
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12566  | https://doi.org/10.1038/s41598-023-39635-z

www.nature.com/scientificreports

Comparison of particle image 
velocimetry and the underlying 
agents dynamics in collectively 
moving self propelled particles
Udoy S. Basak 1, Sulimon Sattari 2*, Md. Motaleb Hossain 2,3, Kazuki Horikawa 4, 
Mikito Toda 5,6,7 & Tamiki Komatsuzaki 1,8,9,10,11,12*

Collective migration of cells is a fundamental behavior in biology. For the quantitative understanding 
of collective cell migration, live-cell imaging techniques have been used using e.g., phase contrast or 
fluorescence images. Particle tracking velocimetry (PTV) is a common recipe to quantify cell motility 
with those image data. However, the precise tracking of cells is not always feasible. Particle image 
velocimetry (PIV) is an alternative to PTV, corresponding to Eulerian picture of fluid dynamics, which 
derives the average velocity vector of an aggregate of cells. However, the accuracy of PIV in capturing 
the underlying cell motility and what values of the parameters should be chosen is not necessarily 
well characterized, especially for cells that do not adhere to a viscous flow. Here, we investigate the 
accuracy of PIV by generating images of simulated cells by the Vicsek model using trajectory data of 
agents at different noise levels. It was found, using an alignment score, that the direction of the PIV 
vectors coincides with the direction of nearby agents with appropriate choices of PIV parameters. PIV 
is found to accurately measure the underlying motion of individual agents for a wide range of noise 
level, and its condition is addressed.

Cells perform organized, ‘orchestrated’ movement known as collective cell  migration1,2. Their migration is crucial 
during embryo and organ  development3,4, wound  healing1,5, cancer  growth6, and immune  defense7. The failure 
of cells to cooperate may result in life-threatening  concerns1,8. How do cells harmonize with each other during 
migration, given that individual cells have limited sensory, communication, and decision-making abilities? In 
some cases, collective behavior is coordinated by leader cells, or cells whose behavior is more influential than 
others, however, the existence and role of leader cells are still widely unknown for different cell  lines9–12. Quan-
titative measurement of cell velocities can shed light on how they coordinate. Recently, improvements in image 
acquisition have resulted in high-resolution, high-frame rate, images with unprecedented viewing  range13–19, 
which provide rich information on collective cell motion.

Particle tracking velocimetry (PTV) is a well-known technique where individual cells are tracked, resulting in 
a so-called “Lagrangian description” of the velocity dynamics. PTV usually contains two steps—a segmentation 
step, where the locations of cells and their boundaries are  identified20–22, and a tracking step, where the location 
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of each cell in one frame is associated with the location of the same cell in the next frame. PTV is onerous when 
done manually for many cells, and, when automated using supervised and unsupervised techniques, can lead to 
erroneous results when cell density is high or cells move rapidly compared to the image acquisition  rate23–25. In 
segmentation, a cell may be missed, or something which is not a cell can be marked as a cell. In tracking, a cell 
can be associated with another (incorrect) cell in the next frame. Furthermore, for the supervised methods, a 
fair amount of training data set is needed, whose labels must be assigned  manually20.

Alternatively, one can obtain an Eulerian description of the velocity field, where, instead of identifying indi-
vidual cells, flow properties are expressed as a field. Particle image velocimetry (PIV) is a technique that has 
been used widely in cell migration  analysis26–30 to obtain Eulerian velocity field dynamics from sequences of 
images. In PIV, each image is first divided into interrogation regions (grids), and each grid area in a given frame 
is associated with the corresponding grid area in the next frame with the highest cross-correlation31. Previously, 
the efficacy of the PIV technique has been assessed to a sequence of images generated by applying a known flow 
mapping to images of cells, to see how the vectors outputted by PIV can accurately track the deformations in 
the image by the flow field over time. It was shown that PIV works well in these  cases23. However, it is yet to be 
scrutinized the performance of PIV when cells move in an incoherent fashion, or when the system changes from 
disordered motions to some coherent state. In many cell lines, such as Dictyostelium discoideum, cells do not 
move by any prescribed viscous flow, and instead, travel like stochastic particles with some couplings. In order 
to verify the effectiveness of PIV in reconstructing the trajectories of cells which do not travel in a viscous flow, 
one may take the help of simulation models where the actual trajectories are known.

In this paper, we investigate the accuracy of PIV in capturing the motion of particles, not in a prescribed 
viscous flow, but the particles spontaneously move with their mutual interference under the presence of noise 
by the Vicsek Model (VM)32. Here noise emerges from the particles’ “failure” to accurately follow the motion of 
their neighbors. Using the trajectory data of particles at different noise levels, we produce images of the agents 
by plotting filled ovals at each particle location which are oriented following the interaction rules of the VM. 
The PIV technique is applied to the images alone without having access to the original trajectory data. We then 
compare the velocities computed by PIV to the velocities known from the trajectories using an alignment score, 
AR , we introduce in this paper. Here, R denotes a given radius of a circle whose center coincides with each PIV 
position so that all particles dynamics passing through inside the circle are taken into account. The alignment 
score has revealed that the PIV vectors’ direction matches the direction of the adjacent particles, especially at 
low noise levels where the system exhibits global coherence. For higher noise cases, the selection of a precise PIV 
grid size and R values have proven to be crucial. It has been seen that the alignment score increases significantly 
upon incorporating such R values such that agents are relatively coherent with each other within that radius. As 
the noise level gets higher, the agents get more randomized so that the larger the PIV grid size, the more the PIV 
vectors quickly deviate from the underlying agents’ dynamics. In other words, PIV can still capture the dynamics 
inherent to the entities of the agents if we use the right PIV grid size in which just a single agent exists on average.

Averaged normalized velocity and alignment score
We now describe the PIV scheme and also several measures that have been investigated as ways to quantify the 
efficiency of PIV in scrutinizing collective migration.

Particle image velocimetry (PIV). PIV computes Eulerian velocity fields, that is, it measures a flow field 
as the fluid passes an observation point that is fixed in space. PIV does not use image segmentation, instead, it 
computes velocity vectors by searching for a zone in a future frame that matches best with a given grid in the 
current frame. Figure 1 shows two consecutive images of moving particles at time t  (Fig. 1a) and t + 1 (Fig. 1b). 
At the beginning of the process, each image is divided into grids as shown in Fig. 1, and the center of each grid 
remains the same in all images. For each grid at time t, say the red grid in Fig. 1a, our goal is to find the zone at 
a subsequent image at time t + 1 where the image in the grid at time t matches best with the image in the zone 
at time t + 1 . Instead of searching the whole image to find the best match of the red grid, an interrogation zone 
which is typically a square of size Ng × Ng pixels is defined in the succeeding image (shaded region in Fig. 1b) 
where N is chosen to be roughly equal to the largest possible displacement of agents within two successive 
frames. Then PIV creates a temporary grid (we refer to it as a window) within the search zone at time (t + 1) 
(blue box in Fig. 1b) of the same size as the red grid. We then search the window to match the orientation of 
particles within the red grid. The location of the window is then varied within the search zone to find the best 
match. The process of finding the best match for the displacements of grids between two subsequent images is 
performed by cross-correlation having the following  form23:

where It(i, j) and It+1(i + k, j + l) denote the intensity of images at the positions (i, j) and (i + k, j + l) at time t  
and t + 1 , respectively. Here Z represents the number of pixels along one side of the (square) grid. Here µIt rep-
resents the average intensity of a grid at time t  (red grid, say), and µIt+1 is the average intensity of a grid located 
within the interrogation window (e.g., blue grid) at time t + 1 . (k, l) is the displacement of the (red) grid from 
its original location. The correlation function C(k, l) defined in Eq. (1) is maximized when the overlapping part 
between the red grid (Fig. 1a) and its best matched location at two consecutive images is maximum, and the loca-
tion of this peak in the correlation then defines how far the (red) grid has moved between the two consecutive 
images. Finally, PIV draws a vector starting from the center of the (red) grid to the center of its best-matched 
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window. The length of the vector represents the distance that the particles within the (red) grid travel during 
these consecutive time frames. Hence, a PIV vector characterizes the aggregate motion of particles located within 
a grid, and by studying all the PIV vectors in the system one can surmise the way particles move.

Averaged normalized velocity. The VM is based on a simple rule where every agent in the swarm aligns 
its velocity with the average velocity of its neighbors within a certain  radius32,33 (see “Methods” section “Vicsek 
model” for a mathematical description of the VM). The alignment of an agent is not perfect, however, there 
is some noise present in the system. When the intensity of the noise present in the system is low, the system 
quickly gets aligned in the same direction and moves coherently. But the coherent motion disappears as the noise 
increases. Particles in the system move randomly at very high noise. This means a phase transition, from ordered 
motion to disordered states, occurs. This transition can be studied by an order parameter equal to the average 
normalized velocity having the following  form32:

where N is the number of particles present in the system, and �vi(t) represents the velocity of the particle i at time 
t  . If the particles in the system move randomly, the order parameter va tends to be zero, and it tends to be 1 if all 
the particles move in the same  direction32. This order parameter va(t) is defined in such a way that it character-
izes the global behavior of the system at time t  by incorporating the action of all particles present in the system. 
In general, coherence may have a length scale, that is, all the particles in the system may not move coherently, 
but locally some coherence can be observed. To characterize this local behavior, we introduce a variable R that 

portrays the radius of the circle within which the local coherent movement of particles v �xj ,R
a  is evaluated:

where �xj is the center of the circle which is chosen at the initial point �xj of a PIV vector j, and NR
j (t) is the number 

of particles lying within a distance R from the PIV vector j at time t  . Point to be noted that the PIV vectors are 

equally spaced all over the field. We finally take the mean of all local v �xj ,R
a  ’s as follows:

where M represents the total number of PIV vectors defined for each image data.

Alignment score. As stated in “Particle image velocimetry (PIV)”, PIV uses a statistical measure in the form 
of cross-correlation to find the best match between two consecutive images, which requires a sufficient amount 
of data to determine the displacement accurately. Hence, the grid size is chosen so that each grid contains multi-
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Figure 1.  Schematic diagram of moving particles at time (a) t  and (b) t + 1 . Small black boxes in both figures 
represent a division of the original image into grids, and for each grid, a PIV vector is defined that estimates the 
mean displacement vector of particles within that grid. The shaded region in (b) represents the interrogation 
zone of the red grid in (a) within which the matched area may exist. The size of the interrogation window largely 
depends on the distance traveled by the particles in the time interval between two successive images. The blue 
box inside the search zone represents the window whose center is varied within the search zone. The orientation 
of agents within the red grid and windows is computed to find the best-matched window.
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ple  particles23, and PIV estimates the mean displacement of a group of particles located within the grid. How well 
can PIV characterize the underlying particles’ motion? To investigate this issue we introduce a measure named 
‘alignment score’ which is the average cosine of the angle between a PIV vector and its neighboring moving 
particles. The alignment score AR(t) has the following form:

where �vtj  and �wt
i  denote the jth PIV vector and the velocity vector of particle i, respectively, at time t, and ‘ · ’ rep-

resents the dot product between the two vectors. The second sum in Eq. (5) is taken over all particles i located 
within a distance R from the initial point of the PIV vector j at time t. The value of AR lies between − 1 and 1, 
where 1 means that all the particles within the circle are perfectly aligned to the PIV vectors, 0 means that the 
particles have no tendency to be aligned with the PIV vectors, and − 1 means that the particles move in the exact 
opposite direction of PIV vectors (see Fig. 2 for a visual illustration). Whenever the value of AR is greater than 
zero, it means that PIV vectors have some alignment on average with the particle motion.

Results
Since, in simulating the VM, we know the positions and velocities of individual particles at each time instance, 
we can use these trajectories to test the performance of PIV in capturing the single particle’s motion. We mimic 
images of the particles by plotting markers representing agents at each particle location which are oriented in 
the direction of particle motion. The PIV technique is applied to the images, and we can compare the velocities 
computed by PIV to the velocities known from the trajectories using the alignment score (defined in Eq. 5).

Figure 3 represents some snapshots of moving particles (black arrows with filled ovals) along with PIV vectors 
(red arrows) for noise η0 = π

6
 at time (a) t = 2 , and (b) t = 150 . In the VM, the initial direction and position of 

particles are chosen randomly. Consequently, t = 2 is too early to observe a global feature of moving particles. 
Since the particles within two nearby PIV grids are not aligned with one another, the PIV vectors associated 
with nearby grids are also not aligned with one another. Hence, at time t = 2 , PIV vectors do not exhibit global 
coherence (Fig. 3a). When looking closer at the PIV vectors and their nearby particles (insets of Fig. 3a), some 
coherence in the orientations of particles is observed at such smaller length-scales, and the PIV vectors appear 
to be aligned with their nearby particles. As time passes, the coherent movement of particles begins to be visible 
(Fig. 3b). At this time, small groups of particles are observed which are directed in the same direction. Hence, 
the direction of PIV vectors placed within a cluster of particles will be the same as the direction in which the 
particles are heading. As more time passes, all the particles in the system start to move in the same direction, 
and the whole system acts as a single cluster that produces the PIV vectors directed in the same direction at this 
noise level. Note that in Fig. 3b, even though there are the same amount of particles in each image, there can be 
some vacant regions. The PIV vector is not computed and not drawn at a given time t  if there is no any particle 
in a grid at either the time t  or the consecutive time (t + 1).

How precisely can the PIV vectors dictate the movement of neighboring particles? Figure 4 shows the align-
ment score AR , defined in “Alignment score”, as a function of time t  at noise level (a) η0 = π

6
 , (b) η0 = 3π

6
 , (c) 

η0 = π , and (d) η0 = 11π
6

 . It appears that at low noise (η0 = π
6
) , AR quickly converges to its maximum value 1 

for small R values, and the AR value decreases as the radius R rises at early times (Fig. 4a). The global coherence 
of particles takes some time to form since, according to the VM’s interaction rule, particles cannot interact glob-
ally straight away as shown in the va vs time t  figure (see Supplementary Figure 1). This delay in the coordinated 
movement of agents is a very common phenomenon in nature as information cascade among group members 

(5)AR(t) = 1

M

M
∑

j=1

1

NR
j (t)

NR
j (t)
∑

i s.t. | �xj−�xi |≤R

�vtj · �wt
i

| �vtj || �wt
i |
,

a) b) c)

Figure 2.  Schematic representation of groups of particles with varying alignment score AR where the thick-
shaded arrow represents a PIV vector defined over a grid, and the ovals with arrows stand for the moving 
particles along with their directions of movement. (a) The direction of the PIV vector is the opposite of the 
direction in which the particles move. Therefore, AR will be close to −1 where R is the radius of the circle. (b) 
Particles move randomly hence AR will be close to 0 for such cases. (c) The direction of the PIV vector is aligned 
to the direction in which the particles move, hence AR will be close to unity.
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Figure 3.  Moving particles (filled ovals) along with PIV vectors (red arrows) at time (a) t = 2 , and (b) t = 150 
for noise η0 = π

6
 . Black arrows indicate the headings of respective particles. (a) Initially, particles move 

randomly, producing chaotically directed PIV vectors. (b) Particles (as well as PIV vectors) are getting aligned in 
a specific direction. Note that, if there is no any particle in a grid at either time t  or the subsequent time (t + 1) , 
the PIV vector is not computed at time t  , and hence, no arrow is drawn.
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Figure 4.  Alignment score AR for different radius R values as a function of time t at noise (a) η0 = π
6
 , (b) 

η0 = 3π
6

 , (c) η0 = π , and (d) η0 = 11π
6

 . The value of N for this calculation is set to 300 and the image size is 
615× 615 pixels. Here the blue, red, yellow, and purple colored lines correspond to R = 30 , R = 70 , R = 120 , 
and R = 200 pixels, respectively.
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requires some time. However, the local coherent motion of the particles can be seen as illustrated in Fig. 5a. If the 
values of R are set to less than the size of the local collectives (black circles in Fig. 5a), then AR will be very high 
( ∼ 1 ). Conversely, if the values of R are set to higher than the size of the local collectives (red circle in Fig. 5a), 
the value of AR decreases as the particles oriented in different directions are considered. Since PIV measures the 
average displacement of particles located within a grid, hence average cosine of the angle between a PIV vector 
and its neighboring particles decreases as more randomly moving particles are considered. On the contrary, if all 
the particles in the system move in the same direction ( va ∼ 1 (Supplementary Figure 1)), then the value of AR 
will always be ∼ 1 regardless of the values of R (Fig. 5b) as the direction of all PIV vectors will also be the same as 
the particles. Therefore, once the system reaches global coherence, AR does not depend on R to such a consider-
able level. As the noise η0 increases the value of AR decreases (Fig. 4b–d). The transition from order to disorder 
is found to be at a noise level of around π (see Supplementary Figure 2). In the original paper by  Vicsek32, it was 
reported that va ≈ 0.5 at noise η0 = 3 for N = 100 , and η0 is slightly less than 3 for N = 400 . Our model has 
slightly different parameter values such as the box size L, interaction domain R, N, and we consider our finding 
to be consistent with Ref.32. At this noise level, it was found that the alignment score AR fluctuates over time (see 
Supplementary Figure 3c), which indicates that transient coherent and incoherent motions are intermingled. At 
very high noise (η0 = 11π

6
) AR is close to zero as the noise dominates the system and particles move randomly 

(Fig. 4d). It has been found that even for very high noise (η0 = 11π
6
) , AR is relatively high (∼ 0.5) for R = 30 . 

Thus at high levels of noise, it is important to choose R such that the number of particles within the radius R is 
not too large as well as the size of grids to evaluate PIV vectors in order to capture and the underlying particle’s 
motility and properly characterize the accuracy of PIV using the quantity AR.

How to determine the optimal R and the grid size in the PIV estimation at high noise cases? PIV measures the 
average displacement of particles located within a grid of size γ × γ (γ ∈ R) . Hence, PIV cannot precisely meas-
ure the velocities when there are several particles in a PIV grid because, in the case of very high noise, particles 
move randomly. In principle, if a PIV grid contains only a single particle, then PIV should be able to characterize 
the motion of that particle even for very high noise cases. Let γ0(N) represents the typical size of the PIV grid for 
a given number of particles N, which contains only a single particle on average, which has the following form:

where Ŵ represents the length of the image data. Likewise, under the assumption of uniform distribution, 
R0(N) = γ0(N)/

√
π  is the radius size of the circle centered at each pixel for a given number of particles N, 

having only a single particle on average. Figure 6 represents the AR landscape as a function of normalized PIV 
grid size, γ

γ0(N)
 , and normalized radius, R

R0(N)
 for (a) N = 100 and (b) N = 300 with η0 = 11π

6
 (high noise case). 

The AR values get closer to unity when γ
γ0(N)

 and R
R0(N)

 are proximate to unity, which results from the fact that, 
on average, the PIV grid of size γ contains a single particle, and AR estimation is also carried out with a small 
circle within which only a single particle exists on average. Consequently, the PIV vector captures the motion 
of the particle lying inside that grid appropriately. On the other hand, a γ

γ0(N)
 value greater than 1 means that, 

γ0(N) =
√

Ŵ × Ŵ

N
,

Figure 5.  Schematic diagram of R dependency of AR . Two clusters of particles (inside black circles) are shown, 
and within each cluster, all the particles are heading in the same direction. (a) The directions of particles within 
clusters are different. (b) The directions of particles within both clusters are the same. Red-colored arrows 
represent the PIV vectors associated with each cluster. If AR is computed for the black circles, then in both cases 
A
R would be very high as within each black circle the direction of the PIV vector and particles are the same. But 

if AR is computed for the red circle then for the 1st case AR will be much lower as the particles are directed in 
different directions even though for the 2nd case AR would be close to 1. Note that, if there is no any particle in 
a grid at either time t  or the subsequent time (t + 1) , the PIV vector is not computed at time t  , resulting in no 
arrow.
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on average, a PIV grid of size γ may contain multiple, randomly-moving particles, hence the AR value decreases 
(for all R values) as the value of γ

γ0(N)
 increases over 1, at such high noise levels where the particles have no col-

lectives. Likewise, an R
R0(N)

 value of greater than 1 may signify that several randomly-moving particles are being 
taken into account, which results in low AR values. A universal trend in AR values has been found for different 
N values (see Supplementary Figure 4).

To characterize the local coherent movement of particles we defined vRa (t) in Eq. (4), where the headings 
of particles located within a distance of R from the initial point of the PIV vector j were considered. The same 
quantity can also be used to check the alignment of PIV vectors located within a circle of radius R. Now we have 
two different vRa (t) (∈ [0, 1]) , one is for the moving particles (self-propelled particles (SPPs)), we denote it by 
vR,SPPa (t) , and the other one is for the PIV vectors which is denoted by vR,PIVa (t) . Hence the difference defined by

quantifies the difference in coherent movement of SPPs and alignment of PIV vectors located within a distance 
of R. DR can take a value between 0 and 1 and, for example, DR ∼ 0 means that both the PIV vectors and nearby 
particles are directed in the same direction. Figure 7 shows DR as a function of time t for different R/R0 values at 
noise (a) η0 = π

6
 , (b) η0 = 3π

6
 , (c) η0 = π , and (d) η0 = 11π

6
 . Here the value of N is set to 300, and the grid size γ 

corresponds to γ = 0.986γ0 . Regardless of normalized radius R/R0 values, DR rises as the noise level increases 
(Fig. 7). Here, R/R0 ≃ 1 denotes that there is typically just one particle present within the circle (on average 
under uniform distribution), and more noticeable is that, the value of DR increases for R/R0 = 1 faster than for 
other R/R0 values as the noise level η0 gets larger. Here, the PIV grid size γ was set to 64 pixels, which means 
the distance between two neighboring PIV vectors is 64 pixels and R/R0 = 1 corresponds to 35.5 pixels in the 
current settings. Hence the circle of radius R ≤ R0 pixels centered at the initial point of a PIV vector contains 
only one PIV vector that produces vR,PIVa = 1 by definition. However, that circle may contain more than one 
SPP. Here vR,SPPa ≈ 1 for low noise and relatively longer time as the particles within the circle quickly get aligned, 
resulting in a small DR over the long duration (Fig. 7a). As the noise increases, vR,PIVa  remains the same (i.e., 1) 
for R = R0 , but the particles inside the circle begin to disintegrate which lowers the values of vR,SPPa  . As a result, 
DR increases as the noise increases for R = R0 (Fig. 7b–d). But if the value of R is set larger than R0 (larger than 
the PIV grid size γ ), the circle contains multiple PIV vectors. Consequently, the value of vR,PIVa  decreases as the 
noise increases. Hence, DR also decreases for R/R0 > 1 , because of the difference between the small numbers. 
Similar results have been found for different grid sizes and normalized radii.

The landscape of AR as a function of noise η0 and normalized radius R/R0 is shown in Fig. 8a. The alignment 
score AR was computed as the average taken over 30 trials (initial conditions) and the time t was set to 300, which 

DR(t) =
∣

∣vR,SPPa (t)− vR,PIVa (t)
∣

∣

Figure 6.  AR landscape at η0 = 11π
6

 (high noise) as a function of normalized PIV grid size, γ
γ0(N)

 and 
normalized radius, R

R0(N)
 for (a) N = 100 (corresponding to γ0 = 61.5 pixels and R0 = 34.7 pixels), (b) N = 300 

( γ0 = 35.5 , R0 = 20 ). It is apparent that AR values of close to 1 are obtained when both γ
γ0(N)

 and R

R0(N)
 are close 

to 1. When both γ
γ0(N)

 and R

R0(N)
 exceed 1, the value of AR begins to decrease. A similar trend in AR values has 

been found for different N values (see also Supplementary Figure 4 for N = 200, 500, 700, and 1000 . The value 
of AR decreases along the direction normal to the slope dγ

dR
∼ 2 approximately in this normalized plane, which 

implies that the radius R becoming two times larger is equivalent to an increase in γ four times. This is due to the 
geometrical reason that one circle of radius R is involved in the grid of γ × γ . The intervals along the horizontal 
and vertical axes are not the same for every N since the values of γ0 and R0 vary with N with a series of different, 
discrete γ values. The figures were plotted using the MATLAB ‘shading interp’ function to interpolate the data 
points or grids for different number of grids.
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Figure 7.  DR as a function of time t  for different R values at noise (a) η0 = π
6
 , (b) η0 = 3π

6
 , (c) η0 = π , and (d) 

η0 = 11π
6

 . For this calculation, the grid size γ and the value of N are set to 64 pixels and 300, respectively. Here 
the blue, red, yellow, and purple colored lines correspond to R/R0 = 1 , R/R0 = 2 , and R/R0 = 3 , respectively.
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Figure 8.  (a) Alignment score AR landscape as a function of normalized radius R/R0 and noise η0 for N = 300 
and γ = 64 (= 0.986γ0) pixels. The AR can take a value between − 1 and 1 in principle, but the smallest 
observed value was 0.0205 so that we plot AR landscape for AR ∈ [0 : 1] . (b) AR as a function of normalized 
radius R/R0 for low and moderate noise levels.
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means PIV (for AR computation) was applied on images at time t = 299 and t = 300 only. For all noise levels, it 
can be seen that va stabilizes within this time frame (see Supplementary Figure 5). It was found that at the low 
level of noise (η0 ≤ π/2) AR is very high ( ≈ 1 ) (see Fig. 8a). At low noise levels, particles tune very quickly in the 
same direction. Consequently, the value of AR does not rely greatly on radius R. As the noise increases, particles 
move more randomly instead of coherently. Consequently, the value of AR drops as the noise increases. On the 
other hand, a smaller radius means only the close particles, close to the PIV vector, are taken into consideration. 
Hence, even at relatively higher noise, a relatively high AR was found for R/R0 � 1.0 . As the radius increases, 
distant particles begin to be incorporated that resulting in low AR values (≈ 0) . It may be noted worthy that a peak 
in AR values near R/R0 ≈ 1 can be observed, which is pronounced for the noise interval π ≤ η0 ≤ 2π . The reason 
of this peak near R/R0 ≈ 1 lies in the PIV computation. The PIV grid size γ was set to 64 pixels, which means 
a PIV vector quantifies the average motion of the particles located within a box of size 64× 64 . The maximum 
radius of the circle that fits into the box is ≈ 36 pixels. Some particles that the PIV vector depends on are ignored 
if the value of R is set lower than 36 pixels. In contrast, if we increase R over 36 pixels, we start to take into account 
those particles from which the PIV vector is independent. AR would therefore reach its maximum at R ≈ 36 
pixels. It should be noted that the value of R0 , the typical radius size of a circle that contains only a single particle 
on average, is 35.5 pixels. Hence, AR reaches to its maximum at R/R0 ≈ 1 . Figure 8b demonstrates that even in 
low and moderate noise cases, this characteristic of AR remains unchanged as one can find a peak near R/R0 ≈ 1.

In principle, our comparison of PIV performance at different noise levels showed that PIV has appropriate 
length scales to detect the underlying agents’ motility dependent on the noise levels and works best whenever sin-
gle particles are isolated from one another on average in the alignment grid. This should also be relevant to what 
timescale the series of the images are acquired. For example, an overdamped Langevin equation is represented 
by its difference form as x(t +�t) = x(t)+ 1

γ
{F(x)+ ξ(t)}�t where x, F(x), γ , and ξ(t) denote the coordinate 

of the system, the mean force, friction coefficient, random force, respectively. That is, the difference form of the 
overdamped Langevin equation tells us that random force exerted on the coordinate x(t) is regarded as being 
proportional to time increment �t . The time increment of Vicsek model �t and the recording time step were both 
unity in our simulation, and high noise in Vicsek model (e.g, η0 = 11π/6 ) corresponded to “high temperature” 
at which the movements of particles are subject to significant changes in their directions within the time unit 
�t . What we showed is that, especially in such case, the desired grid size corresponds to the situation that only 
one agent exists on average within each grid. In turn, low or moderate noises in Vicsek model corresponds to 
“low temperatures”. In such cases, within the time unit �t the movements of particles are less subject to large 
changes in their directions. Low or moderate noises in Vicsek model might mimic “a shorter timescale” than the 
timescale when a system finds the substantial changes in their configuration. Supplementary Figure 6 shows the 
effect of sampling rate of the images on the time averaged alignment score <AR> at intermediate noise η0 = π/2 
in which the recording time step τ is varied while the time increment of the Vicsek model �t is unity. The figure 
demonstrates that, as the recording time step τ increases, the PIV analysis misses the details about the flow field, 
leading to low <AR> values. It may be noted worthy that the decreasing rate of the average AR with respect to τ 
tends to get more pronounced when the radius R is deviated from R0.

Conclusion
In this study, we have scrutinized the use of PIV in assessing the motion of agents at a variety of noise levels. As 
is known for the VM, the system undergoes a transition from ordered to disordered phase as the increase of the 
noise value. As expected, the PIV vector aligns well with the motion of agents when the noise level is low, result-
ing in global alignment. When the noise level becomes higher, different behavior in PIV vectors is observed. PIV 
can generally pick up the local agent motion, and alignment scores are high at low radius even when the noise 
level is high. At higher radii, however, the alignment score drops because a PIV vector cannot characterize the 
motion of agents that are far away at high noise levels. We have also computed the alignment score using the 
optical flow (OF) constraint  scheme23, which measures the motion of individual pixels, at different noise levels. 
It has been observed that the alignment scores using OF data are almost identical to that using PIV data (see 
Supplementary Figure 7). Theoretically, PIV can be considered as the coarse-grained scheme of OF. Hence one 
may use OF to get deep-rooted information of the flow field. Nevertheless, one should also keep in mind that 
computationally OF, which computes displacement vector pixel-wise, is not as efficient as PIV. Hence depending 
on individual research perspectives, one may choose a suitable scheme.

An interesting future area of study would be to characterize cell motion and its relation to PIV at a more 
coarse-grained level in these parameter ranges. This is one of the forthcoming subjects to be addressed along this 
line. Another important subject is concerning how to design and choose the appropriate grid size to compute the 
underlying agents dynamics in real applications under the constraint one cannot access the underlying ground 
truth motility of the agents. As Fig. 6 shows, as the grid size γ decreases and approaches to γ0 , it was shown that 
the PIV vectors can capture the underlying agents dynamics irrespective of the noise level. In practice, while one 
may not be able to access the value of γ0 , we expect that one can choose the appropriate grid size by checking 
the convergence of resultant PIV vectors in real applications. In addition, the forthcoming subjects to be solved 
for real applications such as fluorescence cell images are, for example, cell division, mortality, and also optical 
artifacts like out-of-focus effects, noise during image acquisition, which affect the estimation of optimal grid size 
to retrieve cell motility. These are some of the imminent issues to be addressed in the future.
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Methods
Vicsek model. A flocking model was proposed by Vicsek et al.32 to study the phase transition of a group 
of collectively moving particles. The model consists of a two-dimensional square box of length L, and N self-
propelled particles move within the box with periodic boundary  conditions34. For simplicity, it was assumed that 
all the particles move with the same constant speed v0 and can move in any direction. The initial (at time t = 0 ) 
positions of particles are distributed randomly in the square box, and the orientations are also chosen randomly 
within [0, 2π] . The position of the i− th particle at time t + 1 is denoted by �rit+1 = (xi(t + 1), yi(t + 1)) and is 
given by the following discrete-time stochastic system:

where �vit = (v0 cos θi(t), v0 sin θi(t)) is the velocity of the particle i at time t  , and θi(t) be its orientation. At each 
time step the orientation angle of particle i is computed as the average of the orientations of the particles which 
are located within a circle of radius r centered at �rit including the particle i itself with some random perturbation 
added. Hence the direction update rule of the particle i is as follows:

Here �θ is the random perturbation of the system distributed uniformly in the range [− η0
2
,
η0
2
] , where η0 is 

considered as a temperature-like parameter. Suppose Ni(t) be the set of all neighboring particles (within radius 
r ) of i at time t  including itself. Then the average direction is given  by35:

In this paper, the value of the box size L is set to be 5 arb. units (615 pixels), and the constant speed of parti-
cles v0 being 0.03 arb. units (3.7 pixels per frame). The value of the interaction radius r is set to be 0.5 arb. units 
(61.5 pixels). Results shown in “Results” are for N = 300 besides Fig. 6. But it was found that in the range of 
100 ≤ N ≤ 2000 , the alignment score AR was found to be in similar order (see Supplementary Figure 8).

PIV parameters. PIV technique relies on the intensity variation of image data. In this study, gray-scale 
images are generated by plotting black-filled ovals at each particle location. Hence, a pixel with an intensity of 0 
represents a part of a particle, whereas an intensity value of 255 represents the background. The size of a particle 
is set to be 8× 6 pixels, where 8 indicates the length of the major axis and 6 the length of the minor axis. Since 
PIV estimates the mean displacement of particles, hence it is directly related to the size of the interrogation 
zone (grid size, γ ). It was found that the alignment score AR remains very consistent as long as the particle size 
is considerably less than γ (see Supplementary Figure 9). It is easily understandable that PIV is unable to detect 
intensity variation when a particle covers the entire PIV grid. Hence, AR should decrease if the particle size gets 
much closer to the grid size, γ . For the statistical purpose, the grid size is chosen large enough so that it includes 
a significant number of  particles36,37. Hence, the grid size was set to be 64× 64 pixels, unless stated otherwise. 
The step size which defines the interrogation/search zone was set to be 32× 32 pixels ( 50% of the grid size). That 
means the size of the search zone was set to be 96× 96 pixels. It was found that the grid and step size do not have 
much effect on the alignment score AR for a low level of noise (not shown). Finally, the images were analyzed 
using the particle image velocimetry (PIV) technique with  PIVlab38, and the AR computation is carried out by 
excluding the outlier PIV vectors using the ‘vector validation’ function.

Data availability
The data that support the findings of this study are available from the corresponding author upon request.

Code availability
The code employed to create all simulations is accessible at https:// zenodo. org/ record/ 81745 06.
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