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Certification of qubits 
in the prepare‑and‑measure 
scenario with large input 
alphabet and connections 
with the Grothendieck constant
Péter Diviánszky , István Márton , Erika Bene  & Tamás Vértesi *

We address the problem of testing the quantumness of two-dimensional systems in the prepare-and-
measure (PM) scenario, using a large number of preparations and a large number of measurement 
settings, with binary outcome measurements. In this scenario, we introduce constants, which we 
relate to the Grothendieck constant of order 3. We associate them with the white noise resistance of 
the prepared qubits and to the critical detection efficiency of the measurements performed. Large-
scale numerical tools are used to bound the constants. This allows us to obtain new bounds on the 
minimum detection efficiency that a setup with 70 preparations and 70 measurement settings can 
tolerate.

Quantum theory reveals interesting and counter-intuitive phenomena in even the simplest physical systems. 
Paradigmatic examples are Bell nonlocality1,2 and Einstein-Podolsky-Rosen (EPR) steering3–6. These nonlocal 
phenomena appear as strong correlations between the outcomes of spatially separated measurements performed 
by independent observers. These correlations enable us to distinguish the classical and quantum origins of the 
experiments. Recently, a similar split between classical and quantum features was found in a setup closely related 
to quantum communication tasks, the so-called prepare-and-measure (PM) scenario7. This scenario can be 
viewed as a communication game8 between two parties, Alice (the sender) and Bob (the receiver), where the 
dimension of the classical (versus quantum) system communicated from Alice to Bob is bounded from above.

The PM game is described as follows (see panel (a) of Fig. 1). Upon receiving an input x = (1, . . . , n) , a prepa-
ration device (controlled by Alice) emits a physical system in a quantum state ρx . We assume ρx ∈ L(Cd) for a 
given d ≥ 2 . In the following, however, we will focus explicitly on d = 2 , that is, we assume that two-dimensional 
quantum systems (qubits) or classical systems (bits) are transmitted from Alice to Bob. The state ρx is passed to 
a measurement device which, upon receiving an input y = (1, . . . ,m) performs a measurement and obtains an 
outcome b = (1, . . . , o) . In this paper we will focus on the smallest, nontrivial case of o = 2 , i.e., measurements 
with two outcomes, in which case we denote the outcomes by b = ±1.

Our goal in this scenario is to compare and quantify the performance of qubits with that of classical bits. This 
scenario has been discussed to some extent for a small number of preparations n and measurements m (see e.g. 
Refs.7,9–14. Note also that the emblematic protocol, the so-called quantum random access code15 (QRAC), is a 
special instance of the PM game. See Ref.8 for more references on communication protocols related to QRAC. 
These games have also found applications in randomness generation (see Refs.16,17). More recent notable gener-
alizations of QRAC protocols have been considered in Refs.18–21.

However, in this paper we would like to turn our attention to the case of large n and m (i.e. in the range of 70). 
We will see that the main bottleneck of the study is the computation of the relevant quantities associated with 
the classical bit case for which we develop large scale numerical tools in this paper. We first concentrate on the 
qubit case, and then we will elaborate on the classical bit case. In the qubit case we define q(M), whereas in the 
classical bit case we define the quantities S(M) and L2(M) . These quantities in turn define the ratios q(M)/L2(M) 
and (q(M)− S(M))/(L2(M)− S(M)) , which upper-bound our new constants KPM and K D , respectively. These 
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constants have the physical meaning of defining the respective critical white noise tolerance and critical detection 
efficiency of the binary-outcome measurements in the qubit prepare-and-measure scenario.

In this paper, we relate these two introduced constants to the purely mathematical Grothendieck constant, KG
22. More generally, Grothendieck’s problem has implications for many areas of mathematics. It first had a major 
impact on the theory of Banach spaces and then on C∗-algebras. More recently, it has influenced graph theory and 
computer science (see e.g. Ref.23). Furthermore, a connection of the Grothendieck problem to Bell nonlocality 
was noticed by Tsirelson24. Subsequently, Acin et al.25, based on the work of Tsirelson, exploited this connection 
to show that the critical visibility of the Bell nonlocal two-qubit Werner state is given by 1/KG(3) , where KG(3) is a 
refined version of Grothendieck’s constant26. Relating the local bound of correlation Bell scenarios to the classical 
bit bound of PM communication scenarios, we find in this paper that the new constant KPM is equal to KG(3) . 
We also introduce the constant K D , which we relate to the critical detection efficiency ηcrit of binary-outcome 
measurements in the qubit PM scenario. In particular, we find in our model for finite detection efficiency that 
ηcrit = 1/K D . Armed with our efficient numerical tools, we bound the constant K D from below, which implies 
an upper bound of 0.6377 on ηcrit.

Qubit case: In the qubit binary outcome ( o = 2 ) case, the measurement is described by two positive operators 
{�b|y} , b = ±1 acting on C2 which sum to the identity �b=+1|y +�b=−1|y = 11 for each y, where 11 denotes the 
2× 2 identity matrix. The statistics of the experiment are then given by the formula

It is important to note that both the preparations and the measurements are unknown to the observer, up to the 
fact that the dimension of the transmitted system is two. Since we have binary outcomes b = {+1,−1} it becomes 
convenient to use expectation values

(1)P(b|x, y) = Tr(ρx�b|y).

(2)Ex,y = P(b = +1|x, y)− P(b = −1|x, y).

Figure 1.   The prepare-and-measure setup for (a) qubit communication and (b) a classical model using one bit 
of communication. In (a) upon receiving the input settings �a and �b , Alice sends to Bob a qubit in the quantum 
state ρ�a . Then Bob performs a projective measurement M

b|�b = (11+ b�b · σ)/2 , where the two outcomes are 
labelled by b = ±1 . As a result, the expectation value of Bob’s ±1 outcome becomes E(�a, �b) = �a · �b (see Eq. (5)). 
In (b) the classical one bit Gisin-Gisin protocol27 is as follows. The shared randomness �� is distributed between 
the two parties, where the unit vector �� ∈ S2 is chosen uniformly at random from the sphere. After obtaining 
the settings �a and �b , Alice communicates to Bob the classical binary message c = sgn(�a · ��) . Then Bob outputs 
b = sgn(c�b · ��) with probability |�b · ��| , and b = 0 with probability 1− |�b · ��| . Finally, Bob performs a coarse 
graining on his outputs by grouping b = 0 with b = 1 and identifying both of them with outcome b = 1 . As a 
result, as it is shown in Section "Adapting the Gisin-Gisin model to the PM scenario", the expectation value of 
Bob’s b = ±1 outcome becomes E(�a, �b) = (�a · �b+ 1)/2.
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Note that Ex,y can take up the values in [−1,+1] for all x, y. However, if the Hilbert space dimension of the com-
municated particle is bounded, then in general not all expectation values Ex,y in [−1,+1] become possible. The 
simplest scenario that shows this effect appears already for n = 3 , m = 2 and o = 2 (see Ref.7 for an example).

With respect to the measurement operators Mb|y , one case, namely the set of projective rank-1 measurements, 
is of particular interest to us. In this case, we have

where �by ∈ S2 , b = ±1 and �σ = (σx , σy , σz) is the vector of Hermitian 2× 2 Pauli matrices. On the other hand, 
let us set

where �ax ∈ S2 . This density matrix corresponds to a pure state with Bloch vector �ax . Note that in this case, the 
above equations give us

where �ax , �by ∈ S2.
Limits on the set of possible distributions in dimension two can be captured by the following expression

where Mx,y are coefficients of a real witness matrix M of dimension n×m . Let us then define the quantity

where Ex,y is of the form (2), and where we maximize the expression over Bob’s measurements {Mb|y} and the 
qubit state ρx in Eq. (1). Thus, Q(M) is the value that is achievable with the most general two-dimensional quan-
tum resources in our PM setup. We further define the quantity

where Ex,y = �ax · �by and we maximize over the unit vectors �ax and �by in the three-dimensional Euclidean space. It 
turns out that Q(M) can be obtained with pure qubit states and projective measurements11. However, the optimal 
projective measurements are in general not of rank-1, they can be of rank-0 or rank-2 as well. Indeed, there are 
example matrices M (even in the simple n = m = 3 , o = 2 case) for which Q(M) > q(M) . Note that q(M) cor-
responds to projective qubit measurements of rank 1, in which case Ex,y = �ax · �by (see Eq. (5)). Yet, as we will see, 
the set {Ex,y}x,y obtained by rank-1 projective measurements is a significant subset of the set {Ex,y}x,y correspond-
ing to the most general qubit measurements. The tools for computing the value Q(M) can be found in Refs.28,29.

Importantly, the value of Q(M) can serve as a dimension witness in the prepare-and-measure scenario7. 
Indeed, if W > Q(M) for some M (where the witness W is defined by Eq. (6)), this implies that the set of states 
{ρx}nx=1 transmitted to Bob must have contained at least one state ρx=x′ of at least three dimensions (that is qutrit).

Classical bit versus qubit case—It turns out that the witness W can also serve as a quantumness witness. To 
this end, let us discuss the classical bit case. That is, we want to bound the expression (6) if Alice can only prepare 
classical two-dimensional systems (i.e. bits). Let us denote the bound on (6) by L2(M) , which corresponds to this 
situation. If W > L2(M) , this certifies that some of the measurements performed by Bob are true (incompatible) 
quantum measurements acting on true qubit states7,30. Mathematically, the classical bit case is equivalent to the 
qubit case discussed above, with the restriction that all qubits are sent in the same basis, and all measurements of 
Bob are carried out in the very same basis. That is, if we want to maximize (6) for correlations Ex,y arising from 
classical two-dimensional systems, the maximum can be attained with pure states

where ax = ±1 , and observables By = �0|y −�1|y which have the form

where σz is the standard Pauli matrix

(3)�b|y =
112 + b�by · �σ

2
,

(4)ρx = 112 + �ax · �σ
2

,

(5)Ex,y = �ax · �by ,

(6)W =
n

∑

x=1

m
∑

y=1

Mx,yEx,y ,

(7)Q(M) = max

n
∑

x=1

m
∑

y=1

Mx,yEx,y ,

(8)q(M) = max

n
∑

x=1

m
∑

y=1

Mx,yEx,y ,

(9)ρx = 112 + ax · σz
2

,

(10)By = b+y |0��0| + b−y |1��1|,

σz =
(

1 0
0 −1

)
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and both b+y  , b−y  are ±1 variables. Inserting these values into (2) we obtain

Since we have binary variables ax = ±1 , they translate to Ex,y = b+y  if ax = 1 and Ex,y = b−y  if ax = −1 . Then the 
classical one-bit bound L2(M) is given by

where Ex,y is defined by (11) and we maximize over all binary variables ax , b+y , b−y ∈ {−1,+1} . In words, the 
expression (11) corresponds to the following deterministic protocol. Alice, depending on x, prepares a bit 
ax = ±1 , which she sends to Bob, who outputs b = ±1 depending on the value of ax and the measurement setting 
y. That is, Bob’s output is a deterministic function b = f (ax , y) , where the output assumes b = ±1 . We can write

where the maximum is taken over all binary ax , b+y  and b−y  variables ±1 . We can eliminate the variables b+y  and 
b−y  from the above expression and get the following formula for L2(M):

which only consists of maximization over the binary variables ax = ±1 . In the above formula, Mx denotes the xth 
row of the real n×m matrix M, where ‖v‖1 denotes the Manhattan norm of the real vector v, i.e., �v�1 =

∑

x |vx | . 
We prove several interesting properties of L2(M) in the Methods Section "Properties of the L2 and Lk, k>2 norm". 
In particular, L2 is proven to be a matrix norm. Let us recall that L2(M) is a key quantity in our study, as it enables 
witnessing both quantumness of preparations and quantumness of measurements. Indeed, W > L2(M) , where W 
is defined in equation (6), certifies incompatible quantum measurements acting on true qubit states. That is, not 
all the performed measurements and not all prepared states originate from the same basis7. In Section "Properties 
of the L2 and Lk, k>2 norm" we do not restrict our study to the properties of the L2 norm but generalize L2(M) to 
Lk(M) for any k > 2 and prove that Lk is a norm as well, moreover Lk(M) is a monotonic increasing function of 
k. Furthermore, in Section "Programming tips for the efficient implementation of the L2 and Lk codes" we give 
tips for an efficient implementation of the branch-and-bound algorithm31 for computing the Lk(M) bound for 
k = 2 and for k > 2 as well.

Introducing the constants KPM and KD : We define two quantities KPM and KD which are related to L2(M) and 
q(M), and are defined as follows. Let us first introduce KPM , in which case we ask for the maximum ratio between 
q(M) and L2(M) . That is, we are interested in the value

where the maximization is taken over all possible real n×m matrices M, where q(M) is defined by (8) and L2(M) 
is defined by (12).

Let us now recall the Grothendieck constant of order 322,25,26,32,33, which is given by

where the maximization is taken over real matrices M of arbitrary dimensions n×m , q(M) is defined by (8) and 
L(M) is defined as follows

where the maximum is taken over all ax , by ∈ {−1,+1} . The value of KG(3) in (16), according to the recent work 
of Designolle et al.34, is bounded by

where the lower bound is an improved version of that given in Ref.35 and the upper bound is an improved version 
of that given in Refs.36,37. See Ref.38 for some historical data on the best lower and upper bounds for KG(d) . We 
prove that KPM = KG(3) , which will be given in the Results Section "Proof of the relation KPM=KG(3)". We are 
interested in KD as well, a quantity similar to KPM . We define this quantity as follows

(11)Ex,y =
(1+ ax)b

+
y + (1− ax)b

−
y

2
.

(12)L2(M) = max

n
∑

x=1

m
∑

y=1

Mx,yEx,y ,

(13)L2(M) = max





�

x:ax=+1

m
�

y=1

Mxyb
+
y +

�

x:ax=−1

m
�

y=1

Mxyb
−
y



,

(14)L2(M) = max
ax=±1





�

�

�

�

�

�

�

x:ax=+1

Mx

�

�

�

�

�

�

1

+

�

�

�

�

�

�

�

x:ax=−1

Mx

�

�

�

�

�

�

1



,

(15)KPM = max
M

q(M)

L2(M)
,

(16)KG(3) = max
M

q(M)

L(M)
,

(17)L(M) = max

n
∑

x=1

m
∑

y=1

Mx,yaxby ,

(18)1.4367 ≤ KG(3) ≤ 1.4546,
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where

Note the relation

whenever L2(M) > S(M) (also note that q(M) ≥ L2(M) ), therefore we have KD ≥ KPM = KG(3) . From this we 
immediately obtain the lower bound KD ≥ 1.4367 . In this paper, we give efficient large-scale numerical methods 
to obtain even better lower bounds on the above quantity. Namely, we prove the lower bound KD ≥ 1.5682 . We 
also prove an upper bound of 2 on this quantity, so putting all together we have the following interval

for the constant KD . It is an open problem to close or at least reduce the gap between the lower and upper limits.
We next present the Results section, which contains our main findings in three subsections.

Results
Proof of the relation K

PM
= K

G
(3).  To prove our claim, we relate L(M ′) to L2(M ′) , where M ′ is given by 

the following matrix (see also (67))

where M is a real n×m matrix. Denote by Mx the x-th row of the matrix M. Note that according to the above 
definition M ′ has size 2n×m and M ′ has rows such that M ′

x = Mx and M ′
x+n = −Mx for all x = 1, . . . , n . Then 

the following lemma holds.

Lemma 2.1  L2(M ′) = L(M ′) = 2L(M) for any matrix M ′ of the form (23), where L2 is the L2 norm given by the 
definition (12) and L is the local bound given by (17), (40).

The proof of this lemma is given in Methods Section "L-norm and L2-norm are the same for a special family 
of matrices M’ ". Then we need to prove the following lemma.

Lemma 2.2  KPM ≤ KG(3).

For an arbitrary matrix M, we have L2(M) ≥ L(M) . This has been proved in Methods Section "Properties 
of the L2 and Lk, k>2 norm". Then the lemma follows from the definitions (16) and (15). Our next lemma reads

Lemma 2.3  KPM ≥ KG(3).

Proof  To prove this, it suffices to show that for an arbitrary real matrix M, there exists the matrix M ′ defined by 
(23) such that q(M ′) = 2q(M) and L2(M ′) = 2L(M) . The first relation follows from the special structure of M ′ . 
The second relation has been shown in Lemma 2.1. Therefore, KPM cannot be less than KG(3) , which proves our 
claim. 	�  �

Corollary 2.4  As a corollary of the above Lemmas 2.2 and 2.3 we obtain KPM = KG(3).

Hence we have the same bounds 1.4367 ≤ KPM ≤ 1.4546 as for KG(3) (see (18)). From the corollary above, 
we have a matrix M ′ of size 48× 24 with q(M ′)/L2(M ′) >

√
2 . Indeed, the construction is based on a matrix M 

of size 24× 24 , which provides q(M)/L(M) >
√
239. To the best of our knowledge, this is the smallest M matrix 

that has the property q(M)/L(M) >
√
2 . Then the 48-by-24 matrix M ′ follows from (23). On the other hand, 

q(M)/L(M) =
√
2 is already attained with a 2× 2 matrix M in the CHSH-form40:

It remains an open question to show that KPM >
√
2 with a matrix size smaller than 48× 24 , which might use 

a different construction than the one above.

(19)KD = max
M

q(M)− S(M)

L2(M)− S(M)
,

(20)S(M) =
n

∑

x=1

m
∑

y=1

Mx,y .

(21)
q(M)− S(M)

L2(M)− S(M)
≥ q(M)

L2(M)
,

(22)1.5682 ≤ KD ≤ 2,

(23)M ′ =
(

M
−M

)

M =
(

1 1
1 −1

)

.
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Proof of the bounds 1.5682 ≤ K
D
≤ 2.  Upper bound: We first prove the upper bound. Translating the 

Gisin-Gisin model27 from the Bell nonlocality1,2 to the PM scenario7, we find that the following statistics can be 
obtained in the PM scenario with 1 bit of classical communication:

where �a ∈ S2 denotes the preparation vector and �b ∈ S2 denotes the measurement Bloch vector. We give the proof 
of this formula in the Methods Section "Adapting the Gisin-Gisin model to the PM scenario" and we show panel 
(b) in Fig. 1 for the description of the classical one-bit model. On one hand, due to the above Gisin-Gisin one-bit 
model, we have for an arbitrary n×m matrix M:

where Ex,y has the form (24) and we maximized over the unit vectors �ax and �by in the three-dimensional Euclidean 
space. On the other hand, substituting Ex,y := E(�ax , �by) in the formula (24) into (25) we find

where maximization is over the unit vectors �ax and �by in the three-dimensional Euclidean space, and we also 
used the definition of q(M) in (8) and the definition of S(M) in (20). Comparing the right-hand side of (25) with 
(26), we have

where the left-hand side of (19) is just KD , which proves the upper bound KD ≤ 2 . 	�  �

Lower bound: In the following, we prove the lower bound using large-scale numerical tools. Note, however, 
that the resulting bound is rigorous and in particular the final result is due to exact computations. The steps are 
as follows.

Given a fixed setup with Alice’s Bloch vectors �ax , x = (1, . . . , n) and Bob’s Bloch vectors �by , y = (1, . . . ,m) the 
method is the following. We define the (n×m)-dimensional one-parameter family of matrices Exy(η) with entries

where Ex,y = �ax · �by . We wish to show that for some η ∈ [0, 1] , the distribution (28) in the PM scenario cannot 
be simulated with one bit of classical communication. In fact, due to the expectation value (24) of the Gisin-
Gisin model, it is enough to consider the interval η ∈ [1/2, 1] . To show quantumness, we therefore need to find 
a matrix M of certain size n×m and a given η ∈ [1/2, 1] such that

for Exy(η) defined by (28), and L2(M) is defined by (12). The above problem, i.e., finding a suitable M with the 
smallest possible η in (29), can be solved by a modified version39 of the original Gilbert algorithm41, a popular 
collision detection method used, for example, in the video game industry.

The algorithm is iterative, and the procedure adapted to our problem is given in Section "The modified Gilbert 
algorithm adapted to the PM scenario". Indeed, using the algorithm of Gilbert, we find the value

and a corresponding 70× 70 matrix M and Exy(η∗) in the form (28) which satisfies inequality (29). We will give 
more technical details of the input parameters and the implementation of the algorithm in Section "Parameters 
and implementation of Gilbert algorithm". Then, rearranging (29) and making use of equation (28), we find the 
bound

where due to the definitions (8), (19) the lower bound

on KD follows.

(24)E(�a, �b) = �a · �b+ 1

2
,

(25)max

n
∑

x=1

m
∑

y=1

Mx,yEx,y ≤ L2(M),

(26)
max

n
∑

x=1

m
∑

y=1

Mx,yEx,y =
max

∑

xy Mxy

(

�ax · �by + 1
)

2

= q(M)+ S(M)

2
,

(27)
q(M)− S(M)

L2(M)− S(M)
≤ 2,

(28)Ex,y(η) = ηEx,y + (1− η),

(29)
n

∑

x=1

m
∑

y=1

MxyExy(η) > L2(M)

(30)η∗ = 0.6377

(31)
∑

xy MxyExy − S(M)

L2(M)− S(M)
>

1

η∗
,

(32)KD > (1/η∗) ≃ 1.5682
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Physical meaning of the constants K
PM

 and K
D

.  The role of KPM in the PM scenario: The value of KPM is 
interesting from a physical point of view as well, since it is related to the critical noise resistance of the experimen-
tal setup if the transmitted ρx goes through a noisy, fully depolarizing channel. That is, 1− pcrit = 1− (1/KPM) 
gives the amount (1− pcrit) of critical white noise 11/2 that the PM experiment with rank-1 projective qubit 
measurements can maximally tolerate while still being able to detect quantumness. Namely, for a fully depolar-
izing channel with visibility parameter p the qubits ρx emitted by Alice turn into pρx + (1− p)11/2 , and the 
expectation value (5) becomes

where {�ax}x are the Bloch vectors of Alice’s qubits, whereas {�by}y are the Bloch vectors of Bob’s measurements. To 
witness quantumness, there must exist expectation values Exy in (33) and a matrix M of arbitrary size such that

Inserting (33) into (34) and making use of (8), we obtain

for the critical noise tolerance. In fact, the value of KG(3) appears in the studies25,36,42 of the Bell nonlocality of 
two-qubit Werner states43. Note that a recent approach in Ref.44, based on the simulability of Werner states with 
local models, yields the same relation (35) between pcrit and 1/KG(3) .

From the upper and lower bounds on KPM , the following bounds on the amount (1− pcrit) of critical white 
noise follow:

The role of KD in the PM scenario: In Section "Proof of the bounds 1.5682≤KD≤2" we proved the lower bound 
of KD ≥ 1.5682 . Below we prove that this bound is related to the finite detection efficiency threshold of Bob’s 
measurements. To this end, we assume that Bob’s detectors are not perfect and only fire with probability η . 
Assume that when the measurement y fails to detect, Bob outputs by = 1 (due to possible relabelings there is no 
loss of generality). Assume further that the probability of detection η is the same for all y. This is the problem 
of symmetric detection efficiency. A review of this problem in the Bell scenario can be found in Ref.45. On the 
other hand, the same problem in the PM scenario has been elaborated in Refs.46,47 and the upper bound of 1/

√
2 

on the critical value of the symmetric detection efficiency was found.
Since η does not depend on y, the expectation value Ex,y becomes Ex,y(η) = ηEx,y + (1− η) for all x and y. 

Hence, the witness matrix M detects quantumness with finite detection efficiency η (assuming optimal prepara-
tion states and measurements) whenever we have

Recalling S(M) = ∑

x,y Mx,y , solving the above relation for η , and optimizing over all M witness matrices, we 
obtain the critical detection efficiency ηcrit:

where KD is defined by (19). In particular using the lower bound value KD ≥ 1.5682 , we obtain the improved 
upper bound 0.6377 on ηcrit.

It should be noted, however, that the above is not the most general detection efficiency model. Rather than 
outputting by = 1 , Bob can output a third result, which could potentially give a lower detection efficiency thresh-
old. An open problem is whether this third outcome can lower the detection efficiency threshold. In the above, we 
also assumed that Bob’s qubit measurements are rank-1 projectors that can achieve q(M). However, it is known 
that the true qubit maximum Q(M) (in (7)) can be larger than q(M) (in (8)) for a given M. Hence, we can say that 
the most general symmetric detection efficiency threshold is upper bounded by 1/KD , and it is an open problem 
whether this upper bound is tight or not.

Let us mention that in the two-outcome scenario a different type of modelling of the loss event due to the 
finite detection efficiency can also be imagined. Namely, let us assume that Bob associates the outcomes +1 and 
−1 to the no-detection event with equal probability. In this case, the expectation value Ex,y(η) = ηEx,y + (1− η) 
when outcome +1 is assigned to the no-detection event becomes ηEx,y . This leads to the modified inequality 
ηq(M) > L2(M) in Eq. (37) and the modified critical detection efficiency, ηcrit = minM (L2(M)/q(M)) = 1/KPM . 
Therefore, using Bob’s non-deterministic assignment of the ±1 outcomes for the no-detection event, the critical 
detection efficiency can be linked to KG(3) = KPM , i.e., the Grothendieck constant of order 3. Note, however, 
that due to our finding that KG(3) < KD , the critical detection efficiency in this non-deterministic modelling of 
the no-detection event will be suboptimal compared to the deterministic assignment model, when we associate 
the no-detection event with a given outcome.

(33)Exy = p�ax · �by ,

(34)
∑

xy

MxyExy > L2(M).

(35)pcrit = min
M

L2(M)

q(M)
= 1

KPM
= 1

KG(3)

(36)0.3039 ≤ (1− pcrit) ≤ 0.3125.

(37)ηq(M)+ (1− η)
∑

x,y

Mx,y > L2(M).

(38)ηcrit = min
M

L2(M)− S(M)

q(M)− S(M)
= 1

KD
,
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Methods
Properties of the L

2
 and L

k
 , k > 2 norm.  Notations: We first introduce notation used throughout this 

subsection. Let An, n = 0, 1, 2, . . . be the set of n dimensional vectors over the set A . Let vi denote the ith element 
of v ∈ An ( i = 1, 2, . . . , n ). Let _; _ : An × Am → An+m denote the concatenation of vectors. Let () the singleton 
element of A0 . Further let (a) ∈ A1 if a ∈ A . The parenthesis may be omitted so (1); (2); (3) = 1; 2; 3 ∈ R

3 , 
for example. Let an = a; a; ...; a ∈ An where a ∈ A . We write a instead of an if n can be inferred from the con-
text. We define Mn,m as the set of real n×m matrices. Matrices are represented as vectors of their row vec-
tors, i.e. Mn,m = (Rm)n . Let M⊤ ∈ Mm,n be the transposition of M ∈ Mn,m and let Im ∈ Mm,m denote the 
m×m identity matrix. Further, it is convenient to define by Wn,k = {Ikj | j = 1, 2, . . . , k}n ⊂ Mn,k the set of 
matrices whose rows are all 0s, but exactly one is 1. Let Pn ⊂ Mn,n denote the set of permutation matrices. Let 
�M�1 =

∑n
i=1 �Mi�1 denote the Manhattan norm of the matrix M ∈ Mn,m.

Definition of Lk.—We first give the definition of Lk . Let k ∈ N
+.

Note that W is defined above in Notations and W⊤ denotes the transposed matrix of W. We prove below that 
Eq. (39) corresponds to Eq. (14) in the case of k = 2 . The proof is as follows

Properties of Lk.—We prove several interesting properties of Lk . Note that our focus in the main text is on k = 2 . 
However, the general case k ≥ 2 is of interest for its own sake. Moreover, it is also motivated physically, corre-
sponding to classical communication beyond bits7,48. First we prove that Lk is a norm for any k ≥ 2 . To this end, 
we prove its homogeneity, positive definiteness and subadditivity properties.

Lemma 3.1  Lk is a norm.

Homogeneity:

where |t| denotes the absolute value of the scalar t and Lk is defined by (39).
Positive definiteness:

(39)
Lk : Mn,m → R

Lk(M) = max
W∈Wn,k

∥

∥

∥
W⊤M

∥

∥

∥

1
.

max
ax∈{±1}





�

�

�

�

�

�

�

x:ax=+1

Mx

�

�

�

�

�

�

1

+

�

�

�

�

�

�

�

x:ax=−1

Mx

�

�

�

�

�

�

1





= max
W∈Wn,2

��

�

�W⊤
1 M

�

�

�

1
+

�

�

�W⊤
2 M

�

�

�

1

�

= max
W∈Wn,2

�

�

�
W⊤M

�

�

�

1

= L2(M).

Lk(tM) = max
W∈Wn,k

∥

∥

∥W⊤(tM)

∥

∥

∥

1

= max
W∈Wn,k

|t|
∥

∥

∥W⊤M
∥

∥

∥

1

= |t| max
W∈Wn,k

∥

∥

∥
W⊤M

∥

∥

∥

1

= |t|Lk(M),

Lk(M) = 0

⇒ max
W∈Wn,k

∥

∥

∥W⊤M
∥

∥

∥

1
= 0

⇒ ∀W ∈ Wn,k :
∥

∥

∥W⊤M
∥

∥

∥

1
= 0

⇒ ∀W ∈ Wn,k : W⊤M = 0

⇒ ∀i : Mi = 0

⇒ M = 0.
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Triangle inequality:

	�  �

Let us define L(M) as follows

The above definition is consistent with the one given in (17). L(M) is the local or classical bound of correlation 
Bell inequalities24 defined by the correlation matrix M in (40). The L(M) quantity also appears in computer sci-
ence literature under the name of Km,n-quadratic programming49. Let us note that recently an efficient computa-
tion of L(M) has been proposed in Ref.35 along with the code50.

First we prove the basic property that L2(M) ≥ L(M) for any M. Next we prove that Lk(M) ≤ Lk+1(M) for 
k ≥ 2 . Then we bound Lk(M) from above by the value of L(M) multiplied by k. However, we do not know whether 
the bound can be saturated or not. The lemma stating our first claim is as follows

Lemma 3.2 

where the proof is given as the following chain of equations plus a single inequality invoked in the fourth line

	�  �

Our next lemma proves that Lk(M) is monotone increasing with k.

Lemma 3.3 

The proof is given below as the following chain:

Lk(M + N) = max
W∈Wn,k

∥

∥

∥
W⊤(M + N)

∥

∥

∥

1

≤ max
W∈Wn,k

(∥

∥

∥
W⊤M

∥

∥

∥

1
+

∥

∥

∥
W⊤N

∥

∥

∥

1

)

≤ max
W∈Wn,k

∥

∥

∥
W⊤M

∥

∥

∥

1
+ max

W∈Wn,k

∥

∥

∥
W⊤N

∥

∥

∥

1

= Lk(M)+ Lk(N).

(40)L(M) = max
v∈{−1,+1}n

�vM�1.

(41)L(M) ≤ L2(M),

L(M) = max
v∈{−1,+1}n

�vM�1

= max
v∈{−1,+1}n

∥

∥

∥

∥

1

2
(1+ v)M − 1

2
(1− v)M

∥

∥

∥

∥

1

= max
W∈Wn,2

∥

∥

∥W⊤
1 M −W⊤

2 M
∥

∥

∥

1

≤ max
W∈Wn,2

(

∥

∥

∥W⊤
1 M

∥

∥

∥

1
+

∥

∥

∥W⊤
2 M

∥

∥

∥

1
)

= max
W∈Wn,2

∥

∥

∥
W⊤M

∥

∥

∥

1

= L2(M).

(42)Lk(M) ≤ Lk+1(M).

Lk(M) = max
W∈Wn,k

∥

∥

∥W⊤M
∥

∥

∥

1

= max
W∈Wn,k

k
∑

i=1

∥

∥

∥

(

W⊤M
)

i

∥

∥

∥

1

= max
W∈Wn,k

(

k
∑

i=1

∥

∥

∥

(

W⊤M
)

i

∥

∥

∥

1
+

∥

∥0M
∥

∥

1

)

= max
W∈Wn,k

k+1
∑

i=1

∥

∥

∥

((

W⊤; 0
)

M
)

i

∥

∥

∥

1

= max
W∈Wn,k

∥

∥

∥

(

W⊤; 0
)

M
∥

∥

∥

1

≤ max
W∈Wk+1,n

∥

∥

∥W⊤M
∥

∥

∥

1

= Lk+1(M).
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	�  �

Finally, we prove an upper bound on Lk(M) . Our lemma reads as follows

Lemma 3.4 

Proof 

To arrive at the sixth line, we invoked the definition (40). 	�  �

It is an open question whether Lemma 3.4 is tight or not. However, we can find a family of matrices M(k) , 
k ≥ 2 such that the ratio Lk(M(k))/L(M(k)) tends to infinity with increasing k. More formally we have

Lemma 3.5  For all ε > 0 there exists a matrix M and k > 1 such that

The proof is based on an explicit construction of matrices Mk , k = (2, . . . ,∞) defined in Ref.51. See also 
Refs.52,53.

Proof  Let Mk ∈ Mk,2k−1 , k = (1, 2, . . . ,∞) be a family of matrices such that51

For example,

Now by explicit calculations we find

	�  �

(43)Lk(M) ≤ kL(M)

Lk(M) = max
W∈Wn,k

∥

∥

∥W⊤M
∥

∥

∥

1

= max
W∈Wn,k

k
∑

i=1

∥

∥

∥(W⊤M)i

∥

∥

∥

1

= max
W∈Wn,k

k
∑

i=1

∥

∥

∥W⊤
i M

∥

∥

∥

1

= max
W∈Wn,k

k
∑

i=1

1

2

∥

∥

∥

(

2W⊤
i − 1

)

M + 1M
∥

∥

∥

1

≤ max
W∈Wn,k

k
∑

i=1

1

2

(∥

∥

∥(2W⊤
i − 1)M

∥

∥

∥

1
+

∥

∥1M
∥

∥

1

)

≤ max
W∈Wn,k

k
∑

i=1

1

2
(L(M)+ L(M))

= max
W∈Wn,k

k
∑

i=1

L(M)

= max
W∈Wn,k

kL(M)

= kL(M).

(44)
L(M)

Lk(M)
< ε.

(45)Mk
i,j = (−1)

⌊

j

2k−i−1

⌋

.

(46)M4 =







1 1 1 1 1 1 1 1
1 1 1 1 − 1 − 1 − 1 − 1
1 1 − 1 − 1 1 1 − 1 − 1
1 − 1 1 − 1 1 − 1 1 − 1






.

(47)L(Mk)

Lk(Mk)
=

k

(

k − 1

⌊ k−1
2 ⌋

)

k2k−1
∼

√

2

πk
.
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Note that in the particular case of k = 2 the matrix M(k) is the CHSH expression40, in which case L(M(2)) = 2 
and L2(M(2)) = 4 . Hence, for k = 2 the upper bound in Lemma 3.4 is tight. We conjecture that the bound is not 
tight for greater values of k.

Finally, we show how L2 and in general Lk behaves with the concatenation (A; B) of two matrices A and B, 
where we defined

Lemma 3.6  Let A ∈ Mi,m, B ∈ Mj,m . Then we have

Proof 

	�  �

Note that Lk(A) ≤ Lk(A;B) does not hold in general. For example, let us have

and

Then by explicit calculation we obtain

Finally, it is shown that Lk relates to the cut norm C, a matrix norm introduced by Frieze and Kannan in Ref.54 
(see also55 for several applications in graph theory). This norm is defined as follows:

where the maximum is taken over all ax , by ∈ {0, 1} . Note the similarity in the definition with the L(M) norm (17) 
which is equivalent to (40). It has been shown that C(M) is related to L(M) as follows54,56:

Using the above relation (54) along with Lemma 3.4, we find that

and for the special case of L2 we have the following lower and upper bounds:

Generalization of the Lk norm: Below we generalize the norm Lk(M) to FM , which extension will prove to be a 
key property in the Branch-and-Bound31 implementation of the Lk algorithm. To do so, first we define the fol-
lowing function

Definition 3.7 

(48)(A;B) =
[

A
B

]

.

(49)Lk(A;B) ≤ Lk(A)+ Lk(B).

Lk(A;B) = max
W∈Wi+j,k

∥

∥

∥W⊤(A;B)
∥

∥

∥

1

= max
S∈Wi,k

max
T∈Wj,k

∥

∥

∥(S;T)⊤(A;B)
∥

∥

∥

1

= max
S∈Wi,k

max
T∈Wj,k

∥

∥

∥S⊤A+ T⊤B
∥

∥

∥

1

≤ max
S∈Wi,k

max
T∈Wj,k

(∥

∥

∥S⊤A
∥

∥

∥

1
+

∥

∥

∥T⊤B
∥

∥

∥

1

)

≤ max
S∈Wi,k

∥

∥

∥
S⊤A

∥

∥

∥

1
+ max

T∈Wj,k

∥

∥

∥
T⊤B

∥

∥

∥

1

= Lk(A)+ Lk(B).

(50)A =
(

1 1
1 − 1

)

(51)B =
(−1 0

)

.

(52)4=L2(A) > L2(A;B)=3.

(53)C(M) = max

n
∑

x=1

m
∑

y=1

Mx,yaxby ,

(54)C(M) ≤ L(M) ≤ 4C(M).

(55)C(M) ≤ Lk(M) ≤ 4kC(M),

(56)C(M) ≤ L2(M) ≤ 8C(M).
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where   i = (0, 1, 2, . . . , n)  and  M ∈ Mn,m.

In other words, FM(P) is the maximum of 
∥

∥W⊤M
∥

∥

1
 where W ∈ Wk,n and the prefix of W is P. FM can be 

considered as a generalization of Lk(M) . The following lemma introduces a key property which is made use of 
in the Branch-and-Bound method.

Lemma 3.8 

Proof 

	�  �

Let us now give the following definition further generalizing FM(P):

Definition 3.9 

The computation of fM can be optimized such that for big enough c values fM(P)(c) returns c without com-
puting FM(P) . This is expressed by the following lemma.

Lemma 3.10 

The proof given below is split into three cases.
Case 1: If P ∈ Wn,k , then

Case 2:

Case 3:

(57)
FM : Wi,k → R

FM(P) = max
W∈Wn−i,k

∥

∥

∥
(P;W)⊤M

∥

∥

∥

1

(58)FA;B(P) ≤
∥

∥

∥
P⊤M

∥

∥

∥

1
+ Lk(B)

FA;B(P) = max
W∈Wn−i,k

∥

∥

∥(P;W)⊤(A;B)
∥

∥

∥

1

= max
W∈Wn−i,k

∥

∥

∥(P⊤A+W⊤B)
∥

∥

∥

1

≤ max
W∈Wn−i,k

(∥

∥

∥P⊤A
∥

∥

∥

1
+

∥

∥

∥W⊤B
∥

∥

∥

1

)

=
∥

∥

∥P⊤A
∥

∥

∥

1
+ max

W∈Wn−i,k

∥

∥

∥W⊤B
∥

∥

∥

1

=
∥

∥

∥
P⊤A

∥

∥

∥

1
+ Lk(B).

(59)fM(P)(c) = max(FM(P), c)

(60)fM(P)(c) =







max
��

�P⊤M
�

�

1
, c
�

if P ∈ Wn,k ,

c if
�

�P⊤A
�

�

1
+ Lk(B) ≤ c, A;B = M,

(fM(P; Ik0) ◦ · · · ◦ fM(P; Ikk))(c) otherwise

fM(P)(c) = max

(

max
W∈Wn−n,k

∥

∥

∥(P;W)⊤M
∥

∥

∥

1
, c

)

by (57) and (59)

= max
(∥

∥

∥(P; ())⊤M
∥

∥

∥

1
, c
)

= max
(∥

∥

∥
P
⊤
M

∥

∥

∥

1
, c
)

.

∥

∥

∥
P⊤A

∥

∥

∥

1
+ Lk(B) ≤ c

⇒ FM(P) ≤ c by (58)

⇒ max(FM(P), c) = c

⇒ fM(P)(c) = c by (59)
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	�  �

Our last lemma in this subsection reads

Lemma 3.11 

and it can be proved as follows:

	�  �

Programming tips for the efficient implementation of the L
2
 and L

k
 codes.  In this subsection, we 

give programming tips for the branch-and-bound31 implementation of the exact computation of Lk(M) for any 
k ≥ 2 . For k = 2 and k = 3 our algorithms are even faster than the Lk solver for general k due to specialization 
which we detail below. First, we remind the reader of the notation defined in Section "Properties of the L2 and 
Lk, k>2 norm". The Haskell code can be downloaded from Github57. Instructions installing and using the code 
(including parallel execution and using guessed results) can also be found there.

Branch-and-bound calculation of Lk : The norm Lk(M) for k ≥ 2 can be calculated using the following defini-
tion and the following lemma.

Definition 3.12  For all M ∈ Mn,m, 0 ≤ i ≤ n let

The function fM recursively calls itself with larger and larger P prefixes until the prefix size reaches n. The 
middle case is a conditional exit from the recursion, which speeds up the computation crucially.

Lemma 3.13 

Reducing cost by sharing sub-calculations.—In the definition 3.12, the most expensive calculations are Lk(B) , 
∥

∥P⊤M
∥

∥

1
 and 

∥

∥P⊤A
∥

∥

1
 . We show how to reduce the cost of these calculations. The cost of Lk(B) can be reduced 

by memoizing the previously computed Lk values in a table.
If M = (v1; v2; v3; . . . ; vn) then Lk(M) depends on Lk(vi; vi+1; . . . ; vn) , where i = 2, 3, 4, . . . , n . Note 

that Lk(vi; vi+1; . . . ; vn) itself depends on Lk(vj; vj+1; . . . ; vn) , where j = i + 1, i + 2, . . . , n . If we take into 
account all dependencies, the correct order of calculating Lk values is Lk(vn) , Lk(vn−1, vn) , Lk(vn−2, vn−1, vn) , 
..., Lk(v2, v3, . . . , vn).

There is an option to skip the 
∥

∥P⊤A
∥

∥

1
+ Lk(B) ≤ c test for large B matrices. This means that Lk(B) should not 

be calculated, and the trade-off is that we miss opportunities for exiting recursion. In our experience, skipping 
the test for B ∈ Mk,m, k ≥ (3n/4) results in about 2× speedup.

The cost of calculating 
∥

∥P⊤A
∥

∥

1
 is O(km) if A ∈ Mk,m . Note that

fM(P)(c) = max

(

max
W∈Wn−i,k

∥

∥

∥
(P;W)⊤M

∥

∥

∥

1
, c

)

by (57, 59)

= max

(

max
S∈W1,k ,W∈Wn−i−1,k

∥

∥

∥
(P; S;W)⊤M

∥

∥

∥

1
, c

)

= max

(

max
j

max
W∈Wn−i−1,k

∥

∥

∥
(P; Ikj ;W)⊤M

∥

∥

∥

1
, c

)

= max(max
j

FM(P; Ikj ), c)

= max(FM(P; Ik0), max(FM(P; Ik1), max(..., c)))

= (fM(P; Ik0) ◦ · · · ◦ fM(P; Ikk))(c).

(61)Lk(M) = fM(())(0)

fM(())(0)

= max

(

max
W∈Wn,k

∥

∥

∥(();W)⊤M
∥

∥

∥

1
, 0

)

by (57, 59)

= max
W∈Wn,k

∥

∥

∥
W⊤M

∥

∥

∥

1

= Lk(M)

(62)

fM : Wi,k → (R → R)

fM(P)(c) =







max(
�

�P⊤M
�

�

1
, c) if P ∈ Wn,k ,

c if
�

�P⊤A
�

�

1
+ Lk(B) ≤ c, A;B = M,

(fM(P; Ik0) ◦ · · · ◦ fM(P; Ikk))(c) otherwise.

(63)Lk(M) = fM(())(0).

(64)(P;Q)⊤(A;B) = P⊤A+ Q⊤B.
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P⊤A is already computed by the time when (P; Iki )⊤(A; v) is needed, so the cost of 
∥

∥P⊤A
∥

∥

1
 can be reduced to 

O(m) by (64). The cost of P⊤M can be reduced in the same way. This implies a considerable speedup; for example, 
for M ∈ M70,70 the calculation of L2(M) can be made nearly 70 times faster by this optimization.

The cost of 
∥

∥P⊤A
∥

∥

1
 can be further reduced by caching the previously calculated Manhattan norms of the 

rows of the matrix P⊤A.
Reducing cost by symmetries.—For all S ∈ Pk permutation matrices

The cost of L2 can be halved by (65) as follows. Let

From 
∥

∥(I22;W)⊤M
∥

∥

1
=

∥

∥(I21;WS)⊤M
∥

∥

1
 it follows that fM(I22, c) = fM(I21, c) . This means that we can skip the 

calculation of fM(I22, c) for all c, thus L2(M) = fM((I21), 0) , i.e., we start the calculation with a non-empty prefix 
which saves work.

Harnessing (65) in the general Lk case is a bit more complex. First we define the set of canonical prefixes. 
A prefix P = I

k
i1
; Iki2 ; . . . Ikij is canonical if the first occurrences of the numbers in the indices i1, i2, . . . , ij is the 

sequence 1, 2, 3, . . . . For example, the prefix Ik1; Ik2; Ik1; Ik3 is canonical but Ik1; Ik3; Ik1; Ik2 is non-canonical. For each 
prefix P, there exists a permutation S such that PS is canonical, so that, fM(P, c) = fM(PS, c) , which means that 
it is enough to examine only the canonical prefixes to compute Lk.

Parallel and concurrent execution.—For parallel execution one can use the following equation:

We used Eq. (66) for P ∈ Wi,k , i < d , where d is a “parallel depth” for fine-tuning the execution for different 
architectures. Higher depth is better for more cores.

Parallel execution may miss opportunities of exiting recursion because there is no communication between 
threads about the best known Lk values at a certain point of time. Therefore we implemented concurrent execu-
tion where threads share the best known Lk values.

Reducing cost by guessed Lk values.—Optionally, the computation can be sped up by providing a guessed Lk(M) 
value by the user. This value will be used instead of 0 in Eq. (63). The guessed value may be lower than Lk(M) . 
Higher guessed values are better, unless the guessed value is higher than Lk(M) , in which case fM returns the 
guessed value. We compared the result of fM with the witness W of the maximal 

∥

∥W⊤M
∥

∥

1
 value, to be able to 

detect whether the guessed value was too high or not.

L‑norm and L
2
‑norm are the same for a special family of matrices M′.  We relate L(M ′) to L2(M ′) , 

where M ′ is given by the following matrix

where M is a matrix of size n×m with arbitrary real entries. Note that M ′ has size 2n×m and M ′ has rows such 
that M ′

x = Mx and M ′
x+m = −Mx for all x = 1, . . . ,m . Then the following lemma holds.

Lemma 3.14  L2(M ′) = L(M ′) = 2L(M) for any matrix M ′ of the form (67), where L2 is the L2 norm given by the 
definition (14) and L is the local bound given by (40). Note that Lk is defined by (39), where the case k = 2 cor-
responds to the definition of L2 in (14).

Proof  We fix a matrix M of dimension n×m which specifies M ′ by the virtue of (67). Let ax ∈ {−1, 1} , 
x = 1, . . . , n and by ∈ {−1, 1} , y = 1, . . . ,m be the optimal vectors giving L(M) in (40). Note that these values are 
not unique in general, different optimal configurations may exist, however, we choose one such optimal vectors 
ax and by . We then choose ax+n = −ax for x = 1, . . . , n , and b+y = b−y = by for y = 1, . . . ,m . With these values, 
we obtain the lower bound L2(M ′) ≥ 2L(M) on L2(M ′) in (12). Now we show the upper bound L2(M ′) ≤ 2L(M) , 
which implies L2(M ′) = 2L(M).

As a contradiction of the lemma, assume that L2(M ′) > 2L(M) . Then, not all ax vectors corresponding to 
the L2(M ′) value have the property ax+m = −ax for each x. That is, there exists at least one x, call it x′ , for which 
a′x = ax′+n . Suppose that there is one such an x′ (the proof for multiple x′ indices for which a′x = ax′+n is very 
similar). Then in the formula (14) for L2(M ′) the two rows x′ and x′ + n in question will appear within the same 
norm (either in the first or second norm, depending on whether a′x = ax′+n takes the value +1 or −1 ). However, 
in both cases they cancel each other from the norm in question. As a result, two rows of M ′ in (67) are eliminated, 
one from the matrix M and one from the matrix −M . However, any matrix ±M from which one row has been 
eliminated cannot have a local bound greater than L(M). The same applies to a matrix ±M from which we have 
removed several rows. Therefore, L2(M ′) > 2L(M) cannot be true either. Thus we arrived at a contradiction. ��

(65)
∥

∥

∥
W⊤M

∥

∥

∥

1
=

∥

∥

∥
(WS)⊤M

∥

∥

∥

1
.

S =
(

0 1
1 0

)

∈ P2.

(66)fM(P)(c) = max
i∈{1,...,k}

fM(P; Iki )(c) .

(67)M ′ =
(

M
− M

)

,
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Adapting the Gisin‑Gisin model to the PM scenario.  We now adapt the LHV model of Ref.27 which 
exploits the finite efficiency of the detectors to reproduce the quantum correlations of the singlet state exactly. We 
show that the LHV model in Ref.27 can be adapted to the PM communication scenario to produce the expecta-
tion value:

where �a ∈ S2 denotes the preparation Bloch vector and �b ∈ S2 denotes the measurement Bloch vector. First we 
show that the outcomes b = ±1 giving the expectation value

can be obtained with probability 1/2 and b = 0 outcome with probability 1/2. Then by coarse-graining the above 
distribution by grouping b = 0 outcome with b = +1 , we obtain the expectation value (68).

The classical model, using one bit of classical communication from Alice to Bob, is as follows.
Protocol: Alice and Bob share a classical variable, which is in the form of a unit vector �� , chosen uniformly 

at random from the unit sphere S2.

•	 Alice: Alice sends a binary message c = sgn(�a · ��) to Bob. That is, c = +1 if �a · �� ≤ 0 and c = −1 if �a · �� > 0.
•	 Bob: Bob outputs b = sgn(c�b · ��) with probability |�b · ��| (corresponding to the detection event b = ±1 ) and 

Bob outputs b = 0 with probability 1− |�b · ��| (corresponding to the non-detection event).

Our claim is as follows. The above protocol yields the correlations E(�a, �b) = �a · �b , that is, it reproduces the cor-
relations in Eq. (69) with probability 1/2 and returns b = 0 in the other cases.

Proof.—We need to calculate the expectation value E(�a, �b) = P(b = +1|�a, �b)− P(b = −1|�a, �b) which accord-
ing to the above protocol in the detection events b = ±1 is given by27

where q(��|b = ±1) is the conditional density probability distribution of choosing �� given a detection event (either 
output b = +1 or b = −1 ). This function can be calculated from

where the detection efficiency is η = p(b = ±1) and the probability of detection failure is 1− η = p(b = 0) . The 
value of η is given by

as stated and the protocol gives the density probability distribution q(� and b = ±1) = (�b · ��)/(4π) . Insert-
ing these values into (71) gives q(�|b = ±1) = (�b · ��)/(2π) , which in turn is inserted into (70) to obtain the 
integral27:

The above integral can be calculated using spherical symmetries. In particular, one can choose w.l.o.g. the vectors

as in Ref.27, and then obtain

with probability 1/2, which we wanted to prove. 	�  �

The modified Gilbert algorithm adapted to the PM scenario.  For a given η ∈ [1/2, 1] and correla-
tion matrix E(η) defined by (28), the algorithm yields the following matrix M satisfying

(68)E(�a, �b) = P(b = +1|�a, �b)− P(b = −1|�a, �b) = �a · �b+ 1

2
,

(69)E(�a, �b) = P(b = +1|�a, �b)− P(b = −1|�a, �b) = �a · �b

(70)E(�a, �b) =
∫

S2
d��q(��|b = ±1)sgn(�a · ��)sgn(�b · ��),

(71)q(��|b = ±1) = q(�� and b = ±1)

p(b = ±1)
,

(72)η = p(b = ±1) =
∫

S2

d��
4π

|�b · �| = 1

2
,

(73)E(�a, �b) = 1

2π

∫

S2
d��(�b · ��)sgn(�a · ��).

�a = (0, 0, 1)

�b = (sin α, 0, cosα)

(74)E(�a, �b) = cosα = �a · �b

(75)
n

∑

x=1

m
∑

y=1

MxyExy(η) > L2(M).
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Algorithm:
Input: The number of preparations n and the number of measurement settings m that define the setup. The 

unit vectors {�ax}nx=1 (i.e., the Bloch vectors of Alice’s prepared states) and { �by}my=1 (i.e., the Bloch vectors of Bob’s 
projective rank-1 measurements). The (n×m)-dimensional matrix E(η) given by the entries Exy(η) in (28). The 
values of ǫ and imax that define the stopping criteria.

Output: The matrix M of size n×m . 

1.	 Set i = 0 and set E(i) the n×m zero matrix.
2.	 Given a matrix E(i) and the matrix E(η) , run a heuristic oracle that maximizes the overlap 

∑

xy(Exy(η)− E
(i)
xy )E

det
xy  over all deterministic one-bit correlations Edetxy  in (11). The description of this heu-

ristic (see-saw) oracle is given in Section "Lower bound to L2(M) using the see-saw iterative algorithm". Denote 
the point Edetxy  returned by the oracle by Edet,ixy .

3.	 Find the convex combination E(i+1) of E(i) and Edet,ixy  that minimizes the distance 
√

∑

xy

(

Exy(η)− E
(i)
xy

)2
 . 

Let us denote this distance by dist(i).
4.	 Let i = i + 1 and go to Step 2 until dist(i) ≤ ǫ or i = imax.
5.	 Return the matrix M with coordinates Mxy = Exy(η)− E

(i)
xy.

Note that dist(i) is a decreasing function of i. Since maximizing the overlap of 
∑

xy(Exy(η)− E
(i)
xy )E

det
xy  over all 

deterministic one-bit correlations vectors is an NP-hard problem, in Step 2 we use a heuristic method to do it, 
which we describe in Section "Lower bound to L2(M) using the see-saw iterative algorithm". On the other hand, 
the description of an exact branch-and-bound type algorithm can be found in Section "Programming tips for 
the efficient implementation of the L2 and Lk codes". We use the exact method, which is generally more time-
consuming than the see-saw method to check that the output matrix M satisfies the condition (75) with the 
chosen parameter η . If this is true, then it implies the lower bound KD ≥ (1/η) , as proved in Section "Proof of 
the bounds 1.5682≤KD≤2". It should also be noted that the branch-and-bound-type algorithm is much faster 
than the brute force algorithm (the implemented algorithm using parallelism can be found in57). On a multi-
core desktop computer, it can solve problems in range n = m = 70 in a day, while the brute force algorithm is 
limited to about n = m = 40 settings.

Parameters and implementation of Gilbert algorithm.  Here we specify the explicit parameters that 
are used to obtain the lower bound KD ≤ 1.5682 . On the three-dimensional unit sphere, we choose the vectors 
{�ax}nx=1 and {�by}my=1 to be equal to each other, �vi = �ai = �bi for i = 1, . . . , n , where n = m = 70 . The 70 unit vec-
tors chosen define the optimal packing configuration in the Grassmannian space which can be downloaded 
from Neil Sloane’s database58. The advantage of this type of packing is that the points and their antipodal points 
are located as far apart as possible on the three-dimensional unit sphere.

We implemented the modified Gilbert algorithm (of Section "The modified Gilbert algorithm adapted to the 
PM scenario") in Matlab with and without a memory buffer (see more details on the memory buffer in Ref.39). 
In the case of using memory buffer, the step 3 is modified in the algorithm so that instead of calculating the 
convex combination of the points E(i) and Edet,ixy  (see section "The modified Gilbert algorithm adapted to the PM 
scenario"), we compute the convex combination of E(i) and the points Edet,i-jxy  , j = 0, . . . ,m− 1 , where m is the 
size of the memory buffer. In our explicit computations, we use a buffer size m = 40 and a stopping condition of 
k = 2× 105 with η = 0.665 . Details on the performance of this modification can be found in Ref.39. In step 2 of 
the Gilbert algorithm, the oracle uses the see-saw heuristic described in Section "Lower bound to L2(M) using the 
see-saw iterative algorithm" to obtain a good (typically tight) lower bound to L2(M) . On the other hand, we used 
the branch-and-bound-type algorithm described in Section "Programming tips for the efficient implementation 
of the L2 and Lk codes" to calculate L2(M) exactly for integer M. The algorithm was implemented in Haskell. See 
the GitHub site57 for the downloadable version.

The Matlab file eta_70.m, which can also be downloaded from GitHub57 (located in the subdirectory 
L2_eta_70) gives detailed results on the input parameters. In particular, it gives the unit vectors �ai = �bi = �vi , 
the lower bound 

∑

xy Mxy�ax · �by =
∑

xy Mxy�vx · �vy to q(M) and the value L2(M) . The input matrix M is placed 
in subdirectory L2_eta_70 under the name W70i.txt. The running time of the Gilbert algorithm (in 
Section "The modified Gilbert algorithm adapted to the PM scenario") implemented in Matlab was about one 
week. Note, however, that most of the computation time was spent on the oracle (the see-saw part) described 
in Section "Lower bound to L2(M) using the see-saw iterative algorithm". On the other hand, the Haskell code to 
compute the exact L2(M) value of the 70× 70 witness matrix M took about 8 hours to run on a HP Z8 worksta-
tion using 56 physical cores. The memory usage of the computation was negligible.

The Matlab eta_70.m routine defines the 70× 70 matrix M, and gives the �vi := �ai = �bi the unit vectors from 
Sloane’s database58 for all i = 1, . . . , 70 . Note that M is integer (by multiplying the output M matrix in the Gilbert 
algorithm by 1000 and truncating the non-integer part). This calculation yields S(M) = ∑

x,y Mx,y = 194369 and 

Q(M) = ∑

x,y Mx,y�ax · �by ≃ 5.3672235× 105 . On the other hand, the branch-and-bound-type Haskell code57 
gives the exact value L2(M) = 412667 , which is matched by the see-saw search (in Section "Lower bound to L2(M) 
using the see-saw iterative algorithm"). From these numbers we then obtain
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and 1/KD = 0.6377− ε′ is the upper bound to the critical detection efficiency ηcrit , where ε and ε′ are small 
positive numbers.

Lower bound to L
2
(M) using the see‑saw iterative algorithm.  Below we give an iterative algorithm 

based on see-saw heuristics to compute L2(M) . This algorithm forms the oracle part of step 2 of the Gilbert algo-
rithm, which is described in Section "The modified Gilbert algorithm adapted to the PM scenario".

Algorithm:
Input: Integer matrix M of size n×m.
Output: Lower bound l2(M) to L2(M) defined by formula (12). 

	 1.	 Let l2 = 0.
	 2.	 Choose random assignments ax = ±1 : That is, ax are (random) elements of a vector a of size n. Its elements 

are binary having value +1 or -1 only.
	 3.	 Set b+ = sgn(aM), where sgn denotes the (modified) sign function: sgn(x) = +1 if x ≥ 0 and −1 otherwise. 

Let us transpose b+.
	 4.	 Set b− = sgn(aM) . Let us transpose b−.
	 5.	 Form the column vector s+ = Mb+ of size n.
	 6.	 Form the column vector s− = Mb− of size n.
	 7.	 Form the column vector s = max(s+, s−) of size n. That is, sx = max(s+x , s

−
x ) for all x = 1, . . . , n.

	 8.	 Form the ±1-valued column vector a as follows: Let ax = +1 if s+x ≥ s−x  , otherwise let ax = −1 for all 
x = 1, . . . , n.

	 9.	 Let l2 =
∑n

x=1 sx.
	10.	 With the new vector a, return to point 3. Repeat the algorithm until two values of l2 are equal in two con-

secutive iterations.

Note that at each iteration step, objective value l2(M) is guaranteed not to decrease. Therefore, the output of the 
algorithm is a heuristic lower bound on the exact value of L2(M).

Discussion
We have tested the quantumness of two-dimensional systems in the prepare-and-measure (PM) scenario, with 
n preparations and m binary-outcome measurement settings, where n and m fall well into the range of 70. In 
the one-qubit PM scenario, a two-level system is transmitted from the sender to the receiver. In this setup, a real 
n×m matrix M defines the coefficients of a linear witness. We denote by L2(M) the exact value of the one-bit 
bound associated with matrix M. We found efficient numerical algorithms for computing L2(M) . If this bound 
is exceeded, we can detect both the quantumness of the prepared qubits and the quantumness (i.e. incompat-
ibility) of the measurements.

We introduced new constants KM and K D which are related to the Grothendieck constant of order 3. Our 
large-scale tools are crucial for the efficient bounding of L2(M) and hence for bounding of the constants KM and 
K D . We further relate these new constants to the white noise resistance of the prepared qubits and the critical 
detection efficiency of the measurements performed.

For large M matrices, we have given two algorithms for computing L2(M) : a simple iterative see-saw-type 
algorithm and a branch-and-bound-type algorithm. The former is a heuristic algorithm that usually gives a 
tight lower bound on L2(M) . However, sometimes it fails to find the exact value of L2(M) . This happens more 
and more often as the size of the matrix M gets larger and larger. In contrast, the latter branch-and-bound-type 
algorithm gives the exact value of L2(M) and can be used to compute L2(M) for matrix sizes as large as 70× 70 . 
As an application of the algorithms, we established the bounds 1.5682 ≤ K D ≤ 2 on the new constant and an 
upper bound of ηcrit ≤ 0.6377 on the critical detection efficiency of qubit measurements in the PM scenario.

Data availability
The dataset (the 70× 70 matrix M) used to prove the lower bound (22) on KD is available in Github57.

Code availability
The Haskell and MATLAB codes used to prove the lower bound (22) on KD is available in Github57.
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