Resolution = γ φ

satisfying α × β2 × γ 2 ≈ 2

also α ≥ 1β ≥ 1γ ≥ 1
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from the encoder are combined with the higher-level feature maps from the decoder of respective sizes to gener-
ate a more precise segmentation output.

Design of lightweight segmentation framework.  To develop a lightweight segmentation architecture for the gen-
erator, we leverage the power of MobileNetV231 and DeepLabV3+32 consisting of atrous spatial pyramid pooling 
module (ASPP) as shown in Fig. 6. MobileNetV2 uses depthwise separable convolution and inverted residual 
blocks as the basic building module, as shown in Fig. 6 above the encoder. MobileNetV2 is modified such that 
the output stride, i.e., the ratio of the input image to the output image, is 8. It has fewer computations and 
parameters and is thus suitable for real-time applications. The ASPP block has a variety of dilation rates, i.e., 1, 
6, 12, and 18, to generate multi-scale feature maps and further integrate by concatenation. This feature map is 
upsampled and integrated with a low-level intermediate feature map from the contracting path, i.e., encoder, 
to generate fine-grained segmentation output. The feature extraction consisted of blocks of inverted residual 

Figure 5.   The architecture of the proposed generator in the EGAN architecture.

Figure 6.   The architecture of the lightweight and efficient segmentation network MGAN. This architecture is 
based on an inverted residual network and atrous spatial pyramid pooling. The inverted residual block is shown 
above Encoder.
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blocks, as shown in Fig. 6. The stride of the latter blocks is set as one. Images of size 512 × 512 × 3 are fed as input 
to MGAN architecture.

Discriminator.  In our architecture, we have a generator and a discriminator. The discriminator supervises 
the generator to produce precise masks that match the original ground truth. We have implemented a patch-
GAN-based approach to achieve this, classifying each m× n mask as equivalent to the ground truth. The dis-
criminator consists of five Conv2D layers with a kernel size of 4 × 4 and a stride of 2 × 2, with 64, 128, 256, 512, 
and 1 feature maps in each layer. LeakyReLU activation with an alpha value of 0.2 is used in each Conv2D layer, 
with the last layer using sigmoid activation. The patch-based discriminator has an output size ( m× n ) of 16 × 16, 
where one pixel is linked to a patch of input probability maps with a size of 94 × 94. The discriminator classifies 
each patch as either fake or real. This learning strategy enforces the predicted label to be similar to the ground 
truth. The number of parameters is the same as proposed in patchGAN30.

We practice the following adversarial technique for each generated label to align with the ground truth labels. 
A min-max two-step game alternatively renews the generator and discriminator network with adversarial learn-
ing. The discriminator function is given by:

where x, y are the pixel locations of the input, D(IS ) is the Discriminator function of Source Domain 
Images(IS ), i.e., Label Image, D(IT ) is Discriminator function of Target Domain Images ( IT ), i.e., Predicted Image 
and γ is the probability of the predicted pixel, γ =1 when prediction is from ground truth, i.e., source domain, 
and γ = 0 when prediction is from generator segmented mask, i.e., target domain.

Loss function.  We implement smoothing loss based on morphology to improve skin lesions segmenta-
tion and supervise the network that captures the lesion’s smoothness and fuzzy boundaries. The network’s loss 
function includes dice coefficient loss (LDL) as well as the morphology-based smoothing loss (LSL) . The dice 
coefficient loss assesses the cross-over between the ground truth and prediction and is given by the condition:

where ω is the cumulative of pixels in the input image, v, and v̂  are the original mask and predicted mask 
probability map, respectively.

The morphology-based smoothing loss strengthens the network to allow smooth predictions within the 
nearest neighbor area49. It is pairwise interaction of binary labels written as:

where Nι is four neighbor connection of pixels. y and ŷ  denote the ground truth and prediction probability maps, 
respectively. The four connected neighbor algorithm-based smoothing loss encourages the surrounding area of 
pixel j with center pixel i to produce prediction probabilities similar to the original ground-truth class ( Bi,j = 1).

The combined loss function is written as:

Thus, the complete framework works to optimize the loss function by training the network iteratively49.

Data availibility
The dataset is available in ISIC archive publicly at https://​chall​enge.​isic-​archi​ve.​com/​data/#​2018

Code availability
The source code is available at https://​github.​com/​shubh​aminn​ani/​EGAN.
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