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Impacts of the COVID‑19 economic 
slowdown on soybean crop yields 
in the United States
Julianna Christopoulos 1,2*, Daniel Tong 3,4*, Patrick C. Campbell 4,5 & Siqi Ma 3

It is without question that the COVID‑19 pandemic has taken its toll on the U.S. economy. Stay‑at‑
home orders led to reduced vehicular traffic and widespread declines in anthropogenic emissions (e.g., 
nitrogen oxides  (NOx)). This study is the first to explore the potential consequences of  O3 changes 
resulting from the economic shutdown in the United States on soybean crop yields for 2020. The 
pandemic’s impact on surface  O3 is quantified using the NOAA’s National Air Quality Forecasting 
Capability (NAQFC), which is based on the Community Multi‑Scale Air Quality (CMAQ) model for May–
July 2020. The “would‑be”, 2020 level business‑as‑usual (BAU) emissions are compared to a simulation 
that uses representative COVID‑19 (C19) emissions. For each emissions scenario, crop exposures are 
calculated using the AOT40 cumulative exposure index and then combined with county‑level soybean 
production totals to determine regional yield losses. Exposure changes ranged between – 2 and 
2  ppmVhr−1. It was further shown that increased exposures (0.5 to 1.10  ppmVhr−1) in the Southeast 
U.S. counteracted decreased exposures (0.8 to 0.5  ppmVhr−1) in the other soybean‑producing regions. 
As a result, corresponding yield improvements counteracted yield losses around the Mississippi River 
Valley and allowed for minimal improvements in soybean production loss totaling $6.5 million over 
CONUS.

On January 30th, 2020, the World Health Organization (WHO) declared the outbreak of COVID-19 to be 
a Public Health Emergency of International Concern, posing a high risk to countries with vulnerable health 
 systems1. The measures taken to contain the virus resulted in widespread changes in anthropogenic emissions. 
In early March 2020, state governments began issuing strict stay-at-home orders to contain the spread of the 
virus. As a result, widespread declines in anthropogenic emissions occurred and continued for the months that 
 followed2–4. The most notable changes in pollutants occurred in the urban areas of the country, with nitrogen 
oxide  (NOx) concentrations declining significantly as recorded from the collocation of both satellite- and ground-
based  observations5,6.

Locally, near-surface ozone  (O3) is mainly formed through the photooxidation of precursor gases and volatile 
organic compounds (VOCs) in the presence of nitrogen oxides (NOx)7.  O3 is not only detrimental to human 
health, resulting in diminished lung health function, but significantly hinders the growth of many plant spe-
cies. As a result,  O3 causes a wide variety of damage to agricultural crops including visible injury, reduction in 
photosynthesis, alterations to carbon allocation, and reduction in yield quantity and  quality8. One study found 
that choosing crop varieties that are more ozone-resistant could improve global crop production in 2030 by 
12% relative to the year 2000  level9. Currently, a variety of significant crop species are impacted by  O3 exposures 
annually. As indicated by National Crop Loss Assessment Network (NCLAN) studies, dicot crop species (i.e., 
soybean, cotton, and peanut) are more sensitive to yield loss induced by  O3 exposures compared to monocot 
crop species (i.e., sorghum, field corn, and winter wheat)10. Soybeans are a significant agricultural product in 
the U.S. The U.S. is currently the leading producer and second-leading exporter of soybeans. They constitute up 
to 90% of all oilseed production in the country and are among the most sensitive to  O3 exposures (ERS, 2022). 
In 2005, exposure to ambient  O3 was estimated to have reduced U.S. soybean production by 10% on a national 
 average11. These factors make soybean an ideal crop for studying  O3 impacts caused by COVID-19-related 

OPEN

1National Oceanic and Atmospheric Administration, Climate Program Office, Silver Spring, MD 20910, 
USA. 2Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, 
CA 90095, USA. 3Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, 
VA 22030, USA. 4Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA 22030, 
USA. 5National Oceanic and Atmospheric Administration Air Resources Laboratory, College Park, MD 20740, 
USA. *email: juliechristo@g.ucla.edu; qtong@gmu.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-39531-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12574  | https://doi.org/10.1038/s41598-023-39531-6

www.nature.com/scientificreports/

emissions changes. The impacts of COVID-19 related emission changes on soybean crop yields during the  O3 
photochemical season in the U.S. is currently unknown.

In this paper, we focus on the effects of the COVID-19 pandemic on air quality and agricultural produc-
tion in the U.S. This study utilizes NOAA’s National Air Quality Forecasting Capability (NAQFC), based on the 
Community Multiscale Air Quality Model (CMAQ), to predict the changes in  O3 concentration brought about 
by the  pandemic5. We then use the NAQFC predicted  O3 concentration changes and dose–response function 
relationships to quantify the pandemic-related changes on soybean crop yields for May–July (MJJ) 2020.

Results
Changes in ground‑level  O3.. The differences in hourly  O3 concentrations between a “business-as-usual” 
(BAU, i.e., the “would be” 2020 emissions without COVID-19 shutdowns) and actual COVID-19 (C19) scenarios 
are calculated and averaged for two-week periods for MJJ 2020 (Fig. 1; see Campbell et al.5 for scenario details). 
From MJJ, there are notable increases in  O3, particularly in the Lower Midwest and Southeastern U.S. associ-
ated with NOx emissions increases among the rural NOx-limited regions (e.g., Midwest and Southeast). This 
relationship is not apparent for the major urban centers, which are VOC-limited during this time as suggested by 
the  model5. A clear example is the area surrounding Indianapolis (VOC-limited), which shows increased  O3 in 
May compared to the surrounding regions which show decreases in  O3. Outside of the urban center, the region 
is more  NOx-limiting allowing decreases in  NOx to drive a decrease in  O3. Regarding the spatial variability of 
 O3  changes, the widespread increases in the Southeast regions were demonstrated to be in qualitative agreement 
with the U.S. EPA AirNow network observations (https:// www. airnow. gov/) and simulated increases by NASA’s 
GEOS Composition Forecasting (GEOS-CF) system (see Campbell et al.5 for spatial variability). Increases can be 
attributed to rebounding emissions trends from MJJ when states began to lift  restrictions12. In addition, shifts to 
cleaner vehicle fleets under the BAU scenario may have contributed to fewer emissions compared to C19’s shift 
to heavy-duty truck traffic during morning  rush5. In other words, trucks played a larger role in the C19 scenario 
than in the BAU scenario. It is suspected that heavy duty trucks resulted in increased emissions due to increases 
in online consumption which continued from the later stages of the pandemic into the photochemical  O3 season. 
Furthermore, under the BAU scenario, there was an expected 3–5% decrease in emissions due to the overturning 
of the vehicle fleet but COVID-19 interrupted this. It is important to note the uncertainty present due to back-
ground  NO2 and natural variability which could play a role here as well (see “Discussion”).The regions along the 
Mississippi River Valley (e.g., Lower Midwest and Southeast), which were characterized by  O3 increases, are of 
interest for this study since they occur throughout much of the soybean-producing region.

Changes in crop exposures. In both the BAU and C19 cases, highest exposures (based on the AOT40 
metric; see “Methods” section) were concentrated in the Southwest regions of the U.S. with maximums occur-
ring over southern California. Exposure differences between BAU and C19 are summarized by region in Table 1. 
The change in exposures induced by C19 are depicted in Fig. 2. The Western region experienced the maximum 
changes due to the emission changes with exposures decreasing by as much as 1.5  ppmVhr−1 in Central/Southern 
California and > 1.5  ppmVhr−1 in Utah. However, these regions do not contain soybean crops so they can be dis-
regarded. The focus is on exposure changes occurring in the Midwest and Southeast regions which exhibit vari-
able regional characteristics. In the Southeast, exposures both increased and decreased depending on the region/
state. For example, in South Carolina and North Carolina exposures decreased (blue areas) by approximately 
0.8  ppmVhr−1. Meanwhile, in the areas around Arkansas, Tennessee, and Kentucky, exposures increased (red 
areas) between 0.5 and 1.25  ppmVhr−1. The Midwest exhibited mainly decreased exposures (~ 0.75  ppmVhr−1 
for Ohio, Indiana, Michigan and ~ 0.5  ppmVhr−1 for South Dakota and North Dakota). It is important to note, 
under the C19 emissions changes, the soybean-producing regions of the United States experienced nearly equiv-
alent increases and decreases in  O3 exposures (ranging between − 0.8 and 1.25  ppmVhr−1) that were regionally 
dependent (see Fig. 2) and nearly characteristic of the  O3 changes determined for MJJ (see Fig. 1).

Changes in yield loss. Differences in C19 and BAU soybean yield losses are presented in Table 1 by region. 
Yield loss changes are nearly reflective of the exposure changes (see Figs. 2 and 3). Under C19, yield losses were 
significantly heightened (20 K Bu–110 K Bu) in counties along the Mississippi River, with individual counties 
in Arkansas and Illinois experiencing up to 80 K Bu and 110 K Bu in yield losses, respectively. It is important to 
note maximum yield losses occurred in counties with the highest production totals. Throughout the rest of the 
Midwest, yield improvements (blue areas) of 10 K Bu–40 K Bu are evident which offset the increases. The total 
U.S. soybean production reduction (%) in Table 2. represents the fraction of total yield loss to the total annual 
production. As a result, overall soybean production under the BAU and C19 scenarios was reduced by approxi-
mately 5.86% and 5.84% for MJJ 2020, respectively, an approximate 4% improvement from production losses 
since  200511. These results are consistent with historical analyses, where production loss from  O3 in the U.S. for 
1980–2011 is estimated to have ranged between 4 and 6% on  average13. In addition, they are consistent with 
Seltzer et al.14 (AOT40 RYL from soybean equivalent to 4.8% in 2015), Lobell et al.15 (5% average total soybean 
yield losses over last two decades), Da et al.16 (4.5% soybean annual production reduction for 1980–2015) and 
Liu and  Desai17 (4.8% historic soybean RYL for 1980–2019).

In this work, it is important to note meteorological effects are not separated from Campbell et al.5 and as a 
result, meteorology may be a strong controlling factor over COVID-19 emissions changes on  O3 concentration 
changes (and thus exposures) between 2019 and 2020. Isolating the meteorological vs. emissions impact on the 
COVID-19 related  O3 changes is beyond the scope of this study, however state-level natural variability factors 
indicate less natural variability for the months of March–June 2020 with a larger contribution from natural vari-
ability for the later summer months (e.g., July–September). Larger contributions in natural variability indicate 

https://www.airnow.gov/
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there are strong meteorological drivers of the  NO2 precursor changes. This indicates  O3 concentrations may be 
less impacted by the COVID-19 emissions changes for this period which in part agrees with Goldberg et al.18.

There are minimal differences present between the BAU and C19 yield loss, given nonlinearity in the C19 
 O3 concentration and exposure changes throughout the soybean-producing region for MJJ 2020. The regional 
decreases and increases in  O3 exposures and yield losses work to offset one other. As a result, over CONUS, yield 
loss was slightly improved, by 0.02%, under the C19 scenario. The resulting economic effects of the changes in 
yield losses are summarized in Table 3, where soybean yield loss amounts were multiplied by the price in U.S. 

Figure 1.  MJJ 2020  O3 concentration differences due to COVID-19 emissions changes (i.e., C19—BAU). 
Concentration changes varied by region with widespread decreases in the Midwestern U.S. of 1 ppbV (blue) 
and the Southeastern U.S. experiencing up to 3 ppbV increases (red). Created with NCL (NCAR Command 
Language) version 6.6.2. Available at: https:// www. ncl. ucar. edu/34.

https://www.ncl.ucar.edu/
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Dollars (USD) of U.S. soybeans per bushel. Production loss amounted to approximately $2.1 billion overall for 
the BAU and C19 emissions scenarios for 2020, also coinciding with the findings of Mcgrath et al.13 (annual 
soybean losses of $2 billion for the 31-year period) and Da et al.16 (average annual revenue losses of $1.2 billion 
for 1980–2015). A closer examination reveals a slightly improved production loss, amounting to $6.5 million, 
under C19 compared to the BAU emissions projections for 2020.

Conclusion
This study quantifies the impacts of changes in ground-level  O3 due to the COVID-19 (C19) pandemic on soy-
bean crop yields for MJJ 2020. Compared to the “business-as-usual” (BAU) scenario, there were notable increases 
in  O3 exposures which occurred in the Mississippi River Valley and southeast U.S., which can be attributed to 
increased NOx concentrations throughout the southern U.S. in July. The soybean-producing regions of CONUS 
saw regionally dependent changes in  O3 exposures that were reflective of concentration changes shown for MJJ 
2020. The Southeast and Midwest regions saw both increases and decreases in exposures (AOT40) that were 
equivalent in magnitude. Yield losses are reflective of these exposure changes with select counties in Arkansas and 
Illinois seeing increased yield losses up to 110 K Bu. Over CONUS, it is shown yield improvements counteracted 
by yield losses in the Mississippi River Valley regions allowed some improvement in production losses ($6.5 mil-
lion USD compared to 2019) to have occurred as a result of the  O3 concentration changes under C19. Overall, it 
was shown that 37% and 63% of the soybean-producing counties experienced yield loss increases and improve-
ments, respectively. Yield improvements due to emission changes over CONUS represent 0.02% of the total 2020 
U.S. soybean production which amounted $46 billion (https:// www. nass. usda. gov/). Overall, while Campbell 
et al.5 highlighted the nonlinearity of  O3 concentration changes due to the pandemic’s economic slowdown, 
here, we further show that these nonlinear changes result in regionally dependent  O3 exposure changes (e.g., 
increases in the Southeast U.S. and widespread decreases elsewhere) throughout the soybean growing season.

Table 1.  Summary of regional  O3 exposures (AOT40 in  ppmVhr−1) and soybean yield losses (in bushels of 
soybean) due to C19 emissions changes.

AOT40  (ppmVhr−1) Yield loss changes (Bu)

Northeast − 1.00 to 1.80 − 13.3 to 7.5 K

Midwest − 0.60 to 0.45 − 40.5 to 82 K

Southeast − 0.95 to 1.10 − 23 to 110 K

Southwest − 0.70 to − 0.10 –

West − 1.75 to 0.020 –

Figure 2.  Differences in AOT40 indices between BAU and C19 (i.e., C19-BAU) scenarios by county. Regions of 
increased  O3 exposures are depicted in the red counties while regions of decreased exposures are depicted in the 
blue counties. Created with Plotly version 5.14.1. Available at: https:// plotly. com/ python/35.

https://www.nass.usda.gov/
https://plotly.com/python/
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Such results draw attention to the shift back to normalcy following the initial onset of the COVID-19 pan-
demic. If shutdown orders had not been relaxed at the same time as shifts to cleaner vehicle fleets under the BAU 
scenario during the summer months throughout the soybean-producing region, reduced vehicular traffic emis-
sions would have contributed to decreased  O3 exposures and improved yields. Throughout May, and the months 
that followed in our study, shutdowns were reduced throughout much of the U.S. resulting in the slightly changed 
chemistry we see for the summer months, despite reductions to overall vehicular traffic compared to 2019.

It will be necessary to further study the impact of economic-related emissions changes on crop yields, perhaps 
on longer time scales and to distinguish the effects of regional meteorology on yield losses in the future.

Figure 3.  Differences in yield losses between BAU and C19 (i.e., C19-BAU) scenarios by county. Yield 
improvements (blue counties) are depicted in widespread areas in the Midwest and Southeast. Increased yield 
loss (red counties) under C19 is present along the Mississippi River Valley. Created with Plotly version 5.14.1. 
Available at: https:// plotly. com/ python/35.

Table 2.  Summary of CONUS soybean losses.

BAU SCENARIO C19 SCENARIO

Total yield loss (Bu) 236,998,365 236,277,359

Average yield loss (Bu) 161,114 161,114

U.S. soybean production loss (%) 5.86% 5.84%

Difference in reduction (%) 0.020%

Table 3.  Summary of CONUS production gains and losses due to  O3 exposures.

U.S. soybean price per Bushel (as of August 21st, 2020) $9.0075

BAU production loss (USD) $2,134,762,777.00

C19 production loss (USD) $2,128,268,215.00

Production gain attributed to COVID-19 emissions (USD) $6,494,461.00

https://plotly.com/python/
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Discussion
Limitations of the modeling platform. There are also some challenges and limitations in the National 
Air Quality Forecast Capability (NAQFC)  O3 simulations that drive the impacts on crop exposures and yields 
in this paper. Campbell et al.5 showed that there are widespread  O3 decreases in the U.S. rural regions (typi-
cally NOx limited; with lower COVID-19 NOx emissions), and instances of relatively localized  O3 increases in 
and around urban regions (typically VOC-limited; but also, with lower COVID-19  NOx emissions). These  O3 
changes strongly rely on the BAU and C19 emission projection scenarios derived from ground-(U.S. EPA Air 
Quality System network) and satellite-based (Aura Ozone Monitoring Instrument) observations, but in rural 
regions there is relatively sparse coverage and a low sensitivity of OMI to capture small surface  O3 changes. This 
can lead to additional uncertainties in the derived NOx emissions adjustment factors for C19 and the resulting 
 O3 concentration changes in rural regions. An example of this is the South/Southeast U.S. where there are wide-
spread larger C19 emissions compared to the BAU case after June, resulting in increased  O3 in the widespread 
 NOx-limited regions. It is difficult to fully assess if such widespread  O3 increases occurred with relatively mini-
mal point observations to compare with, but comparisons with the U.S. EPA AirNow observations in Campbell 
et al.5 in part support this change. Qu et al.6 approximate the impacts of natural/background effects when using 
 NO2 observations to infer  NOx emissions changes during the pandemic. They found that the satellites show 
much weaker  NO2 responses in March–June and no decrease in July–August, consistent with a large background 
contribution to the  NO2 column in the U.S. This partly confounds the use of OMI in deriving the C19  NOx emis-
sions changes and adds some inherent uncertainty to our work here. However, a detailed investigation into the 
natural variability is beyond the scope of Campbell et al.5 or in this paper. Hence, the reader is further referred to 
Goldberg et al.18 and Qu et al.6 for detailed analyses of satellite observations and the natural variability impacts 
on  NO2 concentration changes during the COVID-19 lockdown.

Methods
Air quality model configuration. The NWS/NOAA National Air Quality Forecasting Capability 
(NAQFC) used in this work is a well-documented and evaluated air quality modeling  system19–23, and the exper-
imental version used here is based on the offline-coupled North American Mesoscale Model Forecast System 
on the B-Grid (NMMB)24,25, which provides the driving weather data to the CMAQ model, version 5.0.226. The 
domain of the NAQFC covers the continental U.S. (CONUS) at a horizontal grid resolution of 12 × 12 km with 
35 vertical levels. CMAQ simulates the formation, transport, and fate of a suite of atmospheric composition 
parameters. The NAQFC has provided real time air quality forecast guidance for over the past decade for differ-
ent EPA-defined criteria pollutants including  O3 at a horizontal resolution of 12 × 12 km centered over CONUS. 
The full NAQFC model configurations and inputs are described in Campbell et al.5. BASE (NEI2014v2)  O3 simu-
lations compared against the U.S. EPA AirNow observations for April-September 2020 were indicative of accept-
able (i.e., consistently fall within the criteria ranges for  O3 established by Emery et al.29) model performance with 
little exceptions. For the detailed comparison, see Campbell et al.5.

Emission changes caused by COVID‑19. The emission changes caused by COVID-19 are derived from 
the difference from two scenarios: a “business-as-usual” (BAU) case and a COVID-19 (C19) case. In the BAU 
case, the emission data from the NEI 2014 version 2 (NEI2014v2) (i.e., the baseline emissions) are projected 
into the “would-be” 2020 level by using the mean rate of  NO2 trends observed from satellite and ground sen-
sors for the period of 2014–2019, the year before the pandemic. In the C19 case, the observed  NO2 trends from 
2014 to 2020, which are based on the vertical column density of  NO2 from the Ozone Monitoring Instrument 
(OMI) aboard the Aura satellite, and the U.S. EPA Air Quality System ground network  NO2 observations, are 
used to represent the actual emission level under the pandemic conditions. For both cases, the  NO2 trend data 
are derived using the approach developed by Tong et al.27,28. Detailed data processing and quality control pro-
cedures are provided in Tong et al.27. The emission data after adjustment are then used to drive the chemical 
transport model component of NAQFC, i.e., CMAQ, to calculate the near-surface  O3 levels under each scenario. 
The difference between the predicted  O3 concentrations in between BAU and C19 is attributed to the impact of 
the pandemic. Evaluation of the NAQFC surface  O3 concentrations using the NEI2014v2 (i.e., baseline emis-
sions), BAU, and C19 scenarios demonstrated that the monthly MJJ 2020 model performance for surface  O3 was 
within statistical benchmark criteria defined by Emery et al.29. Additionally, the BAU and C19  O3 simulations 
displayed increased in correlation, R, Index of Agreement (IOA), and decreased Normalized Mean Error (NME) 
compared to the BASE case. (see Campbell et al.5 for the full NAQFC statistical evaluation) Further details on 
the BAU and C19 emissions used in this work, as well as the state-level emission adjustment factors for scenarios 
of C19 and BAU in MJJ 2020 are found in Campbell et al.5.

Examination of soybean crop exposures. To examine what effect the changes in the modeled NAQFC 
 O3 concentrations may have had on soybean crop yields, it is necessary to evaluate the degree to which crops 
are being exposed to  O3. Assessments of crop loss from  O3 exposures in the U.S. are based on dose–response 
function relationships. The soybean exposures are calculated using exposure indices that are related to those 
dose–response relationships from which yield losses are  derived11. For this study we utilize an index to quantify 
the accumulated  O3 exposure over a threshold of 40  ppb8, AOT40, which is defined as:

(1)AOT40
(

ppmVhr−1
)

=

n
∑

i=1

[CO3
− 0.04] for CO3 ≥ 0.04 ppm
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The AOT40 index represents the sum of positive differences between the hourly mean  O3 concentration ( CO3
 ) 

and a threshold of 0.04 ppm, multiplied by the 1-h averaging period (n), in a fixed growing  season30. The cutoff 
at 0.04 ppm or 40 ppb is based largely on the anthropogenic component of the ozone exposure and does not 
imply a threshold for biological  effects31. In this study, we calculate AOT40 for 24-h periods in three consecutive 
months of the growing season under the BAU and C19 scenarios. AOT40 is calculated for MJJ. It is important 
to note,  O3 damage accumulates over the growing  season32. The earlier months of the growing season are used 
to examine the potential effects produced from the shutdown-related emission changes. Since crop production 
data in the U.S. is based on the county-level, the AOT40 indices are converted to a county-level average.  O3 
concentrations of all related grid cells are averaged into a single county and weighted by area for consistency 
following the approach of Tong et al.11.

Calculation of crop yield loss. The dose–response function for AOT40 is based on a linear relationship 
for soybeans from Dingenen et al.33. The relative yield loss (RYL), is calculated using this dose–response function 
and is defined as:

where the constant a = 0.0113 is determined from Dingenen et al.33 as a simple relationship between AOT40 and 
soybean crop yields. Soybean production amounts for 2020 (bushels of soybean per county) are obtained from 
the U.S. Department of Agriculture National Agricultural Statistics Service (https:// www. nass. usda. gov/ Data_ 
and_ Stati stics/) (see Table 4, for total production). A small amount of production data from combined counties 
is excluded since data from those individual counties could not be determined given individual farmer’s privacy. 
The RYL values are then combined with the 2020 soybean production (approximately 4 billion bushels with the 
subtracted counties) to generate the actual yield loss in Bu.

Data availability
All crop yield data used in this study are openly available from the United States Department of Agriculture’s 
National Agriculture Statistics Service at https:// www. nass. usda. gov/ index. php. Dataset information for modeling 
inputs and observations are included in Campbell et al.5.
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