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Oxygen vacancies induced band 
gap narrowing for efficient 
visible‑light response 
in carbon‑doped TiO2
Sujun Guan 1, Yanling Cheng 2*, Liang Hao 3, Hiroyuki Yoshida 4, Chiaki Tarashima 1, 
Tianzhuo Zhan 5, Takaomi Itoi 6, Tangbin Qiu 6 & Yun Lu 6*

The band gap of rutile TiO2 has been narrowed, via the formation of oxygen vacancies (OVs) during 
heat treatment in carbon powder (cHT) with embedding TiO2 coatings. The narrowed band gap 
efficiently improves the visible light response of TiO2 coatings, to further enhance the visible-light-
driven photocatalytic activity. The change in OVs during cHT has been studied by manipulation of cHT 
temperature and time. The effect of OVs on the band structure of nonstoichiometric TiO2-x has been 
further calculated by first-principles calculations. With raising the temperature, SEM images show 
that the nano-size fiber-like structure forms on the surface of TiO2 coatings, and the amount of the 
fiber-like structure significantly increases and their size changes from nano to micro under 800 °C, 
contributing to cause an increase in accessible surface area. The UV–Vis results reveal that the band 
gap of TiO2 has been narrowed during cHT, due to the formed oxygen vacancies. The XPS results 
further confirm that the formation of surface defects including OVs, and the XPS depth profile further 
shows the decreased relative amount of O whereas increased relative amount of carbon. Notably, 
after cHT for TiO2 coatings, the photocatalytic activity first increases then decreases with raising 
the temperature, achieving approximately 3 times at 850 °C. The first-principles calculation  suggest 
that the OVs in TiO2 coatings with localized electrons could facilitate the band gap narrowing, further 
favoring to enhance the photocatalytic activity under visible light.

Face to these urgent issues of environmental pollution and energy crisis, the use of renewable resources to develop 
renewable energy technologies is becoming an urgent subject that needs breakthroughs. Photocatalysis is con-
sidered as a candidate with great potential to alleviate and further solve these problems, because it can efficiently 
decompose organic pollutants or generate chemical energy via photocatalytic effect. Titanium dioxide (TiO2) can 
be regarded as one of the most important photocatalysts materials, because of the suitable band edge positions, 
outstanding stability, inexpensive and excellent photocatalytic activity1–3. However, TiO2 has been limited by 
its relative wide band gap (~ 3.2 eV of anatase or ~ 3.0 eV of rutile), for the visible light response4–6. Currently, 
tremendous efforts have been dedicated to improving the visible light absorption of TiO2, such as narrowing 
band gap with introduction of dopant or defects (OVs, Ti3+, lattice strains), and compositing with photocatalysts 
having smaller band gap or better visible light response7–12, to further meet the needs of practical applications. 
In addition, many pieces of literatures have reported that doping non-metals such as nitrogen, sulfur, or carbon 
into TiO2 lattice can extend the absorption edge from UV region to visible region, owing to the introduction of 
localized electronic states in the band gap13–16.

Notably, controllable doping of C impurities into TiO2 lattice is an effective approach to improve the pho-
tocatalytic activity, because that C can permeate into TiO2 lattice to substitute O or Ti atoms, accompanied 
by the formation of Ti–C or C–O–Ti bonds to generate hybrid orbitals above the valence band of TiO2, sig-
nificantly inhibiting the recombination due to the transport channel and electron storage capacity. After Khan 
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et al. reported the carbon substitutes for the lattice oxygen atoms in TiO2 with a lower band gap about 2.32 eV 
in 200217, many researchers have successively proven that C doped TiO2 is an effective strategy to narrow the 
band gap and generate surface defects such as OVs, to further enhance the visible-light-driven photocatalytic 
activity18–22.

Apart from doping, OVs-induced photocatalysis is another efficient solution to achieve visible-light response, 
charge separation simultaneously, to serve as active site for the adsorption and subsequent dissociation of O-con-
taining molecules. In 2000, Nakamura et al. investigated the role of OVs in TiO2 photocatalyst that locate between 
the valence and the conduction bands, for visible light response23, then Schaub et al. unraveled the diffusion 
mechanism of OVs on rutile TiO2 in 200224. Wendt et al. reported that OVs could significantly promote the 
charge separation, by the induced hole trapping25. From the perspective of electronic structure analysis, it is 
generally believed that OVs can improve the electronic structure of metal oxide semiconductors with introducing 
some kinds of defect states (such as Ti3+, point defect) below the conduction band and narrowing the band gap for 
better visible-light response26,27. More important, the amount of OVs plays a key role on the visible light response 
and improved photocatalytic activity of TiO2 from experimental measurements and theoretical calculations28–31.

In this work, to investigation of the formed OVs during cHT and further enhance the photocatalytic activ-
ity of TiO2, we focus on adjusting the OVs in C-doped TiO2 by manipulation of cHT temperature and time. It 
reveals that the formation of OVs in the surface is significant with raising cHT temperature, compared with that 
of extending cHT time. In addition, the influence of cHT on the crystal structure, surface morphology, and their 
photocatalytic activity is analyzed and revealed.

Experimental
Fabrication of TiO2 and C‑doped TiO2 coatings.  The fabrication of photocatalyst coatings was carried 
out by coating formation, oxidation and cHT process. Firstly, Ti coatings were formed on Al2O3 balls (93.0% for 
purity, 1 mm for average diameter, Nikkato) by machinal coating technique, using Ti powder (99.1% for purity, 
30 μm for average diameter, Osaka Titanium technologies), donated as "Ti". The details of MCT operation refer 
to the previous studies32–35. Then, the as-prepared Ti coatings were oxidized at 800 °C for 15 h in the atmosphere 
with a furnace (HPM-1G, As one), to generate rutile TiO2, donated as "TiO2". Followed the oxidation, the cHT 
for TiO2 coatings were conducted with embedding in carbon powder (150 μm for average diameter) using a 
short alumina pipe, and annealed with the same electric furnace, at x (650–1000 °C, with an interval of 50 C) 
for 0.1, 0.5 and 1 h, respectively. The samples were kept in the furnace until approximately 25 °C, and donated as 
"cHT-x℃yh", where x is the temperature and y is the time during the cHT.

Characterization.  The compounds and phase change of the prepared photocatalyst coatings were exam-
ined by an X-ray diffraction (XRD, JDX-3530) with Cu-Kα radiation, with the 2θ range from 23 to 65 deg (the 
step is 0.02 deg/s). The evolutions of surface morphology were observed using a scanning electron microscopy 
(SEM, Hitachi-SU8030). The chemical composition on the surface were investigated using X-ray photoelectron 
spectroscopy (XPS, PHI Quantes). UV–Vis absorption spectra were recorded using an ultraviolet–visible spec-
trophotometer (DRUV-vis, Shimadzu 3700/3700DUV). The evaluation of photocatalytic activity was carried out 
with the photodecomposition of methylene blue (MB) solution under visible light and UV irradiation at approx-
imately 25 °C. According to the ISO 10678-2010, all samples were firstly dried under UV light for 24 h, then 
the potential absorption was avoided by soaking within MB solution (20 μmol/L, 35 mL) for 18 h in dark. The 
samples were evenly laid on the bottom of the cell for the photodecomposition test, and the initial concentration 
of MB solution was 10 μmol/L. The irradiation intensity of visible light (λ greater than 420 nm) and UV on the 
samples were set as 5000 lx and 1.0 mW/cm2, respectively. The absorbance of MB solution was measured by a 
colorimeter (mini Photo 10, Sanshin), with the absorption peak around 660 nm. The details of the photocatalytic 
evaluation can be found in our published works33–35. The difference in degradation constant (R) between ksample 
and kMB-solution was further used to highlight the photocatalytic activity of the samples.

Computational methods.  To further investigate the relationship between surface OVs in TiO2 lattice and 
band gap, the electronic structure calculations were performed to calculate rutile TiO2-x surfaces with differ-
ent contents of OVs by the PHASE based on the framework of density functional theory (DFT)36,37, within a 
program code using plane-wave basis sets based on the pseudopotential method. The difficulty is to alter the 
stoichiometry of TiO2-x that determines the electronic band structures38. Consequently, the electronic structure 
calculations of rutile TiO2 and nonstoichiometric TiO2-x (TiO1.958, TiO1.917, TiO1.875, and TiO1.600) were carried 
out and investigated. The details of condition calculations refer to the previous studies37. The structure param-
eters of both TiO2-x are shown in Supplementary Table S1. A plane-wave cutoff with 340 eV was applied during 
these calculations, while the convergence in self-consistent field was 27 × 10–7 eV. Supplementary Table S2 pre-
sents the related main parameters for the calculations.

Results and discussion
Crystal structure.  XRD patterns of the as-prepared samples are presented in Fig.  1, together with the 
Raman results of the cHT-x℃0.5 h samples. From the Ti sample, it could find that Ti coatings (approximately 
50–70 μm39,40) were coated on each Al2O3 ball. While the diffraction peaks at 27.4°, 36.1°, 41.2°, and 54.3° from 
the TiO2 samples show that rutile TiO2 successfully form on the surface of Ti coatings after oxidization at 800 °C 
for 15 h. Figure 1a, with raising the cHT temperature for relative short time of 0.1 h. However, it hard to observe 
the change even at high temperature of 1000 °C. While extending the cHT time to 0.5 h, the rutile TiO2 keeps 
until the temperature up to 850 °C, then it starts to change, especially at peak of 27.4°, which indicates that the 
new compounds exhibited Magneli phases that appear to have formed29,37,41–44. To further investigate the cHT 
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time at different temperature, the change in crystal structure of the cHT-x℃1 h samples is similar to those of 
the cHT-x℃0.5 h samples. The Magneli phases of Ti4O7 and Ti3O5 become to replace rutile at 1000 °C for 1 h, as 
shown in Fig. 1. It could conclude that the influence on rutile TiO2 becomes to be found from cHT temperature 
of 900 °C, simultaneously the cHT time also needs to have a minimum limit. In addition, the grain sizes of the 
cHT-x℃0.5 h samples increase before the formation of Magneli phases (Supplementary Table S3). Similar to that 
of the XRD result, it is hardly to find the change in Raman spectra from the cHT-x℃0.1 h samples (Supplemen-
tary Fig. S1), owing to the too short cHT time. It starts to change at 900 °C for at least 0.5 h. Back to the cHT-
x℃0.5 h samples, Fig. 1d shows that the rutile TiO2 significantly starts to change at 900 °C then to be Magneli 
phases at 1000 °C45,46, which is also well matched with those of XRD results.

Surface morphology evolution.  Figure 2 presents the surface morphology evolution of the cHT-x℃0.5 h 
samples. It could be observed that a typical columnar structure of rutile TiO2 has been formed, as shown in 
Fig. 2a 29,32–35,41,46,47. Compared to that of TiO2, it is clearly found that the change in surface morphology of the 
cHT-x℃0.5 h samples, with raising the cHT temperature. Interesting, a large amount of nano-size needle-like 
structures are formed during the cHT, with a temperature below 900 °C. From Fig. 2b,c, the needle-like struc-
tures are mixed with the columnar structure. With further raising the temperature, the nano-size needle-like 
structures grow in number and size. Compared with Fig. 2a–g, it reveals that the nano-size needle-like structures 
are generated with breaking of the columnar structure. While the temperature is higher than 900 °C, due to the 
generated Magneli phases, a completely different morphology has been formed, replacing those of the needle-
like and columnar structures. With the change in the surface morphology caused by the formed compounds and 
their crystal structures during cHT, it inevitably has a direct impact on its accessible area, which in turn has an 
impact on the photocatalytic performance.

UV–Vis absorption and band gap analysis.  UV–Vis spectroscopy is used to study the electronic states 
of the cHT-x℃0.5 h samples. Figure 3a shows a typical and strong absorbance behavior in UV region and very 
weak absorption in visible light region, from the TiO2 sample. With raising the cHT temperature to 650 and 
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Figure 1.   XRD patterns and Raman spectra of the samples. (a) cHT-x℃0.1 h, (b) cHT-x℃0.5 h, (c) cHT-
x℃1 h, and (d) cHT-x℃0.5 h.
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700 °C, the absorbance edge around 400–420 nm evidently moves towards the visible light range. While further 
raising the temperature up to 800  °C, the absorbance behavior of the samples strongly increases, especially 
within the visible region, which could be related to the increased amount of the formed OVs23–25,28–31, dur-
ing cHT with raising the temperature. Notably, in the case of 850 °C, it prominently indicates the significantly 
moved absorbance edge and strongly increased visible-light response. This proves that cHT is a pivotal role in 
the absorbance redshift. Moreover, the appearance is more directly show the effect of cHT on the light absorb-
ance (Supplementary Fig. S2). When the temperature is higher than 850 °C, it could find that the absorbance 

Figure 2.   Surface morphology comparison of the TiO2 and cHT-x℃0.5 h samples. (a) TiO2, (b) cHT-
650℃0.5 h, (c) cHT-700℃0.5 h, (d) cHT-750℃0.5 h, (e) cHT-800℃0.5 h, (f) cHT-850℃0.5 h, (g) cHT-
900℃0.5 h, (h) cHT-950℃0.5 h, and (i) cHT-1000℃0.5 h.
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completely changes, attributing to the formed Magneli phases of Ti4O7 and/or Ti3O5, having a graphite-like 
conductivity at room temperature29,37,42,43. It means that the band gap of the samples with Magneli phases might 
be nearly zero eV, which is well matched with the observed absorption from Fig. 3a.

To clearly show the influence of cHT on the band gap, the corresponding Kubelka–Munk plots are shown as 
Fig. 3b. The change in band gap is slow when the temperature is lower than 800 °C, and the calculated band gap is 
summarized in Supplementary Table S3. When the temperature is up to 850 °C, the band gap is significantly nar-
rowed to 2.879 eV, from 2.984 of the TiO2 sample, due to the generated OVs in lattice of rutile TiO2 during cHT.

Bonding environment.  XPS spectra was further carried out to study the surface chemical bonding of the 
cHT-x℃0.5 h samples, as illustrated in Fig. 4. In general, the change in C 1 s and Ti 2p is hard to be found, while 
it is significant in the case of O 1 s, especially in OVs from the cHT-700℃0.5 h and cHT-800℃0.5 h samples. 
Basically, the peak at approximately 529.8 eV presented with black line in Fig. 4b could be attributed to the O2− 
ions, usually surrounded by Ti4+ ions in rutile TiO2

34,47–50. The asymmetric peaks of O 1 s could be attributable 
to the three contributions different chemical states, such as the above O2− ions, OVs (around 531.0 eV)23–25,28–31 
and loosely bound oxygens at grain boundaries or the chemisorbed oxygens (around 532.2 eV)51–53. It could be 
found that a slight change in the O 1 s peak from 529.8 eV of rutile TiO2 to 530.0 eV of the cHT-1000℃0.5 h 
sample, which hints that the possible formation of Ti3+ neighboring to OVs in rutile TiO2

24–26,29. The shift in Ti 
2p peak also suggests the formation of Ti3+20. What’s more, the peak change around 531.0 eV incidents that the 
amount of OVs increase, with raising the cHT temperature. According to the XRD and XPS results, it could con-
clude that the rutile TiO2 on the outer surface starts to react with the involved carbon and its compounds during 
cHT at 700 °C, while the increased amount of OVs formed and discussed into the bulk of TiO2 films at higher 
temperature, which will affect the crystal structure (Fig. 1).

Furthermore, to better understand the effect of cHT for TiO2 films on the change in surface elements, XPS 
depth profile measurements were performed on the cHT-x℃0.5 h samples, giving the atomic percentage of 
namely C, Ti, and O, as shown in Fig. 5. The results indicant that the changes in C and O are significant in the 
outer surface, whereas Ti is relatively stable. Notably, it shows that the relative amount of C increases and O 
decreases in the outer surface with raising cHT temperature, revealing the C has successfully doped into the 
surface of TiO2 films and resulted in the formation of OVs easily occurs at higher 800 °C15–21,34. While the amount 
of O from the cHT-1000℃0.5 h sample drops below 40% and is significantly lower compared to other samples, 
which could be attributed to the formation of the Magneli phase.

Photocatalytic activity.  For the photodegradation of MB solution presented with the samples, Fig.  6 
clearly reveals that the cHT could efficiently enhance the visible-light-driven photocatalytic activity (Supple-
mentary Fig. S3), and same in the case of UV irradiation (Supplementary Fig. S4). The hardly decreased blank 
dotted line hints that the MB solution is relatively stable. In general, with raising the cHT temperature or extend-
ing the cHT time, it demonstrates that the photocatalytic activity firstly increases then decreases due to the con-
centration change of MB solution. Compared with that of extending the cHT time, it seems that raising the cHT 
temperature is more efficiently improve the photocatalytic activity with 0.1 h. Figure 6d more directly shows that 
the changes in degradation constant (R), with all cHT condition. In the case of 0.1 h, the photocatalytic activ-
ity keeps enhancing until the cHT temperature reached 850 °C, whereas for the longer cHT time of 0.5 h and 
1 h, the photocatalytic activity starts to decrease when the temperature is higher than 800 °C. In other words, 
the photocatalytic activity could be enhanced at a relative higher temperature for shorter time. It is well known 
that the doping of metal or nonmetal ions is often accompanied by formation of OVs in the lattice of TiO2

18–21. 
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Numerous studies have reported that the presence of OVs in TiO2 can located at 0.75–1.18 eV below the con-
duction band minimum, to effectively expand the visible light absorption range7–9,23–25. The enhanced visible-
light-driven photocatalytic activity could be attributed to the visible-light response due to the narrowed band 
gap (especially under 850 °C in Fig. 3), and the increased accessible area due to the formed nano-size needle-like 
structures on the surface until disappearing around 850 °C (Fig. 2). Correspondingly, when the temperature 
is higher than 850 °C, the decreases in the photocatalytic activity at are mainly because of the formed Magneli 
phases (Fig. 1)29,54,55, and the destroyed needle-like structures on the surface.

While comparing the cHT time under different temperature, the time is necessary at lower temperature of 
650 °C, then the temperature will dominant the enhancement of visible-light-driven photocatalytic activity, com-
pared with that of time. Notably, the advantage of cHT temperature for 0.1 h is more prominent above 800 °C, 
and the R of cHT-850℃0.1 h is further improves by about 3 times, compared with that of TiO2. Moreover, the 
photocatalytic activity under UV irradiation could be further enhanced at 800 to 850 °C for 0.5 h.

Simulation ab.  To further investigate the effect of OVs on the visible-light response of TiO2, the DFT 
method was adopted to calculate the stoichiometric and non-stoichiometric rutile TiO2 (110) surfaces. The effect 
of OVs on the total density of states (TDOS) of TiO2-x (x: 0, 0.042, 0.083, 0.125 and 0.400) are presented in Fig. 7. 
In general, a high vacancy concentration could induce a vacancy band of electronic states just below the conduc-
tion band, which had been confirmed by theoretical calculations and relevant experiments37,56–58. Interestingly, 
Fermi level significantly shifts toward the conduction band with the increased amount of OVs, which indicates 
that the introduction of OVs results in two loosely captured electrons by three Ti dangling bonds23,27,29,37,56. 
Moreover, the band gaps of TiO2-x start to decrease from TiO1.917, by about 0.02–0.5 eV with respect to 1.88 eV 
from pure TiO2, which is consistent with previous study37,57,58.

Conclusions
In this study, the OVs induced visible-light response C-doped TiO2 photocatalyst films with were successfully 
prepared by a simple and efficient method of cHT for TiO2 formed on Ti coatings. The visible-light-driven pho-
tocatalytic activity of C-doped TiO2 has been significantly enhanced by around 3 times, compared with that of 
pure TiO2. With raising the cHT temperature under 850 °C, the surface morphology with nano-size needle-like 
structures forms that could significantly increase the accessible surface area, while the needle-like structures 
would disappear at higher temperature. Generally, with raising the cHT temperature or extending the cHT time, 
it demonstrates that the photocatalytic activity firstly increases then decreases, reaching a better photocatalytic 
activity under 850 °C for 0.1 h. The enhanced visible-light-driven photocatalytic activity could be attributed to 
the improved visible-light response due to the narrowed band gap, and the increased accessible area due to the 
formed nano-size needle-like structures. Compared with cHT time, the photocatalytic activity could be enhanced 
at a relative higher temperature for shorter time. Notably, the introduction of OVs results in substantially nar-
rowing band gap of TiO2-x, compared with that of pure TiO2.
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Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files).
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