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Altered structural hippocampal 
intra‑networks in a general elderly 
Japanese population with mild 
cognitive impairment
Sera Kasai 1, Keita Watanabe 2*, Yoshihito Umemura 1, Yuka Ishimoto 1, Miho Sasaki 1, 
Haruka Nagaya 1, Soichiro Tatsuo 1, Tatsuya Mikami 3, Yoshinori Tamada 3, Satoru Ide 4, 
Masahiko Tomiyama 5, Masashi Matsuzaka 6 & Shingo Kakeda 1

Although altered networks inside the hippocampus (hippocampal intra‑networks) have been observed 
in dementia, the evaluation of hippocampal intra‑networks using magnetic resonance imaging (MRI) is 
challenging. We employed conventional structural imaging and incident component analysis (ICA) to 
investigate the structural covariance of the hippocampal intra‑networks. We aimed to assess altered 
hippocampal intra‑networks in patients with mild cognitive impairment (MCI). A cross‑sectional 
study of 2122 participants with 3T MRI (median age 69 years, 60.9% female) were divided into 218 
patients with MCI and 1904 cognitively normal older adults (CNOA). By employing 3D T1‑weighted 
imaging, voxels within the hippocampus were entered into the ICA analysis to extract the structural 
covariance intra‑networks within the hippocampus. The ICA extracted 16 intra‑networks from the 
hippocampal structural images, which were divided into two bilateral networks and 14 ipsilateral 
networks. Of the 16 intra‑networks, two (one bilateral network and one ipsilateral networks) were 
significant predictors of MCI from the CNOA after adjusting for age, sex, education, disease history, 
and hippocampal volume/total intracranial volume ratio. In conclusion, we found that the relationship 
between hippocampal intra‑networks and MCI was independent from the hippocampal volume. Our 
results suggest that altered hippocampal intra‑networks may reflect a different pathology in MCI from 
that of brain atrophy.

Abbreviations
MCI  Mild cognitive impairment
AD  Alzheimer’s disease
CNOA  Cognitively normal older adults
SBM  Source-based morphometry
ICA  Independent component analysis
HV  Hippocampal volume

Cognitive impairment in the elderly population is a growing concern worldwide. Mild cognitive impairment 
(MCI) is characterized by decline in cognitive functions such as memory and attention, which is the prodromal 
stage of Alzheimer’s disease (AD). Early intervention for dementia is essential to slow the progression to AD. 
Therefore, the identification of MCI has been a sustained research focus for decades. The hippocampus plays 
a key role in cognitive processes and is composed of different subfields, including the four cornu ammonis 
fields (CA1–4), dentate gyrus (DG), and subiculum. Hippocampal volume, as measured by structural magnetic 
resonance imaging (sMRI), may serve as an indication of atrophy and neurodegeneration associated with AD 
or  MCI1, despite the presence of interindividual variability in hippocampal volume among aged  subjects2. The 
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hippocampus is a complex structure where a region with functionally and structurally distinct subfields. Because 
the hippocampal volume loss is associated with AD pathology, hippocampal subfield volume measurement may 
represent a more sensitive indicator of AD development than total hippocampal volume measurement. There-
fore, it may be important to investigate the role of hippocampal subfields in patients with cognitive impairment.

From the perspective of brain networks, the hippocampus is considered to be a hub region for multiple cog-
nitive  processes3. Using resting-state functional MRI (rs-fMRI), many previous studies have shown functional 
connectivity disruption between the hippocampus and other brain regions such as the posterior cingulate, medial 
prefrontal, inferior parietal, and lateral temporal cortex in patients with AD and  MCI4. Recently, some studies 
have used hippocampal subfields as seed regions in rs-fMRI analyses. A rs-fMRI study with healthy participants 
showed that several hippocampal subregions (CA1, dentate gyrus, and subiculum) emerged as functional network 
 hubs5. Flores et al. also assessed connectivity specificities of hippocampal subfields and their changes in early AD 
using rs-fMRI and found that amnestic type MCI patients showed reduced connectivity within the subiculum 
network (defined as the subiculum connected with frontal and posterior cingulate regions)6. Although these 
studies evaluated the specificity of hippocampal subfield intrinsic connectivity when compared to the rest of 
the brain, few studies have assessed the specificity of hippocampal subfield intrinsic  connectivity7,8. Actually, 
it has been known that a complex network exists in the  hippocampus9. Ezama et al. showed an activity hotspot 
among hippocampal subfields in 172 healthy participants with high spatial-resolution rs-fMRI at 7T and found 
that two networks (CA1, CA3, CA4, and dentate gyrus fields and subiculum, CA4, and dentate gyrus fields) were 
subserved by co-activity. Dalton et al. also showed subfield-to-subfield functional connectivity within the hip-
pocampus in healthy participants. However, to our knowledge, no study has evaluated the intrinsic connectivity 
of the hippocampal subfield in populations with MCI.

Recently, a source-based morphometry (SBM) technique using 3D T1-weighted imaging (T1WI) data has 
been introduced This data-driven multivariate approach can identify patterns across different voxels without 
prior anatomical  knowledge10,11. SBM applies an independent component analysis (ICA), arranges voxels into 
groups that contain similar  information10, and acquires common morphological features which represent brain 
networks among individuals. Structural imaging has the advantage of high spatial resolution, which is considered 
important for evaluating small regions like the hippocampus. Moreover, this method is suitable for identifying 
novel networks and may be a useful tool for brain MRI studies with larger populations. More recently, Wata-
nabe et al. reported that a detailed intra-network in the hippocampus (hippocampal intra-network) could be 
extracted using this  method12. Thus, we reviewed data from a population-based prospective study of cerebro- and 
cardiovascular diseases and dementia in a large population of older Japanese individuals (the Iki-Iki study) and 
acquired hippocampal intra-networks using SBM from the MRI data. To our knowledge, there have been no 
population-based studies with large sample sizes to assess the association between MCI status and hippocampal 
intra-network connectivity. Our aim was to assess whether individuals with MCI have altered hippocampal intra-
network connectivity as measured using SBM when compared with cognitively normal older adults (CNOA).

Results
Demographic data. For the clinical characteristics between the included excluded participants, there were 
no significant differences in age, sex, years of education, self-reported medical history (hypertension, hyper-
lipidemia, or diabetes), and diagnosis group (MCI and CNOA) (see Supplementary Table S1 online). Table 1 
presents participant demographic data, which was included in the analyses. There were significant differences in 
age, sex, years of education, and dyslipidemia between individuals with MCI and CNOA; however, there were no 
significant differences in diabetes mellitus or hypertension status.

Compared to the CNOA group, the participants with MCI had significantly reduced total GM volume (GMV)/
intracranial volume (ICV), total white matter volume (WMV)/ICV, and hippocampal volume (HV)/ICV ratios.

Intra‑network in the hippocampus. Independent component analysis (ICA) generated 16 independent 
components (Fig. 1). The components were reviewed by two experienced neuroradiologists. The hippocampal 

Table 1.  Clinical characteristics of 2122 participants. MCI mild cognitive impairment, NOA normal older 
adult, IQR interquartile range, ICV total intracranial volume, GMV total gray matter volume, WMV total white 
matter volume, HV hippocampal volume.

Total (n = 2122) MCI (n = 218) NOA (n = 1904) p value

Age, median (IQR) 69 (67–73) 72 (69–76) 69 (66–73)  < 0.001

Sex: male/female 823/1299 120/98 703/1201  < 0.001

Diabetes, n (%) 271 (12.8%) 33 (15.1%) 238 (12.5%) 0.149

Hypertension, n (%) 980 (46.2%) 106 (48.6%) 874 (65.9%) 0.268

Hyperlipidemia, n (%) 926 (43.6%) 77 (35.3%) 849 (44.6%) 0.023

Education: University/High school/Junior high 
school 623/1108/391 51/84/83 572/1024/308  < 0.001

GMV/ICV ratio, median (IQR) 0.42 (0.40–0.44) 0.41 (0.39–0.42) 0.42 (0.40–0.44)  < 0.001

WMV/ICV ratio, median (IQR) 0.33 (0.31–0.34) 0.32 (0.30–0.33) 0.33 (0.31–0.34)  < 0.001

HV/ICV ratio, median (IQR) 0.0027 (0.0028–0.003) 0.0027 (0.0025–0.0029) 0.0028 (0.0027–0.003)  < 0.001
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subfield regions of independent components were determined with the consent of neuroradiologists based 
on an illustrated tutorial research  paper13. No components were determined to be artifacts using the criteria 
by Xu et al.10. Table 2 shows the independent components representing structural covariance networks in the 
hippocampus.

Intra‑network alternation in the hippocampus. The HV/ICV ratio was a significant independent 
predictor of MCI (P = 0.0012) after adjustment (Model 3), whereas the GMV/ICV ratio (Model 1, P = 0.11) 
and WMV/ICV ratio (Model 2, P = 0.40) were not significant independent predictor of MCI (Table 2). After 
adjustment for the HV/ICV ratio in addition to the potential confounders, two networks, including the right 
hippocampal head (Component 5) and bilateral hippocampal tail (Component 16) were significant independ-
ent predictors of MCI (p < 0.001 and < 0.001, respectively) (Model 5). Importantly, when HV/ICV was added to 
the model (Model 5), these two networks were independent predictors of MCI, whereas HV/ICV (p = 0.31) was 
not.

Each logistic regression model was subjected to the Hosmer–Lemeshow test that assesses the fit of the model 
under the null hypothesis that "the model is good". In results, Model 1,3, 4, and 5 was defined as good (Model 1: 
p-value = 0.543, χ2 = 6.941; Model 3: p-value = 0.41, χ2 = 8.248; Model 4: p-value = 0.051, χ2 = 15.452; Model 5: 
p-value = 0.158, χ2 = 11.851), which indicate the null hypothesis is not rejected. Alternatively, Model 2 rejected 
the null hypothesis (p-value = 0.0157, χ2 = 18.856)14.

For the Model 5, variance inflation factor (VIF) values were calculated to measure the possible collinearity 
between the HV/ICV ratio and the 16 independent components. The results indicated no collinearity between 
them (mean VIF = 1.47, max VIF = 1.95 and minimum = 1.00), because a VIF of > 5 indicates high correlation of 
the  variables15. Pearson’s correlation coefficients were also calculated to detect collinearity among them. Although 
there were significant correlations between HV/ICV ratio and 16 independent components, a correlation coef-
ficient of < 0.5 between them (Table 3), which was considered indicative of no  multicollinearity16.

The network of the right hippocampal head (Component 5) mainly consisted of a portion of CA1 and bilateral 
hippocampal tail (Component 16) of CA1 (Fig. 1).

Discussion
In the present study, we assessed networks in the hippocampus (hippocampal subfields). To the best of our 
knowledge, this is the first study to demonstrate intra-network alternation in the hippocampi of patients with 
MCI using population-based studies with large sample sizes. We found that hippocampal intra-networks were 
an independent predictor of MCI. The networks included not only those connecting the ipsilateral hippocampus 
but also those connecting the bilateral hippocampi. Importantly, these networks predicted MCI independent 

Figure 1.  Voxel-based structural covariance intra-network in the hippocampus. The figure shows the structural 
covariance networks with |Z|> 2.5. Independent component analysis generated 16 independent components 
(Component 1–16). Two networks, including the right hippocampal head (Component 5) and bilateral 
hippocampal tail (Component 16) were significant independent predictors of MCI. Component 5: Right 
hippocampal head (CA1), which mainly consists of a portion of CA1. Component 16: Bilateral hippocampal 
tail, mainly consisting of a portion of CA1.
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of hippocampal volume, although hippocampal volume was also a predictor of MCI. Our results suggest that 
altered networks may reflect different pathologies in MCI from brain atrophy.

The ICA extracted two hippocampal intra-networks (Components 5 and 16) associated with the presence of 
MCI. Ezama et al. also reported an activity hotspot that extended the hippocampal subfields (CA1, CA3, CA4, 
subiculum, and dentate gyrus) along the longitudinal axis in healthy  participants8.

We also found spotty networks (Component 5: right hippocampal head; Component 16: bilateral hippocam-
pal tails). Many studies have demonstrated anatomical and functional differentiation along the long axis of the 
 hippocampus17. A previous tract-tracing study of nonhuman primates revealed intra-subfield gradients of con-
nectivity along the anterior–posterior axis of the hippocampus, suggesting different portions of hippocampal sub-
fields may preferentially interact with other brain  regions18. Dalton et al. showed subfield-to-subfield functional 
connectivity within different portions along the hippocampal anterior–posterior axis in healthy  participants7. 
This evidence supports our results; there are various networks in the hippocampus.

Interestingly, our findings also revealed MCI-related networks in the bilateral hippocampus (Component 
16). Although previous findings have highlighted the network along the longitudinal axis as a key contributor to 
functional  organization17,19, the underlying function of the bilateral networks remains unclear. In a recent study 
of healthy adult subjects, networks of the bilateral hippocampi revealed a strong level of functional symmetry 
during rs-fMRI. This may suggest an underlying function of the bilateral networks in healthy adults. Furthermore, 
Watanabe et al. revealed bilateral networks in hippocampal structural images using ICA, and these bilateral net-
works could predict major depressive disorder in controls. Therefore, future research on bilateral hippocampal 
networks using new analysis methods is needed to reveal their role in cognitive decline.

The MCI-related hippocampal intra-networks in the present study mainly included portions of CA1. His-
tological studies have shown afferent and efferent projections in the hippocampal subfields to the rest of the 
brain, showing the subiculum and CA1 are the main sources of extrinsic projections from the  hippocampus9. 
Our results may be supported by the previous study using rs-fMRI, which showed that, compared to young 
participants, older participants had significantly reduced FC between the CA1-subiculum transition region and 
the entorhinal  cortex7, suggesting intra-network alternation in the CA1 and subiculum may dovetail with the 
progression of tau pathology. Although it is commonly linked with AD, tau protein accumulation also occurs 

Table 2.  An independent predictor of MCI. MCI mild cognitive impairment, ICV total intracranial volume, 
GMV total gray matter volume, WMV total white matter volume, HV hippocampal volume, CI confidence 
interval, OR odds ratio. Bold indicates statistically significant after Bonferroni correction.

Model 1 Model 2 Model 3 Model 4 Model 5

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Female sex 0.55 (0.39, 0.78) < 0.001 0.48 (0.36, 0.65) < 0.001 0.57 (0.42, 0.79) < 0.001 0.40 (0.28, 0.57) < 0.001 0.44 (0.29, 0.67) < 0.001

Age (per year) 1.11 (1.07, 1.15) < 0.001 1.11 (1.07, 1.15) < 0.001 1.09 (1.05, 1.13) < 0.001 1.09 (1.04, 1.13) < 0.001 1.08 (1.04, 1.13) < 0.001

Hypertension, n (%) 1 (1, 1) 0.33 1 (1, 1) 0.32 1 (1, 1) 0.33 1 (1, 1) 0.35 1 (1, 1) 0.36

Hyperlipidemia, n (%) 0.78 (0.58, 1.06) 0.13 0.77 (0.57, 1.05) 0.095 0.79 (0.58, 1.07) 0.13 0.77(0.56, 1.05) 0.10 0.78(0.57, 1.06) 0.12

Diabetes, n (%) 1 (1, 1) 0.0039 1 (1, 1) 0.0041 1 (1, 1) 0.04 1 (1, 1) 0.08 1 (1, 1) 0.08

Education (high school) 0.89 (0.61, 1.29) 0.53 0.88 (0.61, 1.28) 0.51 0.9 (0.62, 1.3) 0.56 0.88 (0.60, 1.28) 0.50 0.89 (0.61, 1.3) 0.54

Education (junior high 
school) 2.57 (1.73, 3.81) < 0.001 2.53 (1.71, 3.74)  < .001 2.62 (1.76, 3.88) < 0.001 2.47 (1.65, 3.70) < 0.001 2.51 (1.67, 3.76) < 0.001

HV/ICV 0.76 (0.65, 0.9) 0.001 0.87 (0.67, 1.14) 0.31

GMV/ICV 0.86 (0.72, 1.03) 0.11

WMV/ICV 0.93 (0.80, 1.1) 0.40

Component 1 0.84 (0.68, 1.03) 0.09 0.85 (0.69, 1.04) 0.12

Component 2 1.10 (0.90, 1.35) 0.33 1.12 (0.92, 1.37) 0.27

Component 3 0.96 (0.77, 1.21) 0.75 0.95 (0.75, 1.19) 0.63

Component 4 0.88 (0.71, 1.09) 0.23 0.91 (0.73, 1.13) 0.37

Component 5 0.77 (0.62, 0.96) 0.021 0.77 (0.62, 0.96) < 0.001

Component 6 0.73 (0.58, 0.91) 0.005 0.74 (0.59, 0.92) 0.01

Component 7 1.01 (0.82, 1.26) 0.89 1.02 (0.82, 1.26) 0.88

Component 8 1.02 (0.77, 1.34) 0.90 1.05 (0.79, 1.39) 0.75

Component 9 0.96 (0.78, 1.18) 0.72 0.95 (0.78, 1.17) 0.65

Component 10 1.08 (0.87, 1.33) 0.50 1.07 (0.87, 1.32) 0.52

Component 11 0.80 (0.66, 0.98) 0.031 0.81 (0.66, 0.99) 0.038

Component 12 0.99 (0.78, 1.27) 0.95 1.02 (0.8, 1.32) 0.85

Component 13 1.05 (0.83, 1.32) 0.71 1.04 (0.82, 1.31) 0.76

Component 14 0.98 (0.80, 1.21) 0.88 1.01 (0.81, 1.25) 0.96

Component 15 1.16 (0.93, 1.44) 0.18 1.1 (0.86, 1.4) 0.45

Component 16 0.66 (0.54, 0.82) < 0.001 0.66 (0.53, 0.82) < 0.001
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during normal aging. The earliest affected regions of tau accumulation during normal aging are regions encom-
passing the CA1-subiculum transition  region20.

Our study had several strengths when compared with previous rs-fMRI studies. Previous studies used rs-fMRI 
and hippocampal subfield segmentation techniques to evaluate hippocampal intra-networks5,6,8. However, these 
studies were limited by their small sample sizes. Our community-based design and large sample size reduced 
sampling bias and the effects of individual variability and permitted a detailed evaluation of confounding factors. 
We used 3 T MRI data, although some studies used rs-fMRI with 7 T MRI, which has not been widely used for 
MR examinations in clinical  situations5,8. Furthermore, in the present study, all brain MRI data were obtained 
using the same protocol and MRI scanner. Previous investigations have suggested that volume measurements 
across platforms (vendor, MRI sequence, and scanner upgrade) introduce difference  bias21,22.

We evaluated collinearity between the HV/ICV ratio and the 16 independent components, although it was the 
main aim of our study to evaluate the MCI-related networks in hippocampus, rather than to evaluate the rela-
tionship HV/ICV and MCI. The VIF values for the Model 5 indicated no collinearity between the HV/ICV ratio 
and the 16 independent components. The Pearson’s correlation coefficients also showed a considered indicative 
of no multicollinearity between them. However, in this study, the HV/ICV was not significant predictors of MCI 
after adjustment for the 16 intra-networks. Although the reason for this result remains unclear, the hippocampal 
volume may have somewhat relationship with the hippocampal intra-networks for prediction of MCI pathology 
because ICA extracted these networks from the hippocampal structural images (hippocampal volume).

A limitation of this study is that fMRI was not performed to confirm the hippocampal intra-networks 
extracted from the structural MRI. However, a previous study showed a direct association between functional 
and structural covariance networks using SBM across the entire  brain23. Furthermore, a correlation between 
structural and functional networks has been reported in hippocampal intra-networks based on hippocampal 
subfield  segmentation5. Although the previous fMRI studies have shown afferent and efferent projections in 
the hippocampal subfields to the rest of the  brain6,7, we did not evaluate the relationships with the hippocam-
pal intra-networks and the rest of the brain. The previous 7T MRI study used sMRI with spatial resolution of 
0.6 mm × 0.6 mm × 0.6 mm for evaluation of hippocampal  subfields24. However, our 3D fast-spoiled gradient 
recalled sequence have a resolution; 1.0 × 1.0 × 1.2 mm, which was similar to that used in previous 3T hippocam-
pal subfields  studies25,26. Although our sMRI parameter was not high resolution, we believe that our protocol is 
acceptable to evaluate the hippocampal subfields. Our sample was restricted to relatively well-educated ethnic 
Japanese individuals, which limits the generalizability of our findings to other racial/ethnic groups, particu-
larly those in less developed countries. Therefore, further studies will be needed to assess altered hippocampal 
intra-networks in patients with MCI by using 3T MRI datasets from other sources such as Alzheimer’s Disease 
Neuroimaging Initiative (ADNI)27,28.

In this population-based study with a large sample size, we extracted the hippocampal intra-networks based 
on SBM and ICA, which can be estimated using conventional structural imaging with 3T MRI. We identified 
two MCI-related hippocampal intra-networks. These networks included a novel network connecting the bilateral 
hippocampi, not only the ipsilateral hippocampus. Moreover, these two networks predicted MCI independently 
of hippocampal volume, suggesting the altered networks may reflect a different pathology from that of brain 
atrophy. Therefore, this method provides additional information for understanding cognitive impairment.

Methods
Study population and design. This study was conducted in accordance with the ethical guidelines of the 
Declaration of Helsinki, and use of data from the Iki-Iki Health Promotion Project (Iki-Iki study) was approved 
by the Ethics Committee of Hirosaki University School of Medicine (authorization number 2019-064-1). Writ-
ten informed consent was obtained from all participants.

The Iki-Iki Health Promotion Project was established in 2016 as a population-based prospective study of 
cerebro- and cardiovascular diseases and dementia in an older Japanese population from the Iwaki area of Hiro-
saki City, western Aomori Prefecture, Japan. In 2016 and 2017, 2390 residents aged > 64 years participated in 
the screening survey. Of these 2390 residents, 2226 (93.1%) underwent brain MRI. We excluded 50 participants 
with image distortions (7 with metal artifacts, 13 with excessive motion artifacts, 30 for whom brain volume or 
structural covariance intra-networks could not be measured accurately for various reasons), and 43 participants 
without available MRI data (43 without T1WI).

The diagnosis of dementia was made using a two-step diagnostic system. First, an interview survey for the 
screening of cognitive function was conducted by trained doctors, public health nurses, nurses, and clinical 
psychologists using the Mini-Mental State Examination (MMSE) as the first screening survey. The subjects who 
met the following criteria underwent the second screening survey for the suspected cases of cognitive impair-
ment: (1) MMSE ≤ 26 points, (2) score of ≤ 4 of a total possible 6 points on the delayed recall component of the 
MMSE, (3) failed intersecting pentagon-copying component in the MMSE and/or cube-copying test, and (4) 
suspected cases based on the manner of speaking and behavior. In the second screening survey, the presence 
of cognitive impairment (i.e., MCI or dementia) was determined by expert psychiatrists or neurologists based 
on the physical and neurological examinations.Petersen’s criteria were used for the diagnosis of mild cognitive 
impairment (MCI)29. The diagnosis of AD was based on the criteria of the National Institute of Neurologic and 
Communicative Diseases and Stroke/Alzheimer Disease and Related Disorders  Association30. Of the 2133 par-
ticipants, 218 (9.78%) were diagnosed with MCI and 11 participants were diagnosed with AD. The remaining 
1904 (89.3%) patients were CNOA. Eleven participants with AD were also excluded. Thus, 2122 participants 
(218 with MCI and 1904 CNOA) were enrolled in the present study (Table 1).
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MRI acquisition. All brain MRI data were obtained using the same protocol on a single 3T MRI scanner 
(Signa EXCITE 3T; GE Healthcare, Wankesha, WI, USA) with an 8-channel brain phased-array coil. Original 
T1WI were acquired in the steady state using a 3D fast-spoiled gradient recalled sequence with the following 
parameters: repetition time, 10 ms; echo time, 4.1 ms; inversion time, 700 ms; flip angle, 10; field-of view, 24 cm; 
section thickness, 1.2 mm; and resolution, 1.0 × 1.0 × 1.2 mm. All images were corrected for distortion due to 
gradient non-linearity using Grad Warp  software31 and for intensity inhomogeneity using the “N3”  function32.

Image processing. The preprocessing of images was identical to the procedure adopted for classical voxel-
based morphometry (VBM) analyses using SPM12 software (Statistical Parametric Mapping 12; Institute of 
Neurology, London, UK)33,34. The structural images in native space were spatially normalized, segmented into 
grey matter (GM), white matter, and cerebrospinal fluid images, and modulated using the Diffeomorphic Ana-
tomical Registration Through Exponential Lie Algebra (DARTEL) toolbox in  SPM1235. Ashburner proposed 
DARTEL as an alternative method of normalization in the SPM  package33. To preserve the gray and white matter 
volumes within each voxel, we modulated the images using Jacobian determinants derived from spatial normali-
zation using DARTEL. In contrast to conventional VBM processing, to maintain a high spatial resolution, the 
voxel size was set at 1.2 mm isotropic voxel size, which is normally converted to a 1.5 mm isotropic voxel size.

Furthermore, the resulting modulated GM images were smoothed using a 3-mm full width at half maximum 
Gaussian kernel. After the smoothing process, we extracted the hippocampal image, defined by automated ana-
tomical  labeling36 using the WFU PickAtlas version 3.0.437,38.

To identify structural networks among hippocampal voxels, SBM analysis was performed using the GIFT 
toolbox (http:// icatb. sourc eforge. net)10. The minimum description length principle was used to estimate the 
number of independent components. The minimum description length yielded 16 reliable incident components. 
We performed ICA using a neural network algorithm (Infomax) to minimize the mutual information of the 
network outputs and identify naturally grouping and maximally independent  sources39. Independent component 
analysis was repeated 20 times in ICASSO to ensure the stability of the estimated components.

As a result, we obtained a matrix in which the 2122 rows represented 2122 subjects (1904 CNOA and 218 
MCI), and each column indicated a voxel. This matrix was decomposed into two matrices using ICA. The first 
matrix, called the “mixing matrix,” comprises one subject per row and IC per column. The mixing matrix involved 
loading coefficients that demonstrated how each structural component contributed to the 2122 participants and 
thus contained information about the relationship between each participant and each component. In other words, 
the loading coefficients reflected the contribution of each participant to the specific brain network components. 
The second matrix was named the “source matrix” and specified the relationship between the ICs and the voxels.

To visualize the independent components, the source matrix was reshaped back to a 3D image, scaled to unit 
standard deviations (Z maps), and the threshold was set at Z > 2.0.

ICV, total GMV, total WMV, and bilateral HV were calculated using the 40-brain LPBA40  atlas40. We then 
calculated the GMV/ICV, WMV/ICV, and HV/ICV ratios as indicators of hippocampal atrophy. The analysis 
was conducted using the CAT12 toolbox (C. Gaser, Structural Brain Mapping Group, Jena University Hospital, 
Jena, Germany; http:// dbm. neuro. uni- jena. de/ cat/) implemented within SPM12  software33,34.

Statistical analyses. There were no previous studies in subjects with MCI, which studied the hippocampal 
intra-network connectivity as measured using SBM; there was no evidence regarding the relationship among the 
16 intra-networks. Therefore, for the logistic regression analysis, as explanatory variables, we used all 16 intra-
networks extracted by ICA (Model 4 and 5 in Table 2). Furthermore, we investigate the association of cognitive 
status with each brain volume (GMV/ ICV, WMV/ICV, and HV/ICV ratios) (Model 1, 2, and 3 in Table 2). In the 
results, the HV/ICV ratio was a significant independent predictor of MCI, but not GMV/ ICV and WMV/ICV. 
Therefore, to confirm whether the loading coefficients of networks can be independent of hippocampal volume 
for the prediction of MCI by logistic regression analysis, we used not only the loading coefficients of networks 
but also the HV/ICV ratio as predictive variables (Model 5 in Table 2).

All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, 
Japan)41. To compare the demographic characteristics between patients with MCI and CNOA, a Mann–Whitney 
U test was performed to assess differences in age. The chi-squared test was used for sex comparisons. Nominal 
variables were expressed as percentages and continuous variables as medians (interquartile ranges) or ranges 
based on distribution.

The logistic regression analysis was used to investigate the association of cognitive status (MCI and CNOA) 
with hippocampal intra-network connectivity and the HV/ICV ratio. Logistic regression analysis was also used 
to assess whether hippocampal intra-networks could predict MCI. Bonferroni correction was applied to these 
 results42.

Analyses were adjusted for age, sex, education level (less than high school, high school or equivalent, college or 
graduate, or professional school), and self-reported medical history (hypertension, hyperlipidemia, or diabetes). 
The diagnosis group (MCI and CNOA) was entered as an independent variable, and all loading coefficients were 
calculated to indicate hippocampal intra-network connectivity.

Data availability
The datasets are not publicly available due to privacy protection but are available from the corresponding author 
on reasonable request.
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