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Monthly runoff prediction based 
on a coupled VMD‑SSA‑BiLSTM 
model
Xianqi Zhang 1,2,3, Xin Wang 1*, Haiyang Li 1, Shifeng Sun 1 & Fang Liu 1

The accurate prediction of monthly runoff in the lower reaches of the Yellow River is crucial for 
the rational utilization of regional water resources, optimal allocation, and flood prevention. This 
study proposes a VMD‑SSA‑BiLSTM coupled model for monthly runoff volume prediction, which 
combines the advantages of Variational Modal Decomposition (VMD) for signal decomposition and 
preprocessing, Sparrow Search Algorithm (SSA) for BiLSTM model parameter optimization, and 
Bi‑directional Long and Short‑Term Memory Neural Network (BiLSTM) for exploiting the bi‑directional 
linkage and advanced characteristics of the runoff process. The proposed model was applied to predict 
monthly runoff at GaoCun hydrological station in the lower Yellow River. The results demonstrate that 
the VMD‑SSA‑BiLSTM model outperforms both the BiLSTM model and the VMD‑BiLSTM model in 
terms of prediction accuracy during both the training and validation periods. The Root‑mean‑square 
deviation of VMD‑SSA‑BiLSTM model is 30.6601, which is 242.5124 and 39.9835 lower compared to 
the BiLSTM model and the VMD‑BiLSTM model respectively; the mean absolute percentage error is 
5.6832%, which is 35.5937% and 6.3856% lower compared to the other two models, respectively; the 
mean absolute error was 19.8992, which decreased by 136.7288 and 25.7274 respectively; the square 
of the correlation coefficient (R2) is 0.93775, which increases by 0.53059 and 0.14739 respectively; the 
Nash–Sutcliffe efficiency coefficient was 0.9886, which increased by 0.4994 and 0.1122 respectively. 
In conclusion, the proposed VMD‑SSA‑BiLSTM model, utilizing the sparrow search algorithm and 
bidirectional long and short‑term memory neural network, enhances the smoothness of the monthly 
runoff series and improves the accuracy of point predictions. This model holds promise for the effective 
prediction of monthly runoff in the lower Yellow River.

Runoff simulation and prediction play a vital role in water resource management, regulation, and rational plan-
ning. They are crucial for the efficient utilization of water resources, flood control, and disaster reduction. With 
the rapid advancement of artificial intelligence technology, numerous deep learning algorithms have emerged, 
and comprehensive forecasting models based on intelligent methods and numerical weather prediction have 
been proposed. These models involve various optimization algorithms such as Chaos Optimization  Algorithm1, 
bald eagle search optimization  algorithm2, Particle Swarm Optimization (PSO)3, and artificial neural network 
 models4,5, which have deepened their intersectionality with hydrology.

The pursuit of a runoff prediction model with high accuracy and applicability has been a topic of constant 
concern in hydrological forecasting. Both domestic and foreign researchers have conducted extensive studies 
to improve the accuracy of prediction models, resulting in fruitful results. For instance, Feng et al.6 combined 
quantum behavioural particle swarm optimization algorithms with variational modal decomposition and SVM 
to build a monthly runoff prediction model. Lei et al.7 proposed a prediction model that combines empirical 
mode decomposition and Metropolis Hastings sampling Bayesian model for hydrological prediction.  Roy8 used 
the LSTM model to predict ET0 in multiple watersheds with daily and multi-step forward predictions. The LSTM 
model demonstrated strong adaptability to various prediction indicators. Xu Dongmei et al.9 utilized LSSVM and 
CEEMDAN to predict monthly runoff at Changshui hydrological station. Fan Hongxiang and others developed a 
meteorological runoff model for the Poyang Lake basin based on the Long short-term memory neural network, 
effectively simulating the runoff process, capturing extreme runoff values, and reflecting short-term fluctuations. 
The Long Short Term Memory (LSTM) neural network model has been widely employed in runoff prediction 
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due to its nonlinear prediction capability, faster convergence speed, and long-term memory effect. However, 
when the LSTM model learns time series, it faces challenges such as a poor early feature memory effect, leading 
to the loss of features in the initial learned part, and difficulties in fully capturing the entire time series  features10.

As research progresses, there is an increasing demand for higher accuracy in runoff prediction.  Seo11 and 
 He12 developed a combined runoff prediction model based on the VMD algorithm, demonstrating improved 
prediction accuracy after data decomposition and reconstruction. Ba et al.13 used the sparrow search algorithm 
(SSA) to optimize artificial neural networks (ANN model), showcasing the advantages of simple implementation, 
high search accuracy, fast convergence speed, stability, and robustness. Chen and  Liang14 combined the empirical 
modal decomposition method (EMD), attention mechanism, and BiLSTM neural network to predict the daily 
longitudinal flow at the Qingxi River site in Xuanhan County, obtaining accurate results that met prediction 
requirements. Regarding the study of bidirectional long short-term memory neural networks, Li and  Jiang15 
used STL for sequence decomposition, temporal convolution, a bidirectional long short-term memory network 
(TCN-BiLSTM) for feature leaning the decomposed series, and interdependent moment feature emphasisation 
using DMAttention to predict the concentration of air pollutants, achieving accurate prediction accuracy. Sathi 
et al.16 used a CNN-BiLSTM model to predict the attention to the induced electric field of a transcranial mag-
netic stimulation coil with similarly excellent results.Current research on monthly runoff prediction models, 
both domestically and internationally, mainly focuses on coupling optimization algorithms with neural net-
works to improve prediction accuracy by constructing coupled models. Overall, as the complexity of hydrologi-
cal phenomena deepens, the development of conceptual and physical hydrological models encounters certain 
 bottlenecks17, and the accuracy of predictions needs further improvement. Therefore, this article proposes a 
VMD-SSA-BiLSTM coupled model suitable for predicting monthly runoff in the lower Yellow River. The model 
combines the variational mode decomposition (VMD) used for signal decomposition and preprocessing, the 
sparse search algorithm (SSA) used for parameter optimization of the BiLSTM model, and the bidirectional Long 
short-term memory neural network (BiLSTM) used to utilize the bidirectional links and advanced characteristics 
of the runoff process. The proposed VMD SSA-BiLSTM model combines the sparrow search algorithm and the 
bidirectional Long short-term memory neural network, which enhances the smoothness of monthly runoff series 
and improves the accuracy of point prediction.

Theory and method
Sparrow Search Algorithm (SSA). The Sparrow Search Algorithm (SSA) is an intelligent optimization 
algorithm that draws inspiration from the foraging and anti-predation behavior of  sparrows18. The optimization 
process of SSA can be described as follows:

The formula for updating the discoverer’s position Xt+1
i, j  is:

where itermax is the maximum number of iterations, xi,j represents the position of the i-th sparrow in the j-th 
dimension, α is a random number in the range (0, 1], R2 is the early warning value in the range [0, 1], ST is the 
safe value in the range [0.5, 1], Q is a random number following a normal distribution, and L is a 1 × d matrix 
with all elements set to 1.

Additionally, the joiner location Xt+1
i, j  is updated using a specific process:

In equation A+ = AT (AAT )−1 , Xp is the optimal position of the current discoverer;  Xworst is the current 
global worst position, and A is a 1 × d matrix with randomly assigned elements of either 1 or − 1.

Furthermore, it is assumed that a certain percentage (10–20%) of the sparrow flock are aware of the  danger19. 
These vigilant sparrows swiftly move towards the safety zone, and the mathematical expression for the location 
of the vigilantes Xt+1

i,j  is:

In the formula, Xbest is the current global optimal position, β is a random number used as a step control 
parameter following a normal distribution with a mean of 0 and a variance of 1, K is a random number within 
the range [− 1, 1], fi is the fitness value of the individual sparrow, fg is the current global optimal fitness value, 
fw is the current global worst adaptation value, and ℇ is a  constant20.

The algorithmic steps of the Sparrow Search Algorithm (SSA)21 are as follows:

Step 1 Initialize the population, specify the proportion of predators and joiners, and set the number of itera-
tions.
Step 2 Calculate the fitness values for each sparrow and sort them in descending order.
Step 3 Update the positions of the discoverers.
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Step 4 Update the positions of the joiners.
Step 5 Update the positions of the vigilant sparrows (those aware of danger).
Step 6 Calculate the fitness values and update the positions of the sparrows.
Step 7 If the desired requirements are met, output the result; otherwise, repeat steps 2 to 6.

The flow chart illustrating the Sparrow Search Algorithm is depicted in Fig. 1.
In this study, the Sparrow Search Algorithm (SSA) is employed to optimize three key parameters of the BiL-

STM model: the number of hidden units, the maximum training period, and the initial learning rate.

Variational mode decomposition (VMD). Variational Modal Decomposition (VMD) is a non-recursive 
decomposition model that employs an adaptive variational method to determine frequency bands and estimate 
corresponding modes, effectively balancing the errors between  them22. VMD aims to decompose a given real 
input signal f(t) into discrete sub-signals or modes, denoted as μk, where each mode uk is primarily concentrated 
around a center frequency wk23. The specific steps for VMD to decompose f(t) into k  subsequences24 are as fol-
lows:

Step 1 Calculate the analytic signal and construct the spectrum for each mode μk using the Hilbert transform.
Step 2 Shift the frequency spectrum of the modes to the baseband by utilizing their respective estimated 
center frequencies.
Step 3 Estimate the bandwidth by demodulating the Gaussian smoothness of the signal, which is represented 
by the L2 norm of the gradient.

This results in a constrained variational problem, which can be expressed as follows:

In the formula, uk is the k-th modal component, wk is the frequency center associated with the k-th mode, 
and δ(t) is the unit pulse function. To handle the constrained variational problem, quadratic penalty terms and 
Lagrange multiplier � are introduced to transform it into an unconstrained problem. The alternating direction 
multiplier method (ADMM) is then employed for solving the transformed  problem25. In this study, the VMD 

(4)





min

{uk},{wk}

��
k �∂(t)

��
δ(t)+

j
π t

�
uk(t)

�
e−jwkt�

2

2

�

s.t.
�

k uk = f

Figure 1.  Sparrow search algorithm optimization flowchart.
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technique is applied to decompose the monthly runoff time series into a set of relatively smooth sub-series data. 
This decomposition helps enhance the prediction accuracy of the model.

Bidirectional long short‑term memory network (BiLSTM). Bidirectional Long Short-Term Memory 
(BiLSTM) is an advanced variation of traditional bidirectional recurrent neural networks that replaces regular 
RNN units with LSTM units. It consists of both forward and backward LSTM  components26. By incorporating 
information from both past and future contexts of a sequence, BiLSTM effectively captures a comprehensive 
range of features. The hidden layer of BiLSTM consists of two parts: the forward LSTM cell state and the back-
ward LSTM cell state. Historical sequences are fed into the hidden layer through the input layer, enabling for-
ward and backward computations. The model learns from the past and future sequence features to produce the 
final output  result27. The network structure of BiLSTM, as illustrated in Fig. 2, where X(t) represents the input of 
the network and Y(t) represents the output of the  network21.

SSA optimization BiLSTM. To obtain optimal parameters for model prediction, the Sparrow Search 
Algorithm (SSA) was employed to optimize the number of hidden units, the maximum training period, and the 
initial learning rate of the Bidirectional Long Short-Term Memory (BiLSTM) network. The construction of the 
SSA-BiLSTM model involved the following steps:

Step 1 The dataset was divided into training and testing sets, which were then normalized.
Step 2 The training set was used as the input vector for training the BiLSTM network.
Step 3 The Sparrow Search Algorithm was applied to optimize the number of hidden units, the maximum 
training cycle, and the initial learning rate of the BiLSTM model, resulting in the identification of optimal 
parameters. These parameters were selected to establish the model.
Step 4 The optimized BiLSTM model was trained again, and the results were compared.
Step 5 Termination conditions were evaluated. If met, the loop was exited and the prediction results were 
outputted. Otherwise, the process was repeated.
Step 6 The test set was fed into the optimized BiLSTM model, and the prediction results were obtained.

The corresponding flow chart depicting these steps is illustrated in Fig. 3.

VMD‑SSA‑BiLSTM model prediction process. The VMD-SSA-BiLSTM model is a combination of 
Variational Modal Decomposition (VMD), Sparrow Search Algorithm (SSA), and Bidirectional Long Short-
Term Memory (BiLSTM) networks. The prediction steps for monthly runoff using this model are as follows:

Step 1 Select the monthly runoff data from the previous n months as input to the model.
Step 2 Decompose the original runoff sequence using VMD to obtain k components.
Step 3 Define the search range for the sparrow population size N, maximum iteration number M, and param-
eter range. Then, establish the coupled model of SSA and BiLSTM by selecting Mean Squared Error (MSE) 
as the objective function in the optimization algorithm.
Step 4 Input each component separately into the SSA-BiLSTM prediction models to obtain k individual 
prediction models.
Step 5 Sum up the predicted values from the k prediction models to obtain the final predicted values for 
monthly runoff.

The flow chart depicting the construction of the VMD-SSA-BiLSTM model is presented in Fig. 4.

Figure 2.  Construction of bidirectional long short-term memory neural network.
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Example applications
Data sources. The Yellow River basin, spanning between 96°–119° E and 32°–42° N, covers an area of 
approximately 79.5 ×  104  km2. It is divided into three sections: the upper, middle, and lower reaches. Over the 
past few decades, the measured runoff in the basin has exhibited a declining trend, accompanied by significant 
inter-annual variations and differences in intra-annual distribution. These challenges have resulted in severe 
water supply and demand issues throughout the basin. The problem of sedimentation exacerbates the conflict 
between water supply and demand, particularly in the downstream section. Hence, accurate runoff prediction in 
the lower Yellow River basin, including the Gaocun hydrological station, is crucial. Gaocun hydrological station, 
established in 1934 in Dongming County, Heze City, is located in the lower reaches of the Yellow River basin. It 
serves as the gateway station for the Yellow River’s entry into Shandong Province. The station plays a vital role 
in managing and developing the Yellow River, as well as in flood control, water resource management, and pro-

Figure 3.  Flow chart of SSA optimized BiLSTM model.

Figure 4.  VMD-SSA-BiLSTM model flowchart.
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viding hydrological information for Shandong’s social and economic development. In this article, the monthly 
meridional flow data of Gaocun Hydrological Station in the lower reaches of the Yellow River from 1950 to 2021 
(852 months in total) were selected, and the data information was obtained from the measured data of Gaocun 
Hydrological Station in the lower reaches of the Yellow River, and was checked for triteness. The location of the 
study area is shown in Fig. 5, and this figure is created using ArcMap 10.2, URL:www. arcgis. com.

The monthly runoff data measured at the Gaocun hydrological station from 1950 to 2021 were utilized in this 
study. The dataset was divided into a training set, comprising the initial 70% of the data, and a test set, comprising 
the remaining 30%. Figure 6 presents the graphical representation of the monthly runoff series in the study area.

VMD decomposition. To predict the 13th month based on the inter-annual variation pattern, the first 
12 months of each component were selected as inputs for the model. The selection of the number of modes (k) 
in the VMD decomposition greatly impacts the decomposition effect. A larger number of decompositions can 
result in frequency mixing, while a smaller number may lead to the loss of original signal information. Different 

Figure 5.  Location map of the study area.

Figure 6.  Monthly runoff series graphs.

http://www.arcgis.com
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k values were tested, and it was observed that when k was set to 5, the corresponding center frequencies were 
more dispersed. Hence, k = 5 was chosen. Figure 7 illustrates the decomposed subsequences with 5 different 
frequencies. In contrast to Fig. 6, the original runoff sequence does not exhibit a clear pattern of amplitude 
change. However, in Fig. 7, as the number of modal components increases, the amplitude change of the sequence 
becomes periodic, resulting in a more stable sequence. This preprocessing step enables the SSA-BiLSTM model 
to better capture the feature information in the data and make accurate predictions.

Parameter settings. The BiLSTM model utilizes two hidden layers with 20 neurons in the first hidden 
layer (H1), 20 neurons in the second hidden layer (H2), 100 training iterations (E), and a learning rate (η) of 
0.005. In the VMD-SSA-BiLSTM model, the sparrow population size (N) is set to 3, and the maximum number 
of iterations (M) is 5. Among the sparrow population, 20% are discoverers, while the rest are enrollees. The 
warning value is set to 0.8, indicating the presence or absence of predators. A value less than 0.8 signifies the 
absence of predators, while a value greater than or equal to 0.8 indicates the presence of predators, necessitat-
ing foraging in safer areas. The sparrow search algorithm explores the parameter ranges [1,100] for H1 and H2, 
[1,100] for E, and [0.001,0.01] for η in the search for optimal BiLSTM parameters.

Forecast results. The monthly runoff data from 1950 to 2021 at Gaocun Hydrological Station in the lower 
reaches of the Yellow River were used for prediction. The dataset consisted of 864 months. The first 70% of the 
dataset (months 1–610) was used for training, while the remaining 30% (months 611–864) was used for testing. 
Extensive experiments were conducted, and the obtained prediction results are presented in Fig. 8.

Based on the observation of Fig. 8, the VMD-SSA-BiLSTM coupled model shows a generally accurate predic-
tion of monthly runoff. Although there are a few instances where the predicted values deviate significantly from 
the actual values, overall, the predicted values align closely with the actual values. This indicates that the model 
exhibits good prediction accuracy, supporting the conclusion that the model is reasonable.

Model comparison and analysis. Four models, namely LSTM, BiLSTM, VMD-BiLSTM, and VMD-SSA-
BiLSTM, were employed to predict the monthly runoff of Gaocun Hydrological Station. A statistical analysis was 
conducted on the error indicators, including Root-mean-square deviation (RMSE), mean absolute percentage 
error (MAPE), mean absolute error (MAE), correlation coefficient square (R2), and Nash coefficient (NSE) of the 
four models. The following are the calculation formulas for the five error indicators,

Formula 1 : RMSE =

√√√√ 1

N
·

N∑

i=1

(
yi − pi

)2

Figure 7.  VMD decomposition diagram.
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The results of the analysis are presented in Table 1, as depicted below.
Table 1 presents the results of the analysis, revealing that the BiLS™ model outperforms the LS™ model in 

predicting monthly runoff. During the validation period, the RMSE index decreases by 48.3789, the MAPE index 
decreases by 8.1182%, the MAE index decreases by 45.6839, the R2 index increases by 0.2665, and the Nash index 
increases by 0.0928. Hence, BiLS™ is selected as the basis for model construction in this study.

Furthermore, the VMD-BiLS™ model, formed by incorporating VMD decomposition and reconstruction into 
the BiLS™ model, yields more accurate prediction results. Additionally, the VMD-SSA-BiLS™ model, optimized 
using the sparrow search algorithm (SSA), demonstrates significant advantages over the first two models during 
the retraining and validation periods. Specifically, the RMSE index decreases by 242.5124 and 45.9835, the MAPE 
index decreases by 35.5937% and 6.3856%, the MAE index decreases by 136.7288 and 25.7274, the R2 index 
increases by 0.53059 and 0.14739, and the NSE index increases by 0.4994 and 0.1122, respectively.

Based on the comparative analysis of the error metrics, it is evident that the VMD-SSA-BiLS™ model exhibits 
the highest prediction accuracy.

Formula 2 : MAPE =
100

N
·

N∑

i=1

yi − Pi

yi
, y �= 0

Formula 3 : MAE =
1

N

N∑

i=1

∣∣yi − pi
∣∣

Formula 4 : R2 =
SSR

SST
=

∑(
ŷi − y

)2
∑(

yi − y
)2

Formula 5 : ESE = 1−

∑T
t=1

(
Qt
o − Qt

m

)2
∑T

t=1

(
Qt
o − Qo

)2

Figure 8.  Runoff prediction curve for august.

Table 1.  Parameter rate and test performance statistics for the four models.

Models LS™ BiLS™ VMD-BiLS™ VMD-SSA-BiLS™

Training period

RMSE 395.6334 311.0775 88.6966 37.7533

MAPE/% 56.6173 48.3651 14.7437 5.6832

MAE 213.64 173.51 46.7185 19.8992

R2 0.12118 0.39017 0.77656 0.93775

NSE 0.3523 0.4423 0.8364 0.9717

Validation period

RMSE 321.5514 273.1725 76.6436 30.6601

MAPE/% 48.4025 40.2843 11.0762 4.6906

MAE 197.6471 151.9632 40.9618 15.2344

R2 0.14662 0.41312 0.79632 0.94371

NSE 0.3964 0.4892 0.8764 0.9886



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13149  | https://doi.org/10.1038/s41598-023-39606-4

www.nature.com/scientificreports/

Discussion
From Fig. 9, it can be seen that the predicted results of monthly runoff using the LS™ model and BiLS™ model 
alone differ significantly from the measured data, resulting in poor prediction performance. However, after com-
paring the two, it can be concluded that the BiLS™ model has slightly better prediction performance than LS™; 
However, the predicted values obtained by using VMD-BiLS™ and VMD-SSA-BiLS™ models are relatively consist-
ent with the measured values, but it is difficult to distinguish which model has the better prediction effect based 
on Fig. 9 alone; Furthermore, according to the scatter plot in Fig. 10, it can be seen that the prediction accuracy 
of the VMD-SSA-BiLS™ model is slightly better than that of VMD-BiLS™. Figure 11 shows the Box plot drawn 
from the model prediction data and the measured data. It can be seen from the graphic comparison that the LS™ 
model used alone has the worst prediction effect, while the VMD-SSA-BiLS™ model has the best prediction effect. 
In addition, it can be seen from the Taylor diagram in Fig. 12 that the prediction accuracy of the VMD-SSA-BiLS™ 
model is the highest.In summary, both the single LS™ model and the BiLS™ model are not effective in predicting 
monthly runoff. This may be due to the fact that a single time series direct prediction cannot take into account 
the physical conditions of the basin, considering that the upstream of the Gaocun hydrological station will be 
influenced by other large and small hydropower stations on runoff, and the mechanism of runoff formation is 
relatively complex, making the single prediction model less accurate and unable to meet the actual prediction 
needs. The VMD decomposition can reduce the noise of the original runoff series and extract the complex and 

Figure 9.  Comparison of the prediction process of the four models during the validation period.

Figure 10.  Scatter plot of predicted and measured monthly runoff for the validation period of the four models.
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effective information implied in the runoff data, which to a certain extent can reflect the intrinsic mechanism 
of watershed runoff formation. The SSA further optimizes the BiLS™ model to obtain the optimal parameters 
for the number of hidden units, the maximum training period and the initial learning rate, which improves the 
efficiency of the model parameter selection. The coupled VMD-SSA-BiLS™ model can achieve high prediction 
accuracy in both the training and validation periods, which shows that the VMD-SSA-BiLS™ model proposed in 
this paper is feasible for the prediction of monthly runoff. In comparison with other research articles on runoff 
prediction, this paper firstly addresses the relatively complexity of runoff formation mechanisms in the study 
area by performing data noise reduction prior to parameter optimisation.

Figure 11.  Box plot of predicted and measured monthly runoff for the validation period of the four models.

Figure 12.  Taylor diagram of predicted and measured monthly runoff for the validation period of the four 
models.
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Conclusions

(1) This study proposes a monthly runoff prediction model based on the coupling of VMD-SSA-BiLS™, which 
combines variational mode decomposition (VMD), sparrow search algorithm (SSA), and bidirectional 
Long short-term memory neural network (BiLS™). Compared with previous studies on runoff prediction, 
this paper constructs a coupled VMD-SSA-BiLS™ model, which combines the advantages of the three and 
improves the prediction accuracy; at the same time, the BiLS™ neural network, which has been less applied 
in runoff prediction previously, is used as one of the research methods, and good results have been achieved. 
The model effectively addresses the nonstationarity of monthly runoff series and enhances the accuracy of 
point prediction. Additionally, the nonparametric Kernel density estimation provides prediction intervals 
for monthly runoff without assuming error distribution in advance. This compensates for the limitations 
of point prediction models in describing prediction results and offers a novel approach to monthly runoff 
prediction.

(2) The model was applied to predict monthly runoff at the Takamura hydrological station. The obtained 
results include a root mean square error (RMSE) of 30.6601, a mean absolute percentage error (MAPE) of 
4.6906%, a mean absolute error (MAE) of 15.2344, a mean correlation coefficient squared (R2) of 0.94371, 
and a Nash coefficient (NSE) of 0.9886.

(3) The VMD-SSA-BiLS™ coupled model fully utilizes the benefits of VMD decomposition for data noise 
reduction and the SSA optimization algorithm for optimizing BiLS™ neural network parameters. Compared 
to the BiLS™ model and the VMD-BiLS™ model, the VMD-SSA-BiLS™ model achieves notable improve-
ments. Specifically, the RMSE is reduced by 242.5124 and 45.9835, the MAPE is reduced by 35.5937% and 
6.3856%, the MAE is reduced by 136.7288 and 25.7274, the R2 is increased by 0.53059 and 0.14739, and 
the NSE is increased by 0.4994 and 0.1122, respectively. In this paper, only a single-step prediction of the 
monthly runoff series during the flood season is presented. The sparrow optimisation algorithm has better 
optimisation performance than the traditional population optimisation algorithm, but still suffers from too 
fast convergence and the tendency to fall into local optima. The advantage of the model proposed in this 
article lies in the idea of "decomposition-prediction-reconstruction", which improves the final prediction 
accuracy with each step of model construction. Then, the BiLS™ model used for prediction, which has the 
advantages of bidirectional link and advanced characteristics, is also very suitable for runoff prediction. In 
addition, regarding the limitations of the model, the sparrow optimization algorithm has the problem of too 
fast convergence for parameter optimization, which can easily result in only local optima. This model has 
good performance in predicting single time series runoff data, but further improvement is needed when 
applied to predicting multiple series data.

(4) In this paper, compared with other research articles, the more novel BiLS™ model was chosen for the 
prediction method, and in terms of data processing, the VMD decomposition method was used for noise 
reduction of the data, together with the SSA optimisation algorithm coupled with the model, to obtain a 
high prediction accuracy.

(5) In this paper, only a single-step prediction of the monthly runoff series during the flood season is presented. 
In subsequent studies, the proposed model can be used to make further multi-step predictions on the basis 
of the single-step prediction. The sparrow optimisation algorithm has better optimisation performance 
than the traditional population optimisation algorithm, but still suffers from too fast convergence and the 
tendency to fall into local optima. In the future, suitable algorithms should also be selected for forecasting 
for the selected study area, further achieving extended research from algorithm improvement and model 
construction. For future scope of the model, the model can be used for further multi-step prediction based 
on single step prediction. Also it can be tried to use this model in other predictions such as annual runoff 
prediction, seasonal runoff prediction.

Data availability
Data and materials are available from the corresponding author upon request.
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