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Mutational landscape 
of cancer‑driver genes 
across human cancers
Musalula Sinkala 

The genetic mutations that contribute to the transformation of healthy cells into cancerous cells have 
been the subject of extensive research. The molecular aberrations that lead to cancer development 
are often characterised by gain‑of‑function or loss‑of‑function mutations in a variety of oncogenes 
and tumour suppressor genes. In this study, we investigate the genomic sequences of 20,331 primary 
tumours representing 41 distinct human cancer types to identify and catalogue the driver mutations 
present in 727 known cancer genes. Our findings reveal significant variations in the frequency of 
cancer gene mutations across different cancer types and highlight the frequent involvement of 
tumour suppressor genes (94%), oncogenes (93%), transcription factors (72%), kinases (64%), cell 
surface receptors (63%), and phosphatases (22%), in cancer. Additionally, our analysis reveals that 
cancer gene mutations are predominantly co‑occurring rather than exclusive in all types of cancer. 
Notably, we discover that patients with tumours displaying different combinations of gene mutation 
patterns tend to exhibit variable survival outcomes. These findings provide new insights into the 
genetic landscape of cancer and bring us closer to a comprehensive understanding of the underlying 
mechanisms driving the development of various forms of cancer.

Cancer is a complex disease characterised by mutations in genes that control various hallmarks of the disease, 
including escaping programmed cell death, promoting genome instability and mutations, and proliferative 
 signalling1. Cancer genes include genes encoding cell surface receptors, oncogenes, tumour suppressor genes, 
kinases, phosphatases, and transcription  factors2–6. Cancer genes of these classes transcribe mRNAs that encode 
proteins, which function in various oncogenic pathways that fuel oncogenesis by enabling various hallmarks 
of  cancer7. The mutations in known cancer genes, unlike those in non-cancer driver  genes8–10, qualitatively or 
quantitatively alter the function of genes and proteins and, consequently, alter the cellular processes in which 
these proteins participate. Moreover, oncogene mutations are linked with differences in patient survival, clini-
cal outcomes, metastatic or recurrent tumours, and serve as predictors of tumour responsiveness to anti-cancer 
 drugs8,9,11,12. There is, therefore, a need to understand the extent to which cancer genes are mutated in cancers 
of different tissues of origin.

Over the last few decades, our understanding of the genes, pathways, and their role in oncogenesis has grown 
significantly, leading to increased efforts to treat various cancer  types13–18. Furthermore, many genetic aberrations 
have been identified in human cancers, and several of the proteins encoded by these genes are well-established 
drug targets, while others are promising drug  targets3,4,19,20. However, despite this impressive list of known gene 
mutations, it covers only a few cancer types. To comprehend the extent and consequences of gene alterations 
affecting function, it is crucial to study the alteration of cancer genes across all human cancers and within each 
cancer category. Such knowledge has been successfully applied in the design of therapies explicitly targeting 
proteins altered by somatic and germline mutations in cancer  genes21,22. However, we still do not completely 
understand the extent to which cancer genes and the classes thereof are altered in all human cancers.

Here, we utilise publicly available datasets generated by various cancer sequencing projects to understand 
the extent of cancer gene alterations in human cancers. Furthermore, we obtain information on known cancer 
genes compiled by the Catalog of Somatic Mutations in Cancer (COSMIC), Cancer Gene Consensus (CGC) 
 database23,24. Then, we comprehensively analyse known cancer gene mutations across different cancer types by 
integrating information on tumour genetic alterations with known gene annotations. Our analysis provides novel 
biological insights into the mutational landscape of these cancer genes and shows the extent to which they co-
occur or are exclusive in tumours of various tissues and their association with patient outcomes.
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Results
Mutational landscape of cancer genes in human cancers. Our study compiled a list of 727 known 
cancer genes based on information from the Catalogue of Somatic Mutations in Cancer (COSMIC)24 and Cancer 
Gene Consensus (CGC)23 database. This list includes genes that encode oncogenes (383), tumour suppressor 
genes (TSGs; 370), transcription factors (150), kinases (75), phosphatases (9), and cell surface receptor proteins 
(CSR; 63) (see Supplementary Fig. 1, and Supplementary Data 1).

Next, we obtained whole-exome sequencing data from 138 cancer studies focusing on 41 different human 
cancer types and involving 20,331 samples (Supplementary Data 1). The number of samples in each study var-
ied, with breast carcinoma representing the highest number of samples (2,585) and Small-Cell Lung Cancer the 
least (110), as shown in Fig. 1a. We then calculated the somatic mutation frequencies in the 727 genes across 
the samples of the 41 cancer types (Supplementary Data 1) and found that the mutation frequency for different 
cancer genes ranged from 0% for the VHL (and other genes) in acute myeloid leukaemia to 94% for the TP53 
gene in small cell lung carcinomas (Fig. 1b,c). Other cancer genes with high mutation frequencies include KRAS 
(mutated in 84%) of pancreatic adenocarcinomas and PTEN (67%) of uterine corpus endometrial carcinomas, 
and JAK2 (75%) of myeloproliferative neoplasms (Fig. 1c, also see Supplementary Data 1).

Next, for each cancer type, we summarised the number of mutated genes in (1) none of the samples, (2) less 
than 5 per cent of the samples, and (3) more than 5% of the samples. Our analysis revealed that most cancer 
genes were not mutated cancer types, and a limited number of genes were found to be mutated in over 5% of the 
samples. For instance, only two known cancer genes were found to be mutated in over 5% of thymomas (MUC16 
and HRAS), testicular germ cell tumours (KRAS and KIT), and thyroid carcinomas (BRAF and NRAS) (Fig. 1c, 
Supplementary Fig. 2, and Supplementary Data 1).

Furthermore, some cancer types had a significantly higher number of known cancer genes mutated in more 
than 5% of the samples, e.g., in uterine corpus endometrial carcinoma (568 known cancer genes mutated), 
stomach adenocarcinoma (330 genes), and skin cutaneous melanoma (314 genes). This finding shows that the 
extent to which the cancer genes are mutated across cancer types varies and that some cancer types have few 
mutations within the coding sequences of known cancer  genes25,26.

Mutations of each cancer gene across all tumours. We calculated the mutation frequency of each 
cancer gene across 41 different human cancer types in all 20,331 samples. Our analysis revealed that 98.9% (719 
out of 727) of cancer genes were mutated in at least one sample. Among the oncogenes, MUC16 (mutated in 
18.9% of tumours), PIK3CA (12.4%), and KRAS (11.1%) were the most frequently mutated across the profiled 
samples (Fig. 2a). Furthermore, among the TSGs, TP53 (36.6%), CSMD3 (13.7%), and LRP1B (13.5%) were the 
most frequently mutated (Fig. 2b). PIK3CA (12.4%), BRAF (6.6%), and ATM (6.0%) were the top three mutated 
genes that encode protein kinases (Fig. 2c). In addition, we found that PTPRT (6.5%) and PTEN (6.4%) were 
the most frequently mutated among the genes that encode protein phosphatases (Fig. 2d), while TP53 (36.6%) 
and KMT2C (8.6%) were the top-two frequently mutated among the genes that encode transcription factors 
(Fig.  2e). Furthermore, among the genes that encode cell surface receptors, we found that MUC16 (18.9%) 
and LRP1B (13.5%) were the most frequently mutated (Fig. 2f). Overall, the top-five frequently mutated can-
cer genes across human cancers were TP53 (36.6%), MUC16 (18.9%), CSMD3 (13.7%), LRP1B (13.5%), and 
PIK3CA (12.4%) (Fig. 2g).

The mutation frequencies we report here are reasonably consistent with previous reports, which indicated 
that TP53 (36.6% across all samples) is the most frequently altered gene, followed by PIK3CA (12.4%)5,27. Fur-
thermore, we found that the extent to which the cancer genes are mutated in different cancer types varies signifi-
cantly, a pattern likely to impact the treatment strategies that could be applied to cancers of different  tissues28.

Mutations in categories of cancer genes. We were interested in evaluating the extent to which genes in 
particular categories of cancer genes (oncogenes, TSGs, transcription factors, kinases, phosphatases, and recep-
tors) are mutated across human cancers. Here, we found mutations in the known cancer genes in all tumours. 
Of the six classes of cancer genes, the TSGs (91% of the tumours) and the oncogenes (89%) showed the highest 
frequency of mutations, followed by the transcription factors (72%), kinases (62%), receptors (60%), and the 
phosphatases (19%); (Supplementary Fig.  3 and Fig.  3a). Overall, our analyses revealed that the mutational 
landscape of the six cancer gene classes was mainly consistent within cancer (Fig. 3a). Therefore, we suggest that 
the observed correlation in mutation frequencies between cancer genes of different classes in a particular cancer 
type may indicate that gene mutations tend to co-occur (see Supplementary Fig. 4).

Also, we found that 92% (18,738 samples) of all the tumours harboured mutations in genes involved in more 
than one of the six cancer gene classes (Fig. 3b). Furthermore, we found 2,903 tumours harbouring mutations in 
all six classes of genes, and another 5,212 tumours harbouring mutations in all six classes of genes, except those 
that encode protein phosphatases (Fig. 3b). Conversely, among all the cancer types, we found that 737 samples 
harboured mutations in only one class of the known cancer genes (Supplementary Fig. 5). The percentage of 
mutated cancer genes that are members of multiple cancer gene categories is shown in Supplementary Fig. 6. 
Overall, our findings demonstrate that for most cancer types, the tumours tend to have mutations in the genes 
of at least five of the six classes of cancer genes.

Co‑occurrence and exclusivity of mutations in cancer gene pairs. Given that we found a convolved 
pattern in the mutational landscape of the known cancer genes (Fig. 4a and Supplementary Fig. 7a and b), we 
were interested in determining the extent to which non-synonymous somatic gene mutations tend to be mutu-
ally exclusive or co-occur.
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First, we assessed mutations in 127,765 gene pairs, both present in at least 1% of 20,331 samples across 41 
human cancer types (see the “Methods” section). Here, collectively across all the cancer types, our analysis 
revealed 127,605 gene pairs with significantly co-occurring mutations, 15 pairs with mutually exclusive muta-
tions, and 145 pairs with non-statistically significant mutations (Fig. 4b). Among the significantly mutually 
exclusive mutated gene pairs were VHL and TP53 (p = 7.3 ×  10–21), TP53 and BRAF (p = 8.0 ×  10–13), and BRAF and 
KRAS (p = 9.5 ×  10–8), see Fig. 4c and Supplementary Data 2. Additionally, the 127,605 significantly co-occurring 
mutated gene pairs included PTEN and PIK3CA (p = 2.1 ×  10–70), BRAF and ERBB4 (p = 6.9 ×  10–63), and EGFR 
and ERBB4 (p = 1.9 ×  10–59), see Supplementary Data 2.

Second, we analysed the mutations in gene pairs that were found to be mutated in more than 5% of the 
tumours for each of the 41 cancer types. Our results indicate 284,709 gene pairs with significantly co-occurring 
mutations, 796 gene pairs with significantly mutually exclusive mutations, and 32,636 gene pairs that exhibit a 
non-statistically significant mutation pattern (see Supplementary Data 2). Furthermore, certain gene pairs were 
found to exhibit mutually exclusive or co-occurring mutations in specific cancer types. For example, among the 
top three exclusively mutated gene pairs are BRAF and NRAS in skin cutaneous melanoma (p = 1.1 ×  10–44), KIT 
and PDGFRA in gastrointestinal stromal tumour (p = 3.3 ×  10–37), and EGFR and KRAS in lung adenocarcinoma 
(p = 6.6 ×  10–29) (Fig. 4c). Additionally, we identified specific cancer types in which certain gene pairs exhibit a 
significantly co-occurring mutation pattern, such as TP53 and ATRX in brain lower-grade glioma (p = 8.2 ×  10–59), 
TP53 and PTEN in uterine corpus endometrial carcinoma (p = 9.0 ×  10–29), FGFR1OP and MAP3K1 in colorectal 
adenocarcinoma (p = 2.7 ×  10–38) and uterine corpus endometrial carcinoma (p = 2.9 ×  10–05). The complete list of 
mutually exclusive and co-occurring mutated gene pairs in specific cancer types can be found in Supplementary 
Data 2.

Our analysis of non-synonymous somatic gene mutations in known cancer genes revealed a convolved pat-
tern of mutually exclusive and co-occurring mutations across different human cancer types. Notably, we found 
more exclusive and co-occurring gene pair mutations within cancer types (796 and 284,709 pairs) than across all 
types (15 and 127,605 pairs) (Fig. 4d). This result suggests that there may be a selection for specific mutations in 
certain cancer gene pairs in specific cancer  types29. Additionally, we propose that the exclusively mutated gene 
pairs identified in this study may disrupt divergent oncogenic pathways in specific cancer types, providing new 
insights into the genetic underpinnings of these  diseases30,31.

Finally, we also analysed gene mutation patterns for each cancer type by aggregating the co-occurring, non-
significant, and exclusive mutations per type. For example, as shown in Fig. 4e, colorectal adenocarcinoma had 

Figure 3.  Gene alterations and mutational landscape in different cancer types. (a) The frequency of altered 
genes encoding cell surface receptors, transcription factors, kinases, phosphatases, oncogenes, tumour 
suppressor genes and all the cancer genes in different types of tumours. (b) A plot showing the mutual 
exclusivity and co-occurrence of mutations in the different classes of cancer genes, only considering mutations 
in tumours with mutations in genes that belong to more than one class. Refer to Supplementary Fig. 5 for the 
count of mutations exclusive to each class of genes.
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the highest number of exclusively mutated gene pairs among the 41 cancer types, with 255 pairs identified. 
This was followed by non-small cell lung cancer (234 pairs) and lung adenocarcinoma (55 pairs). On the other 
hand, uterine corpus endometrial carcinoma exhibited the highest number of co-occurring mutations in gene 
pairs, with 160,320 pairs identified. This was followed by skin cutaneous melanoma (42,695 pairs) and stomach 
adenocarcinoma (53,478 pairs), as seen in Supplementary Data 2. These results provide further insight into the 
distinct genetic profiles of different cancer types and the specific mutations that may drive their development.

Differences in gene pair co‑occurrence and exclusivity among cancer types. We investigated 
the co-occurrence and exclusivity of mutations in the same cancer gene pairs across all cancer types. Interest-
ingly, we found that certain gene pairs exhibit distinct mutation patterns in different cancer types. For instance, 
we observed that mutations in the TP53 and PIK3CA genes tend to be mutually exclusive in breast carcinoma, 
colorectal adenocarcinoma, and brain lower-grade glioma, but co-occur in non-small cell lung cancer (Fig. 5a). 
Additionally, TP53 and KRAS mutations co-occur in lung adenocarcinoma and pancreatic ductal adenocar-
cinoma but are mutually exclusive in uterine corpus endometrial carcinoma and cholangiocarcinoma (Sup-
plementary Data 2). These observations suggest that when gene pairs are co-mutated, they may work together 
to promote  oncogenesis32–35, while when they are exclusively mutated, they may act independently and yield 
tumours with different phenotypic or molecular  subtypes30,31,36.

Previous research suggests that there may be a positive correlation between the number of exclusive muta-
tions and co-occurring mutations in a given cancer type, potentially driven by the relationship between mutation 
 burden37,38 and the epistatic interaction between driver  genes39,40. However, the results of the study showed that 
this was not the case, as there was no correlation between the number of exclusive mutations and co-occurring 
mutations, nor was there a correlation between the number of cancer-type samples and the number of exclusively 

Figure 4.  Analysis of co-occurrence and exclusivity of cancer gene mutations across cancer types. (a) A plot of 
non-synonymous somatic mutations in ampullary carcinoma, highlighting the co-occurrence and exclusivity of 
mutations in the 13 most frequently mutated genes. The plot columns represent samples, and the rows represent 
mutations. Also, refer to Supplementary Figs. 7a and b for additional information. (b) Analysis of co-occurring 
and exclusive mutations in all cancer types and within each cancer. (c) The 7 gene pairs with the highest 
co-occurrence across pan-cancer studies. (d) The 7 gene pairs with the highest mutual exclusiveness within each 
cancer study. (e) Statistics on the number of cancer gene mutations that are co-occurring, mutually exclusive, or 
neither significantly co-occurring nor mutually exclusive.
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mutated gene pairs observed (Supplementary Fig. 8a and b). The lack of correlation was particularly pronounced 
in uterine corpus endometrial carcinoma, where 160,316 co-occurring gene pairs were found but only 33 exclu-
sive gene pairs across 494 samples. The results suggest that the number of mutually exclusively mutated gene 
pairs may indicate the genomic complexity of a particular form of cancer and its link to alterations in different 
oncogenic pathways.

Disease outcomes of cancer patients are linked to the mutation patterns. We evaluated the 
impact of mutations in gene pairs on the overall survival of cancer patients by grouping patients into four groups 
based on the presence of mutations in a gene pair (see the “Methods” section). The groups were: (1) no muta-
tions, (2) and (3) only one of the genes in the pair is mutated, and (4) both genes are mutated. Here, we found 
that mutations in gene pairs are associated with varied overall survival durations of patients afflicted. For exam-
ple, in the case of some of the most studied genes in  cancer41,42, we found that patients with tumours that harbour 
mutations in both KRAS and TP53 (p = 1.76 ×  10–37) or CDKN1A and TP53 (p = 1.99 ×  10–35) tended to exhibit 
worse survival outcomes than those with tumours in which one or none of these genes are mutated (Fig. 5b and 
5c, see Supplementary Data 3). Furthermore, we found that patients with tumours with mutations in PIK3CA 
and/or BRAF tended to exhibit better survival outcomes than those with mutations in TP53, KRAS, and/or 
EGFR (Fig. 5d and Supplementary Fig. 9). In addition, we found that the patients with tumours with mutations 
in PIK3CA, BRAF, CDH1, and NRAS exhibit better survival outcomes than those without mutations in these 
genes (Supplementary Fig. 9; and Supplementary Data 3).

Our findings highlight the importance of understanding the impact of different combinations of gene muta-
tions on cancer development and progression. Specifically, some cancer patients may exhibit significantly dif-
ferent disease outcomes due to the specific combination of mutations present in their tumours, as has been 
demonstrated in multiple  studies43–45. For example, mutations in the KRAS that co-occur with STK11, KEAP1, 
and TP53 genes in lung cancer patients have been associated with poorer prognosis and reduced  survival44.

Driver pathways of co‑occurring and exclusively mutated genes. Our study sought to identify 
the driver pathways (gene combinations) for the top 10 most frequently mutated cancer genes in various cancer 
types. Using a detailed analysis of gene pairs, we found intriguing variations in patterns of co-occurring and 
mutually exclusive mutations across different cancer types (see “Methods” sections and Supplementary Data 4). 
In ampullary carcinoma, for example, we identified two sets of co-occurring mutated driver pathways (Fig. 6a). 
The first set involves five genes (TP53, KRAS, APC, SMAD4, and PIK3CA) that exhibit a co-occurring mutation 

Figure 5.  Combination of mutations associated with survival outcomes. (a) The correlation between the 
presence of specific mutations in the most widely studied cancer genes and patient survival rates for different 
types of cancer. The Kaplan–Meier curve displays the overall survival periods of patients with tumours that 
have (b) both TP53 and KRAS mutations, only TP53 mutations, only KRAS mutations, or no TP53 or KRAS 
mutations; (c) both TP53 and CDKN2A mutations, only TP53 mutations, only CDKN2A mutations, or no TP53 
or CDKN2A mutations; (d) both PI3KCA and BRAF mutations, only PI3KCA mutations, only BRAF mutations, 
or no PI3KCA or BRAF mutations.
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pattern, while the second set of five genes (ARID1A, ATM, ARID3, NF1, and TGFBR2) are exclusively mutated. 
Similarly, in acute myeloid leukaemia, we found two gene sets; the first set includes six genes (FLT3, DNMT3A, 
NPM1, IDH3, RUNX1, and IDH1) that exhibit a co-occurring mutation pattern, and the second set of four genes 
(TET2, TP53, NRAS, and WT1), exhibit an exclusive mutation pattern (Fig. 6b). In lung adenocarcinoma, we 
found two gene sets; the first set includes six genes (TP53, EGFR, KRAS, KEAP1, STK11, and NF1) that exhibit a 
co-occurring mutation pattern, and the second set of four genes (SMARCA4, ATM, RBM10, and APC) (Fig. 6c), 
exhibit an exclusive mutation pattern.

However, our analysis revealed that driver gene mutations have a high co-occurrence in specific cancer types, 
including uterine corpus endometrial carcinoma, skin cutaneous melanoma, and basal cell carcinoma (Fig. 6d,e, 
Supplementary Fig. 10). We also observed that the mutated genes of cancer driver pathways are significantly 
under positive selection across all cancer types, highlighting the potential importance of these genes in cancer 
development and progression.

Here, our findings suggest that different cancer types may exhibit distinct patterns of driver pathway muta-
tions, and that further research is needed to fully understand the implications of these patterns for cancer 
subtypes and cancer treatment.

Figure 6.  Predictive oncogenic pathways in different cancer types based on mutational landscapes. Two 
co-occurring pathways are predicted to drive oncogenesis based on the mutational landscape in (a) AMPCA, 
(b) LAML, (c) LUAD, (d) SKCM, and (e) ECEC. The coloured square marks at the bottom of each plot show a 
positive selection of mutations in each gene along each column (see the “Methods” section). The connectivity of 
network components within each panel was extracted from the KEA and ChEA databases and the UCSC super 
pathway.
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Cancer gene mutations in the context of cancer hallmarks. Owing to the importance of cancer 
hallmarks in designing better treatment strategies, we sought to determine the extent to which genes associ-
ated with each hallmark of cancer are altered across different types of human cancer (Fig. 7 and Supplementary 
Data 5, see "Methods" section). Our analysis revealed that the highest number of mutated genes were found in 
the "escaping programmed cell death" hallmark (220 genes), followed by "invasion and metastasis" (213 genes), 
"proliferative signalling" (160 genes), and "genome instability and mutations" (129 genes), as shown in Fig. 7. 
Notably, the most frequently mutated genes within these hallmarks were oncogenes and tumour suppressor 
genes that are not kinases, phosphatases, or cell surface receptors. This is of particular interest as current efforts 
in cancer research to identify drug targets primarily focus on kinases and cell surface receptors. Our findings 
suggest the potential for identifying a diverse range of drug targets among non-traditional cancer gene targets.

Discussion
In this study, we have conducted a systematic analysis of 727 cancer gene mutations across 41 human cancer 
types. Our results reveal the presence of non-synonymous mutations in known cancer genes in all samples 
examined, including mutations in oncogenes, TSGs, genes encoding transcription factors, kinases, phosphatases, 
and cell surface receptors. This suggests that various components of the cell signalling process are involved in 
oncogenesis. Furthermore, this finding demonstrates that various components of the cell signalling processes, 
including receptors that respond to stimuli, cytoplasmic enzymes, and nuclear proteins, are involved in oncogen-
esis. Interestingly, we found that not all samples of a particular cancer type harbour the same driver mutations, 
and the distribution of gene mutations within each cancer type varies significantly. These findings suggest that 
each patient may exhibit a different combination of mutations sufficient to perturb various oncogenic pathways, 
highlighting the importance of understanding the mutation profile of each patient’s tumour for the optimization 
of personalised cancer treatments.

In recent years, there has been a growing understanding of the importance of identifying driver mutations in 
different cancer  types3,8,10,31. Studies have identified specific driver mutations in various cancers, such as EGFR 
mutations in lung  cancer46 and BRAF mutations in  melanoma47. These findings have led to the development 
of targeted therapies that specifically target the mutated genes or pathways, improving patient survival rates 
and quality of  life48–51. For example, the discovery of EGFR mutations in lung cancer led to the development of 
targeted therapies such as gefitinib and erlotinib, which have demonstrated improved outcomes compared to 
traditional  chemotherapy52,53. Similarly, the identification of BRAF mutations in melanoma led to the develop-
ment of targeted therapies such as vemurafenib and dabrafenib, which have also improved patient  outcomes54,55. 
Therefore, we suggest that a deeper understanding of the interplay between driver mutations in cancer can lead 
to more effective and personalised treatments for different cancer types and subtypes that reduce the burden of 
cancer and improve patient outcomes.

However, it is important to note that some tumours have fewer than 5% of their cancer genes mutated. For 
example, gene mutations are infrequent in thyroid carcinoma, testicular germ cell tumours, and thymomas, where 
only two cancer genes are mutated in more than 5% of the examined tumours. These exceptions reinforce the 
notion that multiple routes to oncogenesis may be independent of cancer gene mutations and involve alterations 
in other regulatory mechanisms, such as the  epigenome1,7,56. Furthermore, these findings reveal that in cases 
where cancer gene mutations are infrequent, other genetic datasets, such as chromosomal changes, epigenetic 

Figure 7.  Alterations of cancer hallmark genes. The total number of cancer genes across each combination of 
cancer genes categories associated with the hallmarks of cancer.
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changes, copy number variations, microsatellite instability, mRNA transcription abundance, and mutations in 
the non-coding and regulatory regions of the genome, should be considered to identify cancer  genes57–61.

Despite the large amounts of genomic data this study analysed, we could not pinpoint commonly mutated 
cancer genes in samples of specific cancer types. This highlights the sparsity nature of gene mutations and the 
limited diversity of the presently available genome sequences, which impede the identification of commonly 
applicable drug targets and marker mutations within each cancer  type62–66. Despite this, we discovered that in 
gene pairs specific to all types of cancer, the co-occurrence of mutations (284,709) is 378 times more likely than 
exclusive mutations (796). This demonstrates that genes involved in various cancer pathways have a greater ten-
dency to co-mutate rather than mutate  exclusively40,67. As a result, our findings suggest the presence of a limited 
number of context-dependent, co-occurring driver gene mutations, which could facilitate the identification of 
widely applicable drug targets and markers of aggressiveness across a multitude of patients’ tumours.

Our findings also show that the co-occurrence and exclusive nature of cancer gene mutations significantly 
affect the disease outcome of patients with various forms of cancer. In addition, these results indicate that various 
gene alterations in specific gene pairs have a diverse impact on processes that drive disease  aggressiveness68–70.

However, a limitation of our study is that we did not account for the distinction between COSMIC Tier 1 and 
Tier 2 cancer-driving genes in our  analysis23. Tier 1 genes have well-documented activities relevant to cancer, 
while Tier 2 genes have strong indications but with emerging  evidence23. By not distinguishing between these 
tiers, we may have overlooked some nuanced differences in the role these genes play in oncogenesis. This could 
potentially affect the interpretation of the data, especially in the context of clinical relevance. In future studies, 
a separate analysis of Tier 1 and Tier 2 genes might provide more detailed insights into their distinct roles and 
contributions to the development and progression of cancer.

In conclusion, to comprehensively evaluate the impact of different combinations of gene alterations on can-
cer development and treatment response, there is an urgent need for new molecular tools. While there is a vast 
amount of genomics data available, it is currently not feasible to study the impact of every possible combination 
of gene mutations due to the sheer size of the combinatorial space. It is important to note that the currently 
available genomics data is limited to a subset of patient tumours and cell lines, which only includes a fraction of 
the possible combinations of driver mutations that may exist. While  databases15,23,42 and computational tools can 
be used to predict the potential impact of certain gene mutations or their  combinations71–73, the limitations of 
available data and the complexity of cancer genetics make it challenging to comprehensively evaluate the impact 
of every possible combination on cancer development and drug response. As such, future experiments that allow 
the altering of cancer genes in normal cells in different combinations will ultimately help to unlock the impact 
of a combination of cancer gene mutations on oncogenesis, disease aggressiveness, and the chemosensitivity of 
tumours. By developing new molecular tools and continuing to expand our knowledge of cancer genetics, we 
can move closer to achieving precision medicine in cancer treatment, where patients receive tailored therapies 
based on the genetic profile of their cancer.

Methods
In our study, we obtained a dataset of 366 cancer studies from the  cBioPortal74 version 5.2.5 (http:// www. cbiop 
ortal. org) of deeply sequenced tumours. To ensure a high level of specificity, we excluded studies that employed 
targeted sequencing, datasets of paediatric tumours, and cancer cell lines, resulting in a final dataset of 206 cancer 
studies. Further, we filtered the dataset again to return only those from 138 cancer studies that also had clinical 
information for the profiled afflicted patients. The final datasets encompassed 20,331 patient-derived tumour 
samples representing 41 distinct human cancer types sequenced from the year 2012 to 2021 (see Supplementary 
Data 1 for details on the cancer studies). The elements of the data that we obtained from cBioPortal include 
somatic gene mutations (point mutations and small insertions/deletions) and comprehensively deidentified 
clinical data.

Compilation of cancer genes and their classes. In our study, we sourced data on cancer-driving genes 
the Catalogue of Somatic Mutations in  Cancer24 (COSMIC), specifically from the Consensus Cancer Gene 
 Database23 (version 95, released on November 24, 2021), which includes a total of 727 cancer-driving genes that 
have been rigorously vetted for evidence and manually curated, with 576 in Tier 1 and 151 in Tier 2. To fur-
ther classify these known cancer genes, we divided them into five classes: oncogenes, tumour suppressor genes, 
kinases, phosphatases, cell surface proteins, and transcription factors. To achieve this, we obtained information 
on gene annotations from various databases, including the Sanger Consensus Cancer Gene  Database23 (699 
oncogenes and TSGs), the UniProt  Knowledgebase75 (304 oncogenes and 741 TSGs), the TSGene  database76 
(1,220 TSGs), the ChEA transcription factor  database77 (645 transcription factors), the TF2DNA  database78 
(1,314 transcription factors), the Kinase Enrichment Analysis  database79 (428 kinases), the ONGene  database80 
(725 oncogenes), and the Surfaceome  database81 (2,950 cell surface receptors). We then collated the cancer genes 
from all the above databases to obtain a list of 727 cancer genes (after removing overlapping genes), including 
383 oncogenes, 370 tumour suppressor genes, 9 phosphatases, 75 kinases, 63 cell surface receptors, and 150 
transcription factors (Supplementary Data 1).

Calculation of cancer gene mutations. We obtained the gene sequencing datasets of the samples for 
all the cancer genes. We then selected only the non-synonymous mutations that occurred within the genes. To 
evaluate the extent to which each cancer-driving gene is mutated in cancer, we calculated the somatic mutation 
frequency (including single nucleotide mutations, short indels, and insertions) for each gene across the 20,331 
samples across each cancer type (Supplementary Data 1). Additionally, for each cancer type, we obtained sum-

http://www.cbioportal.org
http://www.cbioportal.org
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maries of the number of mutated genes in (1) none of the samples, (2) less than 5% of the samples, and (3) more 
than 5% of the samples.

Cancer gene mutations across gene classes. We aimed to determine the extent of mutations in can-
cer-associated genes within individual cancer types and across all human cancers. To achieve this, we calculated 
the non-synonymous somatic mutation frequency (including single nucleotide mutations, short indels, and 
insertions) for each of the 41 human cancer types represented among the 20,331 samples (Supplementary Data 
1). Additionally, we calculated the frequency of non-synonymous somatic mutations for groups of genes, such 
as oncogenes, tumour suppressor genes, kinases, phosphatases, cell surface receptors, and transcription factors, 
across each of the 41 cancer types and the entire patient cohort (Supplementary Data 1). It should be noted 
that, for the calculations involving gene categories, we included genes that belong to each category and not only 
exclusively to one category.

Assessment of the co‑occurrence and exclusivity of gene mutations. We used the hypergeomet-
ric Fisher test to evaluate the correlation in the mutation profile of cancer gene pairs. First, we obtained a list 
of mutated genes in more than 1% (550 cancer genes) of all tumours across all the samples. Next, we applied 
the Fisher test to each pair of the selected genes and utilised a cut-off p-value of 0.05 to identify statistically 
significant gene pair correlations. Furthermore, we used the magnitude of the odds ratio to identify gene pairs 
with co-occurring mutations (odds > 1 and p < 0.05) and gene pairs with mutually exclusive mutations (odds < 1 
and p < 0.05). Additionally, we used the approach to identify cancer gene pairs within co-occurring or mutually 
exclusive mutation patterns within each of the 43 human cancer types (see Supplementary Data 2).

Correlation between mutations pattern and disease outcomes. We used the Kaplan–Meier82 
method to estimate the duration of overall survival and disease-free survival of patients with cancer who had 
(1) only one gene pair mutated, (2) the other gene pair mutated, (3) none of the gene pair mutated, and (4) both 
gene pairs mutated.

Identification of exclusive and co‑occurring driver pathways. To identify the patterns of mutations 
associated with each cancer type and the corresponding cancer gene combinations, we applied the CoMDP 
 algorithm83. This algorithm employs a mathematical programming method to identify de novo driver pathways 
in cancer from mutation profiles. Specifically, we aimed to identify pathways with mutated cancer genes that 
exhibit both high coverage (i.e., present in multiple samples) and high exclusivity, and show a statistically sig-
nificant co-occurrence pattern.

To begin, we selected the top 10 mutated cancer genes for each cancer type as input for the CoMDP algorithm. 
These genes were selected from the significantly mutated genes identified using the MutSigCV2  algorithm84. In 
cases where MutSigCV2 identified fewer than 10 genes as significantly mutated, we included additional genes 
to bring the gene set size to 10. If a gene with very long coding regions or very long introns (including CSMD1, 
CSMD3, NRXN1, NRXN4, CNTNAP2, CNTNAP4, CNTNAP5, CNTN5, PARK2, LRP1B, PCLO, MUC16, MUC4, 
KMT2C, KMT2A, KMT2D, FAT1, FAT2, FAT3, and FAT4) were not identified as being significantly mutated 
using MutSigCV2 in a specific cancer type, it was excluded from the analysis for that cancer  type84.

Next, we ran the CoMDP test for each cancer type with K = 10, where K equals the gene set size. The CoMDP 
analysis returned mutated driver pathways associated with the genes in each cancer type (Supplementary Data 
4). Additionally, we obtained information on the selectivity of gene mutations in each cancer type from the sup-
plementary data of Martincorena et al.29.

Association between cancer gene mutations and the cancer hallmarks. To investigate the rela-
tionship between the Hallmarks of  Cancer1,85 and the mutated gene sets, we accessed information on genes and 
proteins associated with various Hallmarks of Cancer from the COSMIC  database24. We then calculated the 
number of mutated genes at a frequency of more than 1% in at least one cancer type within each class based on 
the various cancer hallmark gene sets (Supplementary Data 5).

Statistics and reproducibility. We used MATLAB  2022a86 for all statistical analyses. We used two-sided 
statistical tests with a p-value < 0.05 to indicate statistical significance. To correct for multiple statistical testing, 
we applied the Benjamini & Hochberg  procedure87, resulting in a q-value < 0.05 for each comparison.

Ethics approval. The study protocol was approved by The University of Cape Town; Health Sciences 
Research Ethics Committee IRB00001938. The publicly available datasets were collected by the cBioPortal.

Data availability
The data that support our results are available in this manuscript, the supplementary data, and from the follow-
ing repositories: cBioPortal; https:// www. cbiop ortal. org/, and the COSMIC Consensus Cancer Genes; https:// 
cancer. sanger. ac. uk/ census.

Code availability
Custom code written in MATLAB for processing and analysing the presented data is freely available at https:// 
github. com/ smsin ks/ Analy sis- of- Cancer- Gene- Mutat ions. In addition, the repository includes some pre-down-
loaded datasets and conversion files required for the analysis.

https://www.cbioportal.org/
https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
https://github.com/smsinks/Analysis-of-Cancer-Gene-Mutations
https://github.com/smsinks/Analysis-of-Cancer-Gene-Mutations
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