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Quantifying the behavioural 
consequences of shark ecotourism
Joel H. Gayford 1,2*, William D. Pearse 1, Rafael De La Parra Venegas 3 & 
Darren A. Whitehead 4

Shark populations globally are facing catastrophic declines. Ecotourism has been posited as a 
potential solution to many of the issues facing shark conservation, yet increasingly studies suggest 
that such activity may negatively influence aspects of shark ecology and so further pressure declining 
populations. Here we combine UAV videography with deep learning algorithms, multivariate statistics 
and hidden Markov models (HMM) to quantitatively investigate the behavioural consequences of 
ecotourism in the whale shark (Rhincodon typus). We find that ecotourism increases the probability of 
sharks being in a disturbed behavioural state, likely increasing energetic expenditure and potentially 
leading to downstream ecological effects. These results are only recovered when fitting models 
that account for individual variation in behavioural responses and past behavioural history. Our 
results demonstrate that behavioural responses to ecotourism are context dependent, as the initial 
behavioural state is important in determining responses to human activity. We argue that models 
incorporating individuality and context-dependence should, wherever possible, be incorporated 
into future studies investigating the ecological impacts of shark ecotourism, which are only likely to 
increase in importance given the expansion of the industry and the dire conservation status of many 
shark species.

Sharks belong to the clade Chondrichthyes, an ancient radiation of crown group gnathostomes to persist in 
modern  ecosystems1. Whilst sharks are of intrinsic interest due to their persistence through evolutionary time, 
they are also critically important components of marine ecosystems and are thought to be among the most func-
tionally diverse vertebrate  clades2. Amongst the ecological functions performed by sharks are the distribution of 
predation pressure through space and  time3 and (in the case of migratory species) facilitation of energy transfer 
between  ecosystems2,4. There is mounting evidence that declines in shark populations can result in phenomena 
such as mesopredator release and trophic  cascades5. Despite their ecological importance, sharks are amongst 
the most threatened of all vertebrates, with recent IUCN (International Union for the Conservation of Nature) 
estimates suggesting that more than one third of all shark and ray taxa are facing  extinction6. Overfishing is 
undoubtedly the major driver of this crisis, to which sharks are particularly vulnerable due to life history traits 
including relatively slow maturation and low  fecundity7. This is not the only driver of decline, with anthropogenic 
climate change and habitat destruction also thought to be relevant in some  populations8,9. The scale of the threats 
posed by overfishing and a general lack of public awareness have until recently provided major barriers to the 
implementation of conservation  action6,10,11. Gradually these barriers are being lifted, with public perception 
increasingly favouring the protection of  sharks11.

Shark ecotourism, in which members of the public pay to experience interactions with wild sharks, is credited 
with portraying sharks in a more positive light amongst members of the  public12,13. Shark ecotourism is of ever-
increasing economic importance in a number of countries, thought to be valued globally at over 300,000,000 
USD per year and responsible for the creation of thousands of  jobs14,15. Regardless of these clear socioeconomic 
benefits, ecotourism also has potential ecological  impacts16–19, the true nature of which remain poorly under-
stood. There is some evidence that ecotourism activities involving provisioning can influence both relative abun-
dance and species  composition20, and even directly trigger mesopredator release—increasing the abundance of 
other species at lower trophic  levels21. Whilst trophic cascades are typically considered from the perspective of 
depredation, this is not strictly a  requirement22, and thus it is possible that the feeding of sharks at ecotourism 
sites could result in functionally similar shifts in community ecology. Not all studies have recovered evidence 
for ecological impacts of  ecotourism23,24, and even where present these potential effects are likely to be highly 
context  dependent16. Even where provisioning is absent, disturbance and boat-related injuries remain substantial 
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 threats16,25. For these reasons, further studies are urgently warranted to establish the extent to which this expand-
ing industry may have unforeseen ecological consequences on the populations it is aiming to conserve.

Whilst there are multiple potential routes by which shark ecotourism could influence their ecology, potentially 
the most important is through behavioural responses. Behaviour is the suite of traits by which inter-specific 
interactions are directly  mediated26 and is thus a highly significant factor influencing downstream ecological 
consequences of anthropogenic interference. Even if such effects were limited to the focal taxon of ecotourism 
activities alone, disturbance and alterations to the landscape of fear have many potential consequences for bio-
energetics, which in turn can have disastrous consequences for migration, reproduction, and other life-history 
 traits27,28. Emerging studies are increasingly suggesting that behavioural plasticity may play a key role in dictating 
population-level resilience in the face of environmental  change29,30. Several studies have attempted to address the 
effects of ecotourism on shark behaviour, reporting evidence of ecotourism influencing foraging activity, long-
distance migratory behaviour and avoidance/disturbance  responses16–34. Despite this, different studies present 
conflicting results, the interpretation of which is complicated by a lack of standardisation in the behavioural 
assays considered between studies. The temporal resolution of such studies also provides several limitations: some 
studies rely on telemetry data which, and although these are of unquestionable  importance35, they do not typi-
cally consider the effects of ecotourism at the scale of individual behavioural sequences and interactions. Those 
that do typically consider behaviour to fall into one of a small number of qualitatively defined  categories34. Using 
discrete, qualitative categories as opposed to rigorous quantitative definitions is not ideal as they are unlikely 
to be an accurate representation of the full repertoire of behavioural observed in most taxa. Studies utilising a 
more quantitative, biologically reasoned and quantitative approach and considering behaviour at finer temporal 
resolutions are essential if we are to fully understand how ecotourism activities may influence the behaviour (and 
subsequently the ecology and evolution) of sharks.

In this study we combine Unoccupied Aerial Vehicle (UAV) videography with deep learning algorithms, 
multivariate statistics and Hidden Markov Models (HMM) to investigate the ecological consequences of inter-
actions between sharks and humans for shark behaviour, using whale sharks (Rhincodon typus) as a case study. 
This approach considers behavioural consequences of ecotourism for sharks at a finer temporal resolution than 
any previous study and uses explicit and rigorous quantitative definitions of behaviour. This increases potential 
for direct comparison between studies, aiding in ease of interpretation and considering the full range of move-
ments observed during individual behavioural sequences. We comment on the implications of these results for 
ecotourism practices, for the ecology of the R. typus and the wider community.

Methodology
The goal of this study was to amass aerial footage of R. typus both in isolation and in the presence of humans, 
quantify shark movement within the footage using neural networks, and establish the extent to which human 
activity influences the behaviour of R. typus.

Ethics statement. Data collection and analysis procedures in this study complied with national animal 
welfare laws and ARRIVE guidelines and regulations; all data collection procedures were authorized by Mexican 
wildlife authorities under the permit SPARN/DGVS/04909/22 provided by the Comisión Nacional de Acua-
cultura y Pesca (CONAPESCA). This permit, issued by CONAPESCA is necessary and sufficient for all proce-
dures conducted during this study (including the involvement of human and animal participants), and negates 
the requirement for IRB ethics approval, which is not required by Mexican law for such studies in Mexican 
territory.

Data collection. Aerial videos of whale sharks and their interactions with ecotourism activities were 
obtained using a DJI Phantom 3SE UAV (flown at a constant altitude of 15 m), between the 30th of November 
2022 and 6th of February 2023 (during the ecotourism season) in the whale shark refuge area in the Bay of La 
Paz, Mexico (Fig. 1a). This large, shallow bay hosts seasonal aggregations for juvenile whale sharks, which have 
become the focus of local ecotourism  activities34,36. After filming sharks in isolation, a swimmer entered the 
water and mimicked typical ecotourist behaviour, swimming parallel to the shark with a minimum distance of 
two metres between them and the shark at all times. The position of the swimmer relative to the shark was vari-
able, and depended both on the behaviour of the animal and the orientation of the vessel. One swimmer was 
used so as to increase the simplicity and intelligibility of our results, as otherwise additional potential confound-
ing factors including size and behaviour of swimmers would need to be taken into account. Aerial videos were 
gathered both of sharks in isolation and interacting with swimmers. In total, 39 videos were obtained (20 with 
swimmers and 19 without), with video clips (following trimming) ranging from 167 to 1121 frames (5.6–37.4 s) 
in duration. All data was collected early in the day prior to the commencement of ecotourism activities. As aerial 
photographs are not typically used to assign IDs to whale sharks, we were unable to verify that each video cor-
responds to a unique individual.

Video analyses. Aerial footage was analysed using the Python-based38 deep learning system  SLEAP39, out-
putting coordinate data indicating the position of sharks and humans within the field of view of the drone. Sharks 
were modelled as a single point, corresponding to the anterior-most point on the midline of the dorsal body sur-
face (Fig. 1b). Humans, where present, were labelled as a single point corresponding to the head (Fig. 1b). The 
use of a single point to model organisms minimised the potential impact of image distortion, which was deemed 
negligible following preliminary tests and extensive footage visualisation. Initially, 20 frames were labelled at 
random intervals within each video. SLEAP offers two neural network training modes: top-down training first 
identifies animals and then separately estimates the pose of each, whereas bottom-up training first identifies all 
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of the body parts in a frame and separately assigns parts to each  animal39. We chose a top-down mode following 
preliminary tests for training efficacy. The neural network was trained to predict the position of humans and/
or sharks in 20 additional frames and ceased after five rounds of training, after which a manual review of the 
predicted frames was conducted. Following any necessary corrections (to the positions of misidentified sharks/
humans estimated during the learning phase), the trained neural network was used to generate track data for 
all individuals across the entire video. To distinguish between humans and sharks, a centroid cost function was 
used, assigning identity on the basis of the distance travelled between frames. A Hungarian matching algorithm, 
which matches individual identity between frames by maximising total  similarity39, was utilised to compile the 
final track data for each individual in each video.

Figure 1.  Images showing (a) the Bay of La Paz in Baja California Sur, Mexico where data collection took 
place; polygons A1, A2, and A3 represent the whale shark refuge area in which certain restrictions regarding 
boat traffic apply. (b) The labelling of humans and sharks for SLEAP analyses, with human swimmer mimicking 
ecotourist behaviour, swimming parallel to the shark maintaining a distance of at least two  metres37.
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Parameter estimation. To obtain behavioural parameters for statistical analysis, SLEAP output was con-
verted into trajectory data. Each frame transition in each video is modelled by a step length (indicating the 
distance between an individual’s location in two consecutive frames) and a turning angle (indicating change 
in directionality between two consecutive frames) using the trajr package in the R statistical  environment40,41. 
As larger sharks are likely to swim faster than smaller sharks, a simple body size correction was applied to each 
trajectory in accordance with the  literature42,43. Trajectories were visualised and smoothed accordingly (using a 
Savitzky-Golay filter of length 21 and polynomial order 3) in trajr prior to parameter estimation to remove noise 
associated with head yaw (lateral movements of the head), which could influence the distribution of parameters 
related to directionality. Smoothing parameters were chosen in line with previous studies and following visu-
alisation of the  data41. The following parameters were calculated for each video: minimum, maximum, mean 
and standard deviation values for speed, acceleration and turning angle; mean directional  autocorrelation44, 
‘eMaxA’45, ‘eMaxB’45 and ‘Sinuosity2’46. For the calculation of all trajectory-based parameters, a correlated ran-
dom walk model of animal movement was applied under the assumptions of Brownian motion and that direc-
tion of movement in consecutive frames is  correlated47.

Statistical analyses. To test for statistical differences in the overall behavioural repertoire of individuals in the 
presence and absence of humans, an ‘ethospace’ visualisation was generated through principal component analysis 
(PCA). This approach is typically used to visualise ecological and morphological  disparity48, but also provides a valu-
able tool by which multiple components of ‘behaviour’ can be compressed into a single  ordination49. PCA analysis 
incorporating all parameters (z-transformed to account for scale differences between parameters) was performed using 
the packages factoextra50 and ggplot248,51 in the R statistical  environment40. Linear models were fitted for each of the 
parameters incorporated in the PCA in the R statistical  environment40 and visualised using the package ggplot251 using 
the presence or absence of humans as a binary predictor variable.

Hidden Markov models. Whilst parameters such as mean speed, turning angle and acceleration are poten-
tially biologically informative, they do not take into account the full range of behavioural plasticity exhibited 
by individuals. To increase the proportion of behavioural plasticity captured by the analyses whilst maintain-
ing a biologically-reasoned approach that takes into account the ecology of the species in question, we applied 
discrete-time Hidden Markov models (HMM) to the non-smoothed trajectory data using the package move-
HMM40,52 in the R statistical  environment40. HMMs consist of a set of observations (in this case a series of step 
lengths and turning angles for each frame interval of each video), the distribution of which depends on the 
distribution of the hidden state (a proxy for individual behaviour, which takes one of a predefined set of discrete 
values at any given frame interval) which ‘evolves’ over time as a Markov process, described by a matrix of transi-
tion probabilities between each of the possible state  values53. We applied an HMM to the data incorporating the 
presence/absence of humans as a binary covariate, tested against a null model without covariates. Step length and 
turning angle were modelled by Gamma and Von Mises distributions  respectively52, defined by the parameters 
mean step length ( µ ), step length standard deviation ( σ ), mean turning angle ( θ ) and angle concentration factor 
( κ)—a measure of how centred turning angles are around  zero52. Plausible parameter ranges were identified by 
visualising the actual step length and turning angle distributions, with these ranges being incorporated into a 
numerical likelihood optimization  routine54 to identify parameter values corresponding to the akaike informa-
tion criterion (AIC) global optimum. AIC balances model fit with model  complexity55 and thus this global opti-
mum should represent the model that explains the greatest proportion of variance in the data whilst maximising 
the simplicity and interpretability of the model. As some behavioural sequences featured frames in which no 
movement occurred, zero mass parameters ( ζ ) were incorporated into each model, the value of which corre-
sponded to the proportion of steps of length zero in the dataset. Seventy five sets of parameter values (randomly 
selected within the boundaries of plausible values defined previously) were considered for each HMM (including 
one-state, two-state and three-state models), with final models selected on the basis of AIC and log likelihood 
 scores55. Multinomial logistic regression was then performed on the model of best fit to quantify the effects of 
shark-human interactions on each of the transition probabilities between the three behavioural states. All HMM 
analyses assumed a correlated random walk model of animal movement in accordance with the  literature47,52.

Results
Ethospace occupation of R. typus. PCA incorporating 16 behavioural variables did not recover any 
evidence of significant behavioural differences in the presence or absence of humans (Fig. 2). Whilst individu-
als in the presence of humans qualitatively appear to occupy a greater ethospace range, there is no statistically 
significant difference (as evidenced by overlapping confidence ellipses, p ≥ 0.05) between the mean behaviour of 
the groups (Fig. 2). The first three principal components cumulatively explained 83.7% of observed behavioural 
variance (46.6, 30.0 and 7.1% respectively), with the parameters standard deviation of speed (Dim 1, 9.9%), 
mean speed (Dim 2, 16.9%) and minimum angle (Dim 3, 74.9%) explaining the greatest proportion of variance 
in each principal component respectively.

Linear models of behavioural variables. Linear regression of 16 behavioural variables against a binary 
variable representing the presence or absence of humans failed to recover evidence of statistically significant 
relationships between the presence of humans and the behaviour of R. typus individuals (Table 1).

HMM state allocation and model fit. HMMs including three discrete behavioural states received more 
support than models including either one or two behavioural states ( �AIC ≥ 14,202, � LL (maximum log-likeli-
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Figure 2.  There is no difference in mean behaviour between individuals interacting with humans and those 
not interacting with humans. The total plot space represents the range of possible behaviours an individual 
could exhibit, with each data point representing a separate individual. Enlarged points represent mean position 
in ethospace of each group (blue points indicate the absence of humans whereas orange points indicate the 
presence of humans). As the mean value for each group overlaps with the 95% confidence ellipse of the other 
group, there is no statistically significant difference between the mean values.

Table 1.  Regression output for each parameter against a binary variable representing human presence/
absence, where a value of 0 represents human absence and a value of 1 represents human presence.

Parameter Coefficient Intercept T value p value Standard error Residual error R
2(%) Adjusted R2(%) df F value

Mean speed 8.29E–03 1.04E–01 4.66E–01 6.44E–01 1.7799E–02 5.5560E–02 0.58  − 2.1 1,37 2.17E–01

Min speed 2.45E–03 1.99E–02 2.60E–01 7.96E–01 9.4160E–03 2.9390E–02 0.18  − 2.52 1,37 6.76E–02

Max speed 5.11E–02 2.23E–01 1.06E + 00 2.95E–01 4.8150E–02 1.5030E–01 2.96 0.33 1,37 1.13E + 00

Speed SD 7.51E–03 3.16E–02 9.34E–01 3.56E–01 8.0380E–03 2.5090E–02 2.3  − 0.34 1,37 8.73E–01

Mean acceleration 2.00E–03 1.30E–02 6.94E–01 4.92E–01 2.8890E–03 9.0170E–03 1.28  − 1.39 1,37 4.81E–01

Min acceleration  − 2.00E–06 8.10E–05  − 4.30E–02 9.66E–01 4.5000E–05 1.3900E–04 0.01  − 2.7 1,37 1.88E–03

Max acceleration 2.09E–02 7.29E–02 8.23E–01 4.16E–01 2.5330E–02 7.9080E–02 1.8  − 0.86 1,37 6.78E–01

Acceleration SD 2.28E–03 1.10E–02 8.16E–01 4.20E–01 2.7910E–03 8.7110E–03 1.77  − 0.89 1,37 6.65E–01

Mean angle 5.24E–03 1.64E–01 3.01E–01 7.65E–01 1.7416E–02 5.4360E–02 0.24  − 2.45 1,37 9.04E–02

Min angle  − 5.70E–05 3.84E–04  − 4.11E–01 6.83E–01 1.3800E–04 4.3100E–04 0.46  − 2.24 1,37 1.69E–01

Max angle  − 1.49E–01 1.86E + 00  − 4.64E–01 6.45E–01 3.2090E–01 1.0020E + 00 0.58  − 2.11 1,37 2.16E–01

Angle SD  − 1.73E–02 2.16E–01  − 5.00E–01 6.20E–01 3.4490E–02 1.0770E–01 0.67  − 2.01 1,37 2.50E–01

Directional autocorrelation  − 1.51E–02 8.21E–01  − 3.48E–01 7.30E–01 4.3210E–02 1.3490E–01 0.33 2.37 1,37 1.21E–01

eMaxA  − 4.22E + 00 4.90E + 01  − 3.68E–01 7.15E–01 1.1478E + 01 3.5830E + 01 0.37  − 2.33 1,37 1.35E–01

eMaxB  − 1.86E–01 5.61E + 00  − 8.60E–02 9.32E–01 2.1535E + 00 6.7220E + 00 0.02  − 2.68 1,37 7.45E–03

Sinuosity2  − 3.15E–02 8.37E–01  − 2.90E–01 7.73E–01 1.0853E–01 3.3880E–01 0.23  − 2.47 1,37 8.42E–02
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hood) ≥ 7115. The model of best fit incorporating human presence/absence as a covariate received significantly 
more support (in terms of AIC and log-likelihood values) than null models not accounting for human activity 
(Table 2). On the basis of step length and turning angle ranges we define the three states incorporated into our 
HMM as follows: State 1 covers relatively low step lengths and a high angle concentration factor (Table 2), reflect-
ing highly directed movement at relatively low  velocity54, such as may be observed when transiting between 
areas of high prey density. State 2 covers relatively large step lengths and a relatively low angle concentration 
factor (Table 2), reflecting high velocity and highly angular movement, such as might be expected in predator 
escape responses and avoidance/disturbance behaviour. State 3 covers intermediate step lengths and an interme-
diate angle concentration factor (Table 2), encompassing the ranges of velocity and angularity observed during 
both resting and surface feeding behaviours. Henceforth these states will simply be referred to as State 1, 2 and 3 
to avoid controversy regarding the use of subjective terminology to describe behaviour. The biological interpre-
tations of these states must be treated as hypotheses based on the quantitative definitions of each state, which are 
framed with respect to the velocity and angularity of trajectories. Transitions between states will be referred to 
as State x → y , where x is the initial state and y is the final state.

HMM state occupancy and multinomial logistic regression. The human presence/absence model 
suggests that regardless of whether humans are present, the long-term probability of an individual being in 
State 1 (typified by highly directional movement) is greater than that of an individual being in State 3 (typified 
by intermediate speed and directionality), which is in turn greater than the probability of an individual being in 
State 2 (typified by rapid, erratic movement consistent with escape behaviour) (Fig. 3). However, the presence 
of humans results in an increase in the long-term probability of an individual being in State 2 (Fig. 3). Whilst 
human presence appears to result in a decrease in the long-term probability of an individual being in either State 
1 or State 3, these relationships were not found to be significant. Multinomial logistic regression applied to this 
model suggests that human presence has a significant influence on all transition probabilities except State 3 → 1 
and State 1 → 3 (Fig. 4).

Table 2.  HMM model of best fit including presence/absence as a covariate. Model fit determined on the 
basis of the difference between the Akaike Information Criterion (AIC) and log-likelihood (LL) values of 
covariate models and null models ( �AIC and �LL). State parameters refer to mean step length, step length 
standard deviation, mean turning angle, angle concentration factor and zero mass parameter as defined in the 
methodology.

Model covariate AIC �AIC LL �LL State 1 State 2 State 3

Presence/absence 19,539 140 − 9741 76.2

µ : 2.21E–02
σ : 1.37E–02
θ : 1.53E–02
κ : 1.10E + 00
ζ  : 9.73E–04

µ : 3.76E–01
σ : 3.64E–01
θ : − 1.15E + 00
κ : 4.22E–02
ζ  : 7.26E–03

µ : 2.74E–01
σ : 6.93E–02
θ : − 2.15E–02
κ : 6.09E–01
ζ  : 4.11E–11

Figure 3.  Human presence significantly influences the long-term probability (stationary state probability) of 
individuals occupying a behavioural state characterised by high speed and high angularity. Red represents state 
1, blue represents state 2 and green represents state 3. Error bars represent 95% confidence intervals for the 
respective datapoints.
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Discussion
Our results demonstrate that the presence of humans and their proximity to R. typus individuals has important 
behavioural consequences for these sharks, and that these consequences are only detected by models that account 
for hidden behavioural states and individual variation in behaviour (Figs. 3 and 4). Of particular significance 
with regards to ecology and conservation, ecotourism activity increases the probability of individuals being in 
a disturbed behavioural state typified by relatively angular and rapid movement (Fig. 3). Moreover, ecotourism 
activity significantly influences the probability of transitioning between states (Fig. 4), specifically reducing the 
probability of transitioning from a disturbed to an undisturbed state (Fig. 4: State 2 → 1 , State 2 → 3 ). Whilst it 
may appear counter-intuitive that the probability of leaving State 2 is also increased in the presence of humans 
(Fig. 4), this is consistent with reductions in velocity and angularity following completion of a disturbance 
response. It is categorically not evidence of ‘relaxation’ or the absence of disturbance responses in the presence of 
humans, and is rather a ‘return to normality’ following successful evasion of a perceived threat. This is supported 
both by the other transition probabilities (Fig. 4), and qualitative observation of video footage. The primary 
behavioural consequence of shark ecotourism for R. typus individuals appears to be an increase in the proportion 
of time spent in a disturbed state typified by increased energetic  expenditure56, relative to states encompassing 
less rapid and angular movements (Figs. 3 and 4).

Avoidance behaviours increase energetic expenditure as a result of the energy required to generate such 
 behaviours56, however expenditure also increases indirectly as a result of displacement of individuals from areas 
of high foraging  success57,58. Whilst reduction in the prevalence of foraging behaviour in whale sharks in the 
presence of humans has previously been  reported34, we recovered evidence of increases in energetic expenditure 
as human presence significantly increased the long-term probability of individuals engaging in behaviours typi-
cally associated with avoidance/disturbance (Fig. 3). Such displacement would incur fitness costs in any species, 
however R. typus individuals aggregate in the Bay of La Paz specifically to  forage36,59 and have been known to 
engage in vast oceanic  migrations60,61. For these reasons reduced foraging success in the Bay of La Paz may 
be particularly impactful in terms of bioenergetic fitness consequences. Indeed a recent study of whale shark 
bioenergetics indicated that the presence of humans engaging in ecotourism activities results in a significant 
increase in metabolic rate in whale  sharks62. Whilst no such study has been conducted in the Bay of La Paz, the 
behavioural observations reported are consistent with our results. Moreover, as whale sharks in La Paz are not 
provisioned (unlike those in the bioenergetic study mentioned) the metabolic consequences of ecoutourism 
may be even more  significant62. In addition to the physiological consequences of reduced foraging  success63–65, 
these behavioural changes could reduce reproductive success through modification of reproductive  phenology57 
and increase the risk of injuries associated with boat  strikes25,66 given that even minor displacement would see 
individuals exit the protected  area34. Inferring population-level consequences of these individual behavioural 
responses is not  trivial67, however temporally persistent avoidance behaviours at the population level can result in 
area  abandonment68, in turn triggering cascading ecological effects that influence entire  communities57. Migra-
tory sharks such as R. typus are known to act as a major biological nutrient flux between isolated  ecosystems2,4,69, 
and thus area abandonment could have profound long-term consequences for nutrient  cycling69. Agent-based 

Figure 4.  Multinomial logistic regression coefficients demonstrate that human presence/absence (regression 
treats this as a binary variable with human absence holding a value of zero and human presence a value of one) 
significantly alters the probability of transitioning between some (but not all) behavioural states. A and S refer to 
the relative angularity and speed of each state, where ↑, ↓, and → represent relatively high, low and intermediate 
values. Red stars denote relationships found to be significant (p ≤ 0.05).
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models have been developed to predict population-level consequences of disturbance responses similar to those 
reported in this  study63,67, however most of these studies consider marine mammals, and as of yet none have been 
applied to elasmobranchs. For this reason, the details of such consequences in R. typus and other elasmobranch 
populations remain poorly constrained and should be a focus of future work.

Whilst the relationship between bioenergetics and disturbance responses may appear straightforward, behav-
ioural responses to disturbance (and their ecological consequences) are often highly nuanced and context-
dependent70,71. An individual displaying an ‘undisturbed’ behavioural state does not necessarily imply that the 
stimulus in question is not adversely affecting this individual. Various physiological stress responses are known 
in a range of  taxa71–74, many of which are thought to incur fitness costs even in the absence of obvious behav-
ioural effects. Stress physiology has been studied in  elasmobranchs75, but not in the context of ecotourism. Many 
studies have reported evidence of a relationship between individual behaviour (typically in the context of forag-
ing behaviours or predator avoidance) and past history of energetic states and ecological interactions—often 
termed ‘experience’68,76–79. The utility of terms such as ‘personality’ and ‘experience’ to behavioural ecology is 
 debatable80,81, however the initial behavioural state of individuals can often be of great importance in determining 
their response to a given stimulus. Our results support this concept as behavioural responses differed between 
R. typus individuals (Fig. 2) and the initial behavioural state of individuals was found to be important in deter-
mining the way in which they respond to human presence (Fig. 4). Behavioural differences in the presence and 
absence of humans were only detected when fitting models that account for individual variation in behaviour, 
and these models are supported despite their increased complexity (Table 2). Consequently, the behavioural, 
physiological and ecological consequences of a single disturbance event are not limited to the immediate time 
interval in which disturbance occurs but may persist for some as of yet undefined duration. This also raises the 
question of state-behaviour feedback, which has been reported in other  taxa82–84. R. typus individuals aggregat-
ing at common ecotourism sites are likely to experience a number of interactions with humans in any given day, 
and if disturbance responses demonstrate synergism then the true ecological consequences of ecotourism in 
this taxon may be far greater than previously considered. Further studies will be required to elucidate the extent 
of the relationship between past behavioural/energetic context and contemporary R. typus behaviour, however 
we suggest that shark behaviour should always be assessed prior to ecotourism activity to minimise potential 
disturbance. Even if this advice is heeded, these results suggest that some negative ramifications of ecotourism 
may be unavoidable unless such activity ceases entirely.

Our results demonstrate the importance of utilising multiple statistical approaches in the analysis of behav-
ioural data. On the basis of individual parameters such as mean acceleration or standard deviation of turning 
angle, one might suggest that ecotourism has a negligible impact on the fine-scale behaviour of R. typus (Table 1). 
This lack of responsiveness is not recovered when instead using Hidden Markov Models that account for indi-
viduality and past behavioural context (Fig. 4). Previous studies have produced superficially similar  results34 but 
do not provide comparable temporal resolution, and do not utilise a fully quantitative approach. Moreover, both 
multinomial logistic regression and ethospace reconstruction reveal individuality and context dependence to R. 
typus behavioural responses (Figs. 2 and 4) which has not previously been reported. Whilst an HMM approach 
has been applied previously to shark spatial  ecology85–88, this study is (to our knowledge) the first to use such a 
method in the context of high-resolution shark movement data. We suggest that this approach should form an 
important component of future studies, without which the nuanced and context dependent nature of behavioural 
responses to human activity may be neglected entirely. Particularly valuable additions to the literature would 
be studies considering relationships between behavioural responses to ecotourism and sex/ontogeny, factors we 
were unable to consider in the present study.

The importance of behavioural studies to ecology and conservation has long been  understood89. By quantify-
ing behaviour and applying multiple statistical approaches to these data, we have demonstrated that the influ-
ence of human activity on R. typus behaviour is significant, profound and context dependent. These behavioural 
consequences of ecotourism have potentially concerning implications for R. typus ecology. In light of these 
results, we suggest that the initial behavioural state of individuals must be assessed prior to in-water ecotourism 
activities, and that regulations regarding the minimum distance between human and shark should be revisited 
and reviewed in detail. In particular, we suggest that sharks engaging in rapid, angular movements should be 
avoided. Future studies investigating the relationship between ecotourism and elasmobranch behaviour should 
strive to use a biologically reasoned and rigorously quantitative approach wherever possible. Such studies will 
form an integral component of global efforts to conserve and protect declining elasmobranch populations, and 
as such ensuring reproducibility and ease of interpretation between studies should be of utmost importance.

Data availability
All data (the digitised tracks and estimated behavioural parameters) and code used in this project can be found 
in the following repository: https:// figsh are. com/s/ bc287 179a0 b85c1 c797c (to be made public following accept-
ance). Raw video footage can be provided upon reasonable request. They are over 9 GB in size and thus difficult 
to share online, however an exemplar video at low resolution has been deposited in the repository above.
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