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Modelling the dynamics 
of acute and chronic hepatitis B 
with optimal control
Tahir Khan 1, Fathalla A. Rihan 1* & Hijaz Ahmad 2,3,4*

This article examines hepatitis B dynamics under distinct infection phases and multiple transmissions. 
We formulate the epidemic problem based on the characteristics of the disease. It is shown that the 
epidemiological model is mathematically and biologically meaningful of its well-posedness (positivity, 
boundedness, and biologically feasible region). The reproductive number is then calculated to find the 
equilibria and the stability analysis of the epidemic model is performed. A backward bifurcation is also 
investigated in the proposed epidemic problem. With the help of two control measures (treatment and 
vaccination), we develop control strategies to minimize the infected population (acute and chronic). To 
solve the proposed control problem, we utilize Pontryagin’s Maximum Principle. Some simulations are 
conducted to illustrate the investigation of the analytical work and the effect of control analysis.

Hepatitis B, a non-cytopathic virus, causes inflammation of the liver. As the virus infects hepatocytes, it does not 
completely destroy the host cells. The immune system, however, responds by inflaming the  liver1. When the virus 
enters the body, it contaminates the hepatocytes in the  liver2. The main cause of hepatitis is the exposure of an 
individual to alcohol or drugs as well as bacterial  infections3. Acute and chronic hepatitis are the two stages of 
this disease. During the first 180 days after exposure to the hepatitis B virus, the immune system may be able to 
remove the virus, resulting in a complete recovery. In some cases, however, the infection may grow and progress 
to the chronic stage of hepatitis B. Six months after infection, the infectious individual’s HBsAg will be positive. 
Most often, at this stage, no acute illness has been experienced. It has also been shown that liver scarring can 
lead to liver failure and liver  cancer4. The virus can be transmitted via blood (sharing blades and razors, etc.) 
and vaginal and semen  secretions5,6. Another major route of transmission, also called vertical transmission, is 
from the mother to the  newborn7. According to the World Health Organization (WHO), there are millions of 
chronically infected individuals around the world, but only 93 million of them live in China  (see8,9). However, 
Hepatitis B can be prevented with  vaccines10,11.

Researchers have extensively used mathematical modeling of infectious diseases (e.g.,12–20). There is an exten-
sive literature on the epidemiology of hepatitis B. Many biologists and mathematicians have studied the temporal 
dynamics of the disease; see, for instance,21. A simple mathematical model was developed by Anderson and 
co-authors to describe carries influence on hepatitis B virus  transmission22. In 1996, Williams et al. presented a 
model to study hepatitis B dynamics in the United Kingdom /cite[williams1996transmission], whereas Medley 
et al. presented a model that predicted an eliminating mechanism for hepatitis B in New  Zealand23. The vaccina-
tion program and its effectiveness have also been studied using a mathematical  model24. An epidemic model has 
also been used to study a control analysis  in25. Kamyad et al. proposed a different control strategy for hepatitis B in 
their  paper26. Hepatitis B epidemic problems and vertical transmission were addressed by Onyango et al.  in27. The 
time dynamics of hepatitis B in Xinjiang, China, were also investigated  in28. Khan et al. have recently discussed 
epidemic models of hepatitis B dynamics by incorporating a variety of influential parameters. See  citations29–31

It is important to know that the different phases of hepatitis B disease (acute and chronic) and their transmis-
sion routes (horizontal and vertical) all contribute to the spread of the infection since carriers do not experience 
symptoms and transmit the disease. To our knowledge, the current study investigates the impact of different 
phases of infected individuals and different transmission routes, which have not yet been considered together 
to formulate a hepatitis B virus model. A few control mechanisms are also outlined that may help eliminate the 
infection. The basic axioms of the problem are discussed in detail to illustrate the feasibility in both aspects, 
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mathematically and biologically. Herein, we propose a novel epidemic model of hepatitis B dynamics under dis-
tinct infection phases and multiple transmissions. Two control measures with dependency on time, i.e., vaccina-
tion and treatment, are considered to describe an optimal control strategy. The objective is to reduce the infected 
proportion by vaccinating the susceptible class and treating the infected class at the cost of such control functions. 
A contrast  to31, in which the optimal control policy calls for the isolation of infected and non-infected individuals, 
is that our optimal strategies do not rely on isolation or quarantine because quarantine and isolation are always 
governed by the relevant public health agencies and are not recommended by the WHO in cases of hepatitis B.

The outline of this paper is as follows. The proposed model with its properties is provided in “Problem for-
mulation” section 2. Based on the next-generation matrix, we calculate the basic reproductive number in “Basic 
reproductive number” section 3. LaSalle’s invariance principle, linear stability, and geometrical approaches are 
used in “Existence of backward bifurcation” section 4 to analyze the dynamics of the proposed problem. Fur-
thermore, we reveal the backward bifurcation analysis for the epidemic problem in “Stability analysis” section 5. 
We demonstrate the existence of our control problem, apply necessary optimality conditions in “Formulation 
of control problem” section 6, and illustrate all the theoretical findings by numerical simulations in “Numerical 
simulations” section 7. Some concluding remarks are presented in “Conclusions” section 8.

Problem formulation
Based on disease transmission characteristics, an epidemic model is proposed to investigate hepatitis B virus 
transmission. There are four classes of host populations, symbolized by N(t): the susceptible class S(t), the acutely 
infected compartment A(t), the chronically ill class B(t), and the immunized/recovered class R(t). The following 
assumptions are made in our model. 

a1.  Each parameter, as well as the variable used in the proposed epidemic problem, is nonnegative.
a2.  The vaccine for hepatitis B is very effective because it provides indefinite protection; therefore, the suscep-

tible individuals, after being vaccinated successfully, lead to the recovered population.
a3.  Both the acutely infected and chronically infected individuals will cause the infection to be susceptible, 

and by successful interaction, the susceptible will lead to the acute class.
a4.  Natural death occurs in each model group, while death from disease only occurs in the chronic class.
a5.  The portion of newborns with maternal infection leads to B(t).

 The schematic disease transmission process is demonstrated by Fig. 1. By grouping all of the above assumptions, 
a system of autonomous differential equations can be derived that describes the complete model

(1)

dS(t)

dt
= {1− ηB(t)}�− {v + µ0}S(t)− {A(t)+ γB(t)}αS(t),

dA(t)

dt
= αS(t)A(t)+ γαS(t)B(t)− {γ1 + β + µ0}A(t),

dB(t)

dt
= βA(t)− {µ1 + γ2 + µ0}B(t)+ η�B(t),

dR(t)

dt
= γ2B(t)− µ0R(t)+ γ1A(t)+ vS(t).

Figure 1.  The schematic diagram for the transmission of the disease.
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Investigation of the model (1) is subject to the initial sizes of compartments

The parameter � in (1) is the rate of newborns, v is the vaccination parameter, and η is the maternally infected 
rate. The symbol gamma denotes the reduced transmission rate, and µ0 illustrates the proportion of natural 
death. Similarly, µ1 is the portion of deaths that occurs due to the disease. We represent the contact parameter by 
α and the recovery rate from the acute class by γ1 . Moreover, γ2 symbolizes the recovery in chronically infected 
population, and β is the proportion of those who move from acute class to chronic one.

First, we prove the well-posedness by illustrating the following results.

Proposition 2.1 (Existence and uniqueness) The proposed epidemiological model (1) with initial conditions 
described by Eq. (2) possesses a unique solution.

Proof To determine that the model (1) possesses a unique solution, we follow the methodology given  in32 and 
define the vector field of the proposed model H : (−∞,∞)× R

4 → R
4 as

where

The right-hand side of the Eq. (3) implies that the function H is continuous and therefore ensures the existence 
of solution (S, A, B, R) over an interval [0,∞) . In addition, calculating the derivative of H with respect to the 
model state variables gives the Jacobian matrix as given by

Since, DH is continuous over R4 and thus H is locally Lipschitz continuous on (−∞,∞)× R
4 , therefore, the 

model solution (S, A, B, R) is uniquely determined on the interval [0,∞) .   �

Proposition 2.2 (Positivity of solution) Let the solution to the problem (1)–(2) be symbolized by (S, A, B, R), 
whenever exists, then it is positive for all t greater than zero.

Proof Obviously, right-side functions in the system (1) satisfy the conditions of differentiability, implying the 
existence of a unique maximal solution for any associated Cauchy problem. Thus, the first equation of system 
(1) takes the form

where ϕ = q1 + ψ . The solution of (6) looks like

Following the same steps, the model, second equation can be re-casted as

which leads to

Similarly, the last two equations of the epidemiological model (1) can be re-written as

Integrating, we then obtain

(2)S(0) > 0, A(0) ≥ 0, B(0) ≥ 0, R(0) > 0.

(3)H(S,A,B,R) =







(1− ηB)�−
�

q1 + ψ
�

S
ψS − q2A

η�B− q3B+ βA
γ1A+ γ2B− µ0R + vS






,

(4)q1 = v + µ0, q2 = µ0 + γ1 + β , q3 = µ0 + γ2 + µ1, ψ = αA+ γαB.

(5)DH =







�

q1 + ψ
�

− αS − η�− γαS 0
ψ αS − q2 γαS 0
0 β η�− q3 0
v γ1 γ2 − µ0






.

(6)
dS

dt
= �(1− ηB)− ϕS,

(7)
S(t) =S(0) exp

{

−
∫ t

0
ϕ(x)dx

}

+ exp

{

−
∫ t

0
ϕ(x)dx

}[∫ t

0
�(1− ηB) exp

{∫ ℓ

0
ϕ(u)du

}

dx

]

.

dA

dt
≥ −q2A,

(8)A(t) = A(0) exp
(

−q2t
)

.

dB

dt
≥ −q3B and

dR

dt
≥ −µ0R.
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Thus, from the above Eqs. (7)–(9), it could be observed that all the state variables of the proposed epidemiological 
model satisfying the initial conditions remain non-negative.   �

Proposition 2.3 (Bounded-ness of solution) Solution of the problem (1)–(2) is bounded.

Proof Let

Taking the temporal derivatives of this equation and exploiting values from model (1), one may obtain

Since by assumption µ0 is a positive parameter and B ≥ 0 . Consequently we may write dNdt + µ0N ≤ � . Solution 
of this equation subject to the initial conditions (2) gives

It is obvious that whenever t → ∞ , the last equation yields 0 < N ≤ �
µ0

 .   �

Proposition 2.4 (Positively invariant set) Let N be the total population as given in (10), then the feasible region 
represented by

is invariant positively and attracting for the proposed epidemiological model (1).

Proof Since, N = S + A+ B+ R , if N(0) ≤ �
µ0

 , then clearly Eq. (12) implies that N(t) ≤ �
µ0

 . But on the other 
hand, on a contrary basis, if N(0) ≥ �

µ0
 , then either the total population N(t) converge to �

µ0
 as t increases without 

bound or the solution trajectories enter the feasible region � within finite time, which implies that all the state 
variables initiated in R4

+ enter � or converge �
µ0

 eventually.   �

Basic reproductive number
There are two possible non-trivial equilibrium points of model (1), namely, the endemic and disease-free states. 
The disease-free state is represented by E1 and is calculated as E1 = (S1, 0, 0,R1) , such that

We use this state to calculate the so-called basic reproductive quantity, R0 , which describes the average number 
of secondary infectious created by an index case, i.e. when an infective is presented into a susceptible population 
so the secondary infections are produced during its total infection  age33. The reproductive number R0 is then 
conveniently used to characterize the endemic equilibrium. Let us assume that J represents the linearized matrix 
of the system (1). Direct calculations show that the matrix J has the form

with q1 , q2 and q3 as given in (4). We follow Watmough and  Driessche34 to determine the threshold number of the 
epidemiological model that is under consideration. By assuming X = (A(t),B(t))T , one can write from (1) that

where F̄ and V̄  , in the above equation, are defined as

The Jacobian or the linearized matrices of the above-defined F̄ and V̄  at the infection-free state (14) are respec-
tively calculated as

(9)B(t) ≥ B(0) exp
(

−q3t
)

and R(t) ≥ R(0) exp (−µ0t).

(10)N = S + A+ B+ R.

(11)
dN

dt
+ µ0N = �− µ1B.

(12)0 < N ≤
�

µ0
+

(

N(0)−
�

µ0

)

exp (−µ0t).

(13)� =
{

(S,A,B,R) ∈ R
4
+ : 0 < N ≤

�

µ0

}

,

(14)S1 =
�

q1
, R1 =

�v

µ0q1
.

J =







−q1 − αA− γαB − αS −�η − γαS 0
αA+ γαB αS − q2 γαS 0

0 β − q3 0
v γ1 γ2 − µ0






,

(15)
dX

dt
= F̄ − V̄ ,

F̄ =
[

αAS + γαSB
0

]

, V̄ =
[

q2A
−βA+ q3B

]

.
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The threshold quantity, R0 is given by the largest eigenvalue of the matrix FV−1 . That is, R0 = ρ(FV−1) . We 
deduced that

Now we find the endemic-state of the model using (1) and (16), we obtain

The characterization of the occurrence of the no-infection state (14) and of the disease-endemic state (17) is 
investigated in “Existence of backward bifurcation” section 4, while in “Stability analysis” section 5 we investigate 
their global analysis.

Existence of backward bifurcation
In epidemiological models, one of the necessary conditions to control the infection is R0 < 1 . In contrast, this 
condition may not always be sufficient, owing to backward bifurcation, i.e., a stable endemic state co-exists with 
a stable infection-free state whenever R0 < 1 . It is a common phenomenon in epidemiological  models35. In this 
case, disease control depends upon the various sub-populations sizes of the epidemic problem. To investigate 
the existence of bifurcation, we suppose that at least one of the infected groups in system (1) is nonzero. In this 
situation, the solution of our proposed model (1) around steady state yields

For B∗ �= 0 , we insert A∗ and S∗ in system (1) around steady state, and utilizing (4), we obtain the following 
equations

It could be noted from the last relation that whenever the condition of R0 < 1 holds, then b and c are non-
negative. Also if R0 > 1 then b < 0 . Clearly, a > 0 , so a positive solution of equation (18) exists, which depends 
on the signs of b, proving that the equilibrium continuously depends on the threshold quantity. Moreover equa-
tion (18) implies that

For distinct ranges of the parameters, we state the underlying result.

Theorem 4.1 The considered epidemic problem (1) has: 

 (i) a unique endemic state in the biologically reasonable region � (13) whenever b is negative and R0 > 1;
 (ii) a unique endemic state in � (13) if b = 0;
 (iii) two endemic steady states in � (13) whenever b > 0.

It could be noted in the epidemiological models that one of the classical requirements for disease elimination 
is R0 < 1 , while this is not  sufficient35. Thus the condition R0 < 1 is necessary for the control of hepatitis B but is 
not sufficient. Moreover, the backward bifurcation’s presence in the model states that elimination of hepatitis B in 
case of R0 < 1 depends on sub-populations of the model, and whenever R0 = 1 , we have described the following.

Lemma 4.2 The existence of backward bifurcation for the model (1) depends on the value of R0 and exists whenever 
R0 = 1 , while experiences backward bifurcation in case condition (iii) of Theorem 4.1 holds.

F =
[

αS1 γαS1
0 0

]

, V =
[

q2 0
−β q3

]

.

(16)R0 = R01 + R02, where R01 =
α�

q1q2
, R02 =

αγβ�

q1q2q3
.

(17)











































E∗2 =
�

S∗,A∗,B∗,R∗�, S∗ =
1

q1

�

�(1− ηB∗)− q2A
∗�,

A∗ =
q1q2q

2
3{R0 − 1}

�ηβ{αq3 + γαβ} + αq2q
2
3 + γαβq2q3

,

B∗ =
q1q2q3β{R0 − 1}

α{q3 + γβ}{ηβ�+ q2q3}
,

R∗ =
1

µ0

�

γ1A
∗ + γ2B

∗ + vS∗
�

.

S∗ =
1

q1

{

�{1− ηB∗} − q2A
∗}, A∗ =

1

β
q3B

∗.

(18)

ψ(B) =aB2 + bB+ c, where

a =
{

α�ηβq3 + αq2q
2
3 + γαβ2η�+ γαq2q3β

}

/βq1,

b =
{

βµ0�+ q1q2q3(1− R01 − R02)
}

/q1β , c = 0.

B1 =
−b+

√
b2 − 4ac

2a
, B2 =

−b−
√
b2 − 4ac

2a
.
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Stability analysis
We now demonstrate the global analysis of the problem (1) at both the non-trivial equilibria. For the global 
properties around disease-free state (14), we use the classical Lyapunov function theory, while at disease-endemic 
state (17), we use the geometrical approach.

Theorem 5.1 (Global stability of (1) at E1 (14)) The proposed system (1) is stable globally asymptotically at E1 (14) 
whenever R0 < 1 and S ≥ S1 . Otherwise, (1) is unstable.

Proof Let h1 > 0 , h2 > 0 and h3 > 0 be constants to be determined later. Consider a function of the form

The temporal differentiation of this equation, along with values from system (1), gives

Let us assume h1 = h2 = q1 , and h3 = αβ�γ
q3

 . Further, from our previous calculations have S1 = �
q1

 . Then from 
the last equation, we have

Simplification of the above equation leads to

Thus, when R0 < 1 , we have 0 < R01 < 1 and 0 < R02 < 1 , then dFdt < 0 . Also, dFdt = 0 if S = S1 , and B = A = 0 . 
Hence, the principle of LaSalle’s36,37 reveals that (14) is stable globally asymptotically.   �

Theorem 5.2 (Global stability of (1) at E∗2 (17)) If R0 assumes values greater than 1, the disease presence state 
E∗2 = (S∗,A∗,B∗,R∗) of model (1) is globally stable. Endemic state of (1) is unstable whenever R0 > 1 does not hold.

Proof Reducing model (1) by removing R(t) with the fact that it can be derived from the relation of the total 
populace, i.e., N = A+ S + B+ R , which implies that R = N − S − A− B . So without losing generality, it is 
enough to discuss the dynamics of the reduced model for the original. Thus, let J2 is the Jacobian while J |2|2  is the 
second order compound matrix of the proposed model (1), then

where

We consider a function in the form of P = P(S,A,B) = diag{S/A, S/A, S/A} , then taking its inverse and dif-
ferentiating with respect to t, i.e. Pf (χ) , we have

Implying that Pf P−1 = diag
{

−Ȧ/A+ Ṡ/S,−Ȧ/A,−Ȧ/A
}

 and J |2|2 = PJ
|2|
2 P−1 . So

implies that

F(t) = h1(S − S1)+ h2A+ h3B.

(19)
dF

dt
=h1

{

(1− ηB)�− αAS − γαBS − q1S
}

+ h2
{

αAS − q2A+ γαBS
}

+ h3
{

Aβ − Bq3
}

.

dF

dt
= q1

{

(q1S1 − η�B− αAS − γαBS − q1S)
}

+ q1
{

(αSA+ γαSB− q2A)
}

+
αβγ�

q3

{

βA− q3B
}

.

dF

dt
= −q21{S − S1} −

{

q1q2(1− R02)
}

A−
{

q1�η + α�γ
}

B.

J2 =
(−ρ11 − ρ12 − ρ13

ρ21 − ρ22 ρ23
ρ31 ρ32 − ρ33

)

,

J
|2|
2 =

(−(ρ11 + ρ22) ρ23 − ρ13
ρ32 − (ρ11 + ρ33) ρ12
−ρ31 ρ21 − (ρ22 + ρ33)

)

,

ρ11 = q1 + αA+ γαB, ρ12 = αS, ρ13 = �η + γαS,

ρ21 = αA+ γαB, ρ22 = q2 − αS, ρ23 = γαS,

ρ31 = 0, ρ32 = β , ρ33 = q3.

Pf = diag

{

Ṡ

A
−

ȦS

A.A
,
Ṡ

A
−

ȦS

A.A
,
Ṡ

A
−

ȦS

A.A

}

.

B = PJ
|2|
2 P−1 + Pf P

−1,
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where

Let (b1, b2, b3) ∈ R
3 then

Let ℓ(B) is the Lozinski  measure38 with respect to the above equation, then it becomes

where gi = �Bij + ℓ(Bii)� for i, j = 1, 2 and i  = j , so then g1 and g2 are defined by

and

In the above last two equations

�B12� = �η + γαS and �B21� = max{β , 0} = β . Consequently g1 and g2 can be written as

gives

From here, we can write ℓ(B) ≤ Ṡ
S − 2µ0 . The application of integration for ℓ(B) in [0, t] with lim as t approaches 

∞ gives

is negative, which proves the conclusion.   �

According to the stability analysis of the model, the reproductive number is an important parameter control-
ling disease dynamics. In the following subsection, we will discuss how parameters affect reproductive numbers.

Influential parameters and its relative impact. For the purpose of creating an effective control mecha-
nism for disease elimination, we conduct a sensitivity analysis of the model parameters in order to uncover 
the most influential parameters that highly affect the basic reproductive number. By using the formula given 

B =
(

B11 B12
B21 B22

)

,

B11 =
Ṡ

S
−

Ȧ

A
− q1 − q2 − αA− γαB− αS,

B12 =
(

αS �η + γαS
)

, B21 =
(

β
0

)

,

B22 =
(

Ṡ
S − Ȧ

A − q1 − q3 − αA− γαB − αS

αA+ γαB Ṡ
S − Ȧ

A − q2 − q3 + αS

)

.

�b1, b2, b3� = max{�b1�, �b2� + �b3�}.

ℓ(B) ≤ sup
{

g2, g1} = sup{�B12� + ℓ(B11), �B21 + ℓ(B22)�
}

,

g1 = �B12 + �ℓ(B11),

g2 = �B21� + ℓ(B22).

ℓ(B11) =
Ṡ

S
−

Ȧ

A
− q1 − q2 − αA− γαB− αS,

ℓ(B22) = max

{

Ṡ

S
−

Ȧ

A
− q3 − q1,

Ṡ

S
−

Ȧ

A
− q2 − q3

}

,

=
Ṡ

S
−

Ȧ

A
− µ0 −min{v, γ1 + β − q3},

g1 =
Ṡ

S
−

Ȧ

A
− q1 − q2 − αA− γαB− α(1− γ )S +�η,

g2 =
Ṡ

S
−

Ȧ

A
− q3 −min{γ1 + β , v},

ℓ(B) ≤ sup{g1, g2}

=
Ṡ

S
−

Ȧ

A
− 2µ0 −min

{

v + γ1 + β + αA+ γαB+ α(1− γ )S, γ2 + µ1

+min{β + γ1, v} − β − η�

}

.

lim
t→∞

sup sup q̄ =
1

t

∫ t

0
ℓ(B)dt ≤ −2µ0 < 0,
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below, we can calculate the sensitivity indices and determine how these parameters affect the basic reproductive 
number.

where φ is any epidemic parameter of the proposed epidemiological model associated with the reproductive 
number R0 . By following the formula (20), we obtain the sensitivity indices of the proposed model parameters as

Clearly, the normalized sensitivity indices of the parameters α , v, γ1 and γ2 show that α is positively correlated 
with the reproductive quantity, while v, γ1 and γ2 are negatively correlated. An increase in the values positively 
correlated results increase in the value of the reproductive number. But on, the value of the reproductive num-
ber will be reduced whenever the value of the negatively correlated parameters increases. Hence, control efforts 
should be formulated by taking suitable control measures to reduce the burden of hepatitis B virus transmission.

Formulation of control problem
The theory of optimization is a prominent tool and is used frequently in the dynamics of infectious epidemiology. 
With the help of this, we can formulate strategies for the minimization of various kinds of infections. We follow 
the approach as presented by Gul et al. and others (see,39–43) to set up a control problem for the reduction of the 
hepatitis B infection. We propose a control mechanism to minimize the burden of hepatitis B virus transmission 
by utilizing two control measures (vaccination and treatment) because the normalized sensitivity indices of v, γ1 , 
and γ2 have an inverse relationship with reproduction quantity. The aim is to vaccinate susceptible (control u1(t) ), 
and the treatment of infected (control u2(t) ). This is in contrast  with31, where an inconsistent control problem 
was developed and consequently solved. Indeed,  in31, the authors vaccinate all the infected individuals at the 
same rate as they vaccinate the susceptible. This seems not to be coherent with medical practice. In our case, the 
control system is obtained from (1) by placing two control measures already mentioned u1(t) and u2(t) with the 
description to vaccinate S as well as treatment of A and B. This implies that system (1) becomes a specific case of 
the proposed control problem whenever u1(t) ≡ v (vaccination with constant rate) and u2(t) ≡ 0 (when there 
is no treatment). Thus, the control problem takes the form

subject to the problem

In (22), w1 and w2 describe the relative weight constants of acute and chronic individuals, respectively. Also, 
the constants w3, w4 ≥ 0 measure the associated costs of vaccination and treatment, respectively. It could be 
illustrated from (22) that the control problem has a clear purpose, namely, to reduce the ratio of A and B by 
implementing the control measures costs u1(t) and u2(t) . However, it is not our objective to reduce or increase 
the number of susceptible, as inconsistently proposed  in31. Indeed, our goal is to determine the control func-
tions (u∗1 , u

∗
2) like

under the control problem (23). The set U (control set) is such that

In addition, to discuss the existence analysis, the control problem can be expressed as

where

(20)HR0
φ =

φ

R0

∂R0

∂φ
,

(21)
HR0
α = 1, HR0

v = −
v

v + µ0
, HR0

γ1
= −

γ1

µ0 + γ1 + β
,

HR0
γ2

= −
γ γ2β

(µ0 + γ2 + µ1)(µ0 + γ2 + µ1 + γβ)
.

(22)J(u1, u2) =
∫ T

0

{

w1A+ w2B+
1

2

(

w3u
2
1 + w4u

2
2

)

}

dt,

(23)

dS(t)

dt
= {1− ηB(t)}�− αS(t)A(t)− γαS(t)B(t)− {µ0 + u1(t)}S(t),

dA(t)

dt
= αS(t)A(t)+ γαS(t)B(t)− {u2(t)+ µ0 + γ1 + β}A(t),

dB(t)

dt
= −{µ0 −�η + γ2 + u2(t)+ µ1}B(t)+ βA(t),

dR(t)

dt
= γ1A(t)+ γ2B(t)+ u1(t)S(t)+ {B(t)+ A(t)}u2(t)− µ0R(t),

(24)J(u∗1 , u
∗
2) = min {J(u1, u2), where u1, u2 ∈ U},

(25)
U :=

{

(u1, u2)|ui(t) is Lebesgue measurable on [0,T],
0 ≤ ui(t) ≤ 1, i = 1, 2

}

.

dY

dt
= LY + N(Y),
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and

Let us define that F(Y) = LY + N(Y) , then for any Y1 and Y2 , we have

where Q = max {µ0,µ0 + µ1} , known as the Lipschitz constants, and hence the function F(Y) is Lipschitz con-
tinuous, which ensures the existence of an optimal solution to the proposed control problem. Now to determine 
the existence of optimal controls, one has to prove their existence.

Existence analysis. We now perform the existence analysis of the optimal controls for the proposed control 
problem as stated by the equations (22)–(25). For this, we prove that the set of control and associated states of 
the model are not empty as well as the control set is closed and convex. The state system of the control problem 
is linear in the control variables, while the integrand of the objective functional is convex over the control set U. 
Thus, regarding the existence analysis, we state the underlying result.

Theorem 6.1 For the control problem (22)–(25), there exists a pair of optimal values u∗ = (u∗1 , u
∗
2) ∈ U , such that

Proof In order to discuss the existence of optimal controls, we use Theorem 9.2.1, p.182, given by Lukes  in44, 
and followed by various  authors45,46. Note that both the state and control variable of the model (23) have a non-
negative value and bounded co-efficient, which implies that the control set and associated state variables are 
non-empty. Also, the solutions are bounded, and hence the control set is closed and convex. The state system 
of the control problem is linear in the control variables, implying that the optimal system is bounded. In addi-
tion, the integrand of the objective functional (22) is convex over U, therefore there exists a constants ζ > 1 and 
positive numbers ξ1 and ξ2 such that

which is enough for the optimal control pair existence.   �

Optimality conditions. To examine an optimal solution to (22)–(25), we determine the Hamiltonian on 
the basis of Lagrangian by assuming that x = (S,A,B,R) and u = (u1, u2) be the vectors of state and control 
measure, respectively. Denoting the Lagrangian and Hamiltonian by L and H respectively, then one may write

and

In the above equations, we have taken � = (�1, �2, �3, �4) and g =
(

g1, g2, g3, g4
)

 where

We now find the solution (optimal) to the control model and exploit the conventional Maximum  Principle47: Let 
(x∗, u∗) represents the optimal solution, then one can find a non-trivial function � satisfying

with the maximality condition

and the transversality condition

Y =







S
A
B
R






, L =







−u1(t)− µ0 0 −�η 0
0 − u2(t)− q2 0 0
0 β −�η − q3 − u2(t) 0

u1(t) γ1 + u2(t) γ2 + u2(t) − µ0






,

N(Y) =







�− αSA− γαSB
αSA+ γαSB

0
0







�F(Y1)− F(Y2)� ≤ Q�Y1 − Y2�,

J(u∗) = min J(u1, u2).

J(u1, u2, u3) ≥ ξ1 + ξ2
(

|u1|2 + |u2|2
)

ζ
2 ,

(26)L = w1A+ w2B+ w3u
2
1/2+ w4u

2
2/2

(27)H = −L+ � · g .

(28)

g1 = {1− ηB}�− αSA− γαSB− {u1 + µ0}S,
g2 = αSA+ γαSB− {µ0 + β + γ1}A− u2A,

g3 = βA− {µ0 + µ1 + γ2 −�η}B− u2B,

g4 = γ2B+ γ1A+ u1S − µ0R + u2{A+ B}.

(29)
dx∗

dt
=

∂H

∂�
(�, u∗, x∗),

d�

dt
= −

∂H

∂x
(�, u∗, x∗),

(30)H(�, u∗, x∗) = max
u∈[0,1]×[0,1]

H(�, u∗, x∗);
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satisfied.
The next theorem follows from (26)–(31). We note that the optimality conditions given  in31 are inconsistent. 

It is clear that in the case of minimization and a Hamiltonian, together with the associated multiplier as well as 
Lagrangian +1 , the Pontryagin principle emphasizes a condition of minimality rather than a condition maximal-
ity. Here, condition (30) is the maximality condition for the proposed minimization problem as the multiplier 
−1 of the Hamiltonian associated with L.

Theorem 6.2 Assume S∗ , A∗ , B∗ and R∗ respectively denote the optimal state variables with the accompanying 
optimal measures (u∗1 , u

∗
2) for the problem (22)–(25), then �i(t) , i = 1, . . . , 4 exists i.e., the adjoint variables exist 

which satisfy

The terminal (transversality) conditions associated are

The optimal measures u∗1 and u∗2 are as

and

Proof System (32) is derived from the Pontryagin Maximum Principle i.e. from the 2nd relation of (??) with the 
Hamiltonian as described in (26)–(28), while conditions (33) follow from the transversality condition (31). To 
derive u∗1 and u∗2 , we differentiate the Hamiltonian partially and solve ∂H

∂u1
= 0 and ∂H

∂u2
= 0 for control measures. 

Finally, with the help of the maximality condition (30), we derive (34)–(35).   �

We find the optimal measures by investigating the optimal system (23) and the adjoint (32), along with 
boundary conditions and (33), along with (u∗1 , u

∗
2) given by (34) and (35) numerically.

Numerical simulations
To support our theoretical results, we present the numerical investigations using the numerical procedure of 
Runge-Kutta method of the 4th order. Parameters for a disease-free state are taken as follows:

We have taken some parameter values from the literature. In addition, some are assumed with feasible values 
based on sufficient analysis and calculation of the conditions that satisfy the stability results. In particular, � , 
µ0 , β , γ and γ2 are taken  from3, while all other parameters are assumed. Clearly, in this case, the proposed prob-
lem, as stated by equation (1), has only the infection-free state and is stable globally asymptotically (see Fig. 2). 
Note that for these values, the calculation of the basic reproductive number gives that R0 = 0.203 implies that 
R0 < 1 , so the stability results at the disease-free states hold. In addition, the theoretical interpretation states 
that if R0 < 1 , each solution curve of S approximately taking five months to reach its associated equilibrium 
position as depicted in Fig. 2a. Similarly, the dynamics of the acute and chronic population are demonstrated in 
Fig. 2b,c, which describe that the solution curves of A and B take approximately ten months to reach the stable 
equilibrium position. On the other hand, the dynamics of the recovered population reveal that there will always 
be recovered individuals, as presented by Fig. 2d. Thus biologically, the results state that eliminating the hepatitis 
B virus from the community is subject to the threshold parameter’s value. Whenever it is less than unity, the 
disease will be easily eradicated.

For investigating the stability of the proposed epidemiological model, we assume the same parameter values 
as in Eq. (36), except for α. . If α = 0.95 , then R0 = 2.03 > 1 implies that the endemic state exists, as illustrated in 
Fig. 3, which clearly shows the results of the analytical analysis.. In this case, the biological investigations reveal 
that if no control measures are adopted appropriately, the disease will reach its associated endemic position. It 
could be noted that the susceptible portion of the population decreases from the initial and leads to zero over 

(31)� = 0; whenever T = 0,

(32)

�
′
1(t) =

{

αA∗ + γαB∗
}

{�1(t)− �2(t)} + �1(t)
{

µ0 + u∗1
}

− �4(t)u
∗
1 ,

�
′
2(t) = w1 + {�1(t)− �2(t)}αS∗ + �2(t)µ0 − {�4(t)− �2(t)}γ1

− {�4(t)− �2(t)}u∗2 + {�2(t)− �3(t)}β ,

�
′
3(t) = w2 − {�2(t)− �1(t)}γαS∗ − {�3(t)− �1(t)}�η

− {�4(t)− �3(t)}
{

u∗2 + γ2
}

+ {µ1 + µ0}�3(t),

�
′
4(t) = µ0�4(t).

(33)�i = 0, whenever T = 0.

(34)u∗1 = max

{

min

{

1

w3
S∗(�4 − �1), 1

}

, 0

}

,

(35)u∗2 = max

{

min

{

1

w4
(�4 − �3)B

∗ − (�2 − �4)A
∗, 1

}

, 0

}

.

(36)
� = 0.0121, η = 0.8, µ0 = 0.00693, v = 0.002, α = 0.95,

γ = 0.16, γ1 = 0.004, β = 0.33, γ2 = 0.002, µ1 = 0.8.
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time, as shown in Fig. 3a. However, there will always be an infected population, i.e., chronic and acute individu-
als, as shown in Fig. 3b,c, respectively. Similarly, we simulate the problem to study the dynamics of the recovered 
population as illustrated in Fig. 3d. The time dynamics of the recovered population state that the amount of 
recovered individuals decreases as time grows while leading to its associated endemic position.

We now perform the numerical investigation of the control problem to verify and support the theoretical 
examinations for optimal control analysis. We again use the 4th-order Runge-Kutta (RK) technique to perform 
the numerical simulations of the control problem. More precisely, we solve the system (23) via the 4th order 
RK scheme by taking the time unit from 0 to 50. We then solve the adjoint variables system as given by Eq. (32) 
with the help of backward RK procedure of the 4th order at the same interval of time along with the use of the 
transversality conditions stated by Eq. (33) as well as with the solution of the state system. To investigate the 
endemic state of the model, we use the same parametric values. The weight constants and initial conditions are, 
however, as follows:

 We then execute the above procedure with the aid of Matlab and obtain the graphical visualization as presented 
in Fig. 4, demonstrating the time dynamics of epidemiological groups of susceptible, acute, chronic, and recov-
ered individuals. Our numerical results illustrate clearly the effect of applying the controls: to minimize acute and 
chronically infected populations while maximizing the recovered individuals. The illustration of the susceptible 
population with and without control is described in Fig. 4a. Moreover, Fig. 4b depicts the acute population with 
and without control. In a similar fashion, the dynamics of a chronic population with and without controls are 
shown in Fig. 4c. Finally, Fig. 4d visualizes the simulation of the recovered population with the application and 
without the application of controls. Further, Fig. 5 presents the control profiles. These analyses clearly, reflect the 
importance and the effectiveness of the implantation of the proposed control mechanism.

(37)
w1 = 0.10, w2 = 0.6, w3 = 0.001, w4 = 0.9,

S(0) = 20, A(0) = 10, B(0) = 10, R(0) = 10.

Figure 2.  Solution curves of the system (1) around the disease free equilibrium against the parameters value 
given in Eq. (36) and for different initial sizes of population, where the value of threshold quantity (basic 
reproductive number), R0 = 0.203 < 1.
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We note that the numerical simulations presented  in31, aiming to illustrate the usefulness of optimal control 
theory, are inconsistent. Indeed,  in31, the authors solved an inconsistent control problem using two control 
measures: isolation and treatment. However, in the case of hepatitis B, where more than two billion people are 
infected, the control isolation is inconsistent according to the WHO guideline and is never exercised.

Additionally, we observe that the reproductive number is a key parameter, and when this quantity is greater 
than unity, the disease persists, while if it is less than one, it becomes extinct. Using the basic reproduction 
numbers as a reference, we conduct a sensitivity analysis of the model parameters against the control measures. 
Some parameters are directly proportional to the reproductive number, while others are negatively proportional. 
Vaccination and treatment controls are negatively correlated with reproductive quantity, such that whenever their 
values increase, the reproductive number decreases significantly, as shown in Fig. 6. Based on the parametric 
values given in Eq. (36), the sensitivity indexes of the vaccination and treatment control measures are calculated. 
It can be seen in Fig. 6a,b that if the control measures were increased by 10 percent, the reproductive number 
would decrease by 7.14 percent. Hence, we conclude that implementing the proposed control strategies in a true 
sense will result in the eradication of contagious hepatitis B virus infections.

Conclusions
Our study examined the dynamics of hepatitis B epidemics under acute and chronic transmission scenarios, both 
horizontally and vertically. After mathematically deriving and analyzing the proposed system, we determined 
its reproduction number to find the model equilibrium and stability. In the proposed problem, there are two 
equilibrium states: infection-free and disease-endemic. There is a detailed description of both steady states. Under 
certain conditions, the equilibria are stable. The global properties of the proposed epidemiological model were 
analyzed using the Lyapunov function theory and the geometrical approach. Additionally, we demonstrated that 
the proposed problem exhibits backward bifurcation. To develop an optimal control mechanism, the proposed 
problem incorporates two time-dependent control measures, vaccination, and treatment. According to Pontry-
agin’s necessary conditions, there exists an optimal control mechanism for minimizing the infected (acute and 
chronic). We concluded by presenting numerical justifications and examining whether the derived analytical 

Figure 3.  Solution curves of system (1) around the endemic equilibrium against the parameters values given in 
Eq. (36), except α = 0.95 and different initial sizes of population, which implies that R0 = 2.03 > 1.
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findings are robust. Treatment and vaccination, along with the application of optimization theory, were found 
to be very effective in controlling hepatitis B virus infection. Accordingly, we do not recommend the isolation 
of individuals, as opposed to the results reported  in31. Based on different perspectives of the results, which were 
investigated analytically and numerically, we concluded that one way to eradicate hepatitis B is to minimize the 
threshold quantity by keeping it below unity. The model also suggests that if hepatitis B persists, it will reach its 

Figure 4.  The temporal dynamics of the model with optimal control verse without control ( v = 0.02 ) against 
the parametric values (37).

Figure 5.  The plot represents the influence of the control measures on the basic reproductive number.
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endemic status, which is high and dangerous for the community. As a result, various control strategies must be 
utilized to prevent the spread of the disease. Vaccination and treatments are used as time-dependent controls, 
demonstrating a significant impact on the control of hepatitis B virus transmission.

Although the work reported in this research yielded interesting results, we will discuss both the singular 
and nonsingular fractional versions of the model in our future publication to obtain more accurate dynamics.
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