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Investigating structural 
and functional aspects 
of the brain’s criticality in stroke
Jakub Janarek 1,4, Zbigniew Drogosz 1,4, Jacek Grela 1,2,4, Jeremi K. Ochab 1,2* & 
Paweł Oświęcimka 1,2,3

This paper addresses the question of the brain’s critical dynamics after an injury such as a stroke. It is 
hypothesized that the healthy brain operates near a phase transition (critical point), which provides 
optimal conditions for information transmission and responses to inputs. If structural damage could 
cause the critical point to disappear and thus make self-organized criticality unachievable, it would 
offer the theoretical explanation for the post-stroke impairment of brain function. In our contribution, 
however, we demonstrate using network models of the brain, that the dynamics remain critical even 
after a stroke. In cases where the average size of the second-largest cluster of active nodes, which 
is one of the commonly used indicators of criticality, shows an anomalous behavior, it results from 
the loss of integrity of the network, quantifiable within graph theory, and not from genuine non-
critical dynamics. We propose a new simple model of an artificial stroke that explains this anomaly. 
The proposed interpretation of the results is confirmed by an analysis of real connectomes acquired 
from post-stroke patients and a control group. The results presented refer to neurobiological data; 
however, the conclusions reached apply to a broad class of complex systems that admit a critical state.

The concept of complexity is used to characterize natural systems consisting of large numbers of nonlinearly 
interacting elements, resulting in the spontaneous collective behavior of the system on the macroscopic level, 
called emergence. However, complex systems reveal further intriguing properties; among others, one can men-
tion scale invariance1, self-organized criticality2–4, and adaptability to new conditions5. The variety of complex 
characteristics makes it impossible to describe the systems by a reductionist approach, i.e., to derive system 
properties as a simple consequence of a physical law. Characterizing the system structure and dynamics requires 
rather a holistic approach relying on describing its properties on different levels of organization. In this respect, 
when the exact mathematical description is unattainable, agent-based modeling6 is especially beneficial. Simu-
lating the system as a collection of autonomous entities allows us to explore its dynamics and helps us provide 
its natural description, which includes emergent phenomena. This interdisciplinary approach has been applied 
to study complex systems, encompassing all scientific disciplines, such as physics, chemistry, biology, and social 
and economic systems7.

A canonical example of a complex system is the human brain, whose large numbers of neuronal cells display 
nontrivial multiscale organization8,9 and complex characteristics10,11. It has also been discovered that power-law 
statistics, often used to describe critical phase transitions, are present in the brain. These power laws quantify 
the scale-free properties of neural avalanche distributions, determine the temporal organization of the brain 
signals recorded from various brain imaging techniques, and characterize the dependence of the correlation 
length with system size. The critical brain hypothesis3 states that neural networks evolve towards and stay most 
of their time12,13 in a state around a critical phase transition (we will also use interchangeably phrases ‘at a critical 
point’, ‘in a critical state’ or ‘at criticality’), where the competition between order and disorder emerges. Systems 
in that state have been argued to exhibit optimal computational properties related to information processing, 
such as information transmission and storage14–16, computational power17 and maximal sensitivity to stimuli18,19.

However, the status of criticality and the associated properties in the brain with neurological dysfunction are 
still not known precisely. One possibility is that given critical state provides optimal functioning of the healthy 
brain, neurological dysfunctions might be associated with its loss20,21, which opens this area of study to clinical 
applications22. These include the study of epilepsy23,24, Alzheimer’s and Parkinson’s disease25,26, and analysis of 
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cognitive processes, including human learning27. The ideas of critical phenomena have recently been applied to 
the study of changes in brain dynamics due to brain damage, both purely computationally28,29 and with realistic 
connectomes of stroke patients30. In the latter case, with a simple computational model, the authors were able 
to predict critical phenomena based on the first principles. Furthermore, the presence and severity of the stroke 
reportedly were related to a loss of critical behavior in the brain and a possible post-stroke recovery of a patient 
to the recovery of the critical state. However, the opposite hypothesis that the brain remains in the critical state 
even in case of serious injury is also possible.

The problem of assessing whether a system is at a critical point or whether it can exhibit a critical phase 
transition is even more delicate due to the subtleties of measures of criticality and proper interpretation of the 
results, and it has been challenging in similar contexts31. Calculation of additional criticality-aware quantities, 
beyond the usual second-largest cluster size, and a comparison with an artificial system with known criticality 
status reveals an inconsistency. As summarized in Fig. 1, the criticality status of the stroke-affected brain becomes 
unclear due to an ambiguous behavior of the second-largest cluster size. Explaining this crucial observation is 
our main motivation.

This study is of importance from several perspectives. Brain criticality is an appealing hypothesis implying 
optimal neural network processing, and a comprehensive understanding of its nature is crucial to understanding 
brain functioning. However, estimated characteristics of the critical state should be interpreted with particu-
lar care since the analysis of the complex systems of which the brain is undoubtedly an example often exhibit 
nontrivial and subtle properties. Therefore, properties associated with the criticality in the brain with structural 
damage are still a subject of vital discussion. Moreover, potential deviation from critical neural dynamics could 
open the possibility for clinical application, as indicated above. In this contribution, we propose a microscopic 
model of brain stroke to find out the possible mechanism underlying the observed inconsistency in measures 
associated with neural dynamics at criticality. Such an approach allows us to reproduce the statistics observed 
in empirical data while controlling the system’s inner organization and being able to better characterize it using 
graph-theoretic tools. Finally, an explanation of the ambiguous character of the criticality indicators exposes 
the possible difficulty of utilizing a single measure of criticality and offers a consistent data-driven argument to 
monitor criticality in stroke patients.

The organization of the paper is as follows; in “Criticality in a model of brain activity” we describe the data 
set used, define the Haimovici model and provide its analysis in the context of the post-stroke brain. “Clusters 
in a divided Ising model” presents the novel model of artificial stroke with its comprehensive analysis. The 
results of previous sections are jointly discussed and interpreted in “Discussion”. Finally, we offer “Summary 
and conclusions”. Technical details of the graph connectivity measures and Haimovici and Ising models are 
presented in “Methods”.

Criticality in a model of brain activity
Haimovici et al. brain model.  Some crucial aspects of brain dynamics are well reproduced in the critical 
regime of the cellular automaton-type Haimovici et al. model32, where simple dynamical rules are applied to the 
network of cells based on empirical connectome. In this section, we demonstrate the quantitative characteristics 
of the model and discuss their relation to critical and non-critical states.

The Haimovici et al. model is a three-state cellular automaton33 on a connectome encoded as a network with 
weighted connectivity matrix W. In the context of brain activity, each network node represents a region of interest 
(ROI) of the brain cortex. The model dynamics are discrete. At each time step, a node is in one of three states: 
inactive (I), active (A), or refractory (R). The transitions between the three states for the i-th node of the network 
are as follows: (i) I → A always if the sum of the weights of the active neighbors of the node is greater than the 
activation threshold parameter T  , i.e., 

∑

j active wij > T  , and with probability r1 otherwise; (ii) A → R with prob-
ability 1; (iii) R → I with probability r2 . Figure 1a shows an illustrative example of these transitions. Probabilities 
r1 and r2 are small numbers, r1, r2 ≪ 1 , chosen before the start of a simulation, and determine the timescale of 
the system. Brain simulations based on the model are summarized in Fig. 1 and in “Haimovici model”.

The model dynamics exhibit diverse behaviors depending on the choice of the connectivity matrix W. The 
authors of32 used Hagmann et al.’s empirical connectome34 to find dynamical phase transitions in a healthy brain. 
The use of small-world Watts-Strogatz (WS) topology with connection weights mimicking the ones found in 
empirical connectomes, investigated in35,36, showed that depending on the network parameters, the model may 
find itself in different regimes, see Fig. 1d, including transience to a ground state, continuous and discontinuous 
dynamical phase transitions (whereby we mean dis/continuous change of the order parameter, e.g., mean neural 
activity, as seen in Fig. 1c), which all have distinct properties known from physical systems (e.g., in discontinuous 
transitions hysteresis can be observed).

Brain criticality.  The activation threshold T  is the parameter used to control the dynamics of the system. With 
Hagmann et al.’s connectome34 as the underlying network, the model admits a dynamical phase transition, and 
the critical value of the threshold is Tc ≈ 0.073 (cf. “Haimovici model”). For very small values of T  , even the 
weakest connections between the nodes are enough to spread the activity (supercriticality). Conversely, for large 
values of T  , active nodes may fail to activate their neighbors, and the total activity remains very low (subcritical-
ity; see Fig. 1c). It is in the critical regime that the brain activity simulated by the model reproduces the correla-
tions associated with the resting-state networks (RSNs) of the brain32.

The state-of-the-art analysis of model dynamics has been based on the time-averaged sizes of the largest 
clusters (cf. “Clusters”). The order parameter can be identified with the average largest cluster size S1 , and the 
critical point Tc is located near the local maximum of the size of the second largest cluster S2 as a function of 
T  (if the maximum exists). Such behavior is a strong indicator of a dynamical phase transition32,35. The phase 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12341  | https://doi.org/10.1038/s41598-023-39467-x

www.nature.com/scientificreports/

Figure 1.   Haimovici et al. brain model: description and dependence of criticality status on connectome topology. (a) 
Illustration of model dynamics: transitions between possible states of the network nodes (circles with numbers) with 
connection weights wij . Initially, the inactive (green) central node is connected to three active (orange) nodes, and to 
one node in a refractory state (blue). In the next step, assuming that the sum of active neighbors’ weights is larger than 
the threshold, i.e. w15 + w35 + w45 > T  , the central node is activated, while the active nodes become refractory. In 
the last step, the transition from the refractory to the inactive state takes place randomly at each node. (b) Example of 
the structural part of the model: Hagmann et al.’s connectome of healthy human subjects, represented by an adjacency 
matrix. The Haimovici model consists of panel (a) dynamics applied to the connectome-based network. (c) Model 
criticality for a healthy connectome: total activity and a time-averaged size of the largest ( S1 ) and second-largest ( S2 ) 
clusters of concurrently active connected nodes, for varying threshold parameter T  . For small values of the threshold 
T ≪ Tc (red), the nodes are easily activated, while for large values T ≫ Tc (gray) the nodes remain mostly quiet. 
Near the critical threshold value T ≈ Tc (purple), the activity becomes correlated, resulting in a characteristic peak 
in S2 . (d,e) Beyond the Haimovici model: panels show an extension of the model resulting from a replacement of the 
healthy connectome by artificial networks and post-stroke connectomes. The simulated activity is used to compute 
various indicators of criticality: the time-averaged size of the second-largest cluster S2 , the first autocorrelation 
coefficient ρ(1) , and the standard deviation of the total activity σA . (d) Known criticality status: examples of Watts-
Strogatz small-world networks resulting in clearly discernible non-critical/critical dynamics (upper/lower part). (e) 
Stroke patients connectomes: ambiguous criticality status. It is readily seen that although both ρ(1) and σA exhibit 
local maxima typical for systems at a critical point, the shape of S2 is less clear-cut and varies considerably between 
patients (shaded areas denote standard deviations). An explanation of this crucial observation constitutes the central 
aim of this study. (d,e) For the sake of presentation, observables are normalized to their maximal values. For the 
details of the model, the numerical simulations, and the calculation of observables, see “Criticality in a model of brain 
activity” and “Haimovici model”.
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transition can also be revealed using other quantities28, e.g., the variability of the total activity σA , the variance 
of the largest cluster size, the first coefficient of the autocorrelation function ρ(1)37,38, or the eigenvalues of the 
correlation matrix.

Figure 1d presents three quantities for non-critical (exhibiting only transient dynamics) and critical (exhibit-
ing a continuous phase transition) systems obtained for the Haimovici dynamics on human-connectome-based 
WS networks. The quantities shown are the time-averaged size of the second-largest cluster S2 , the first auto-
correlation coefficient ρ(1) , and the standard deviation of the total activity σA . Evidently, each of them has a 
distinct functional form that allows distinguishing between the non-critical and the critical case. In Fig. 1e, the 
same quantities are calculated for the Haimovici dynamics run on a set of empirical brain connectomes of stroke 
patients studied in30. In this case, not all signatures of a critical phase transition are equally clear: ρ(1) and σA 
exhibit a form similar to the system that has a critical point, but S2 behaves in a way that does not correspond 
clearly either to the non-critical or the critical WS case, in a similar manner to how it was reported in28. An 
extended investigation of several other quantities, described in Supplementary Information 1, revealed that the 
second-largest cluster size was the only observable with ambiguous outcomes.

Real and artificial strokes.  The empirical data on strokes were recently studied30 with the use of a dynami-
cal model of brain activity very similar to the one presented in “Haimovici et al. brain model” (cf. “Haimovici 
model” for details). The main finding was the observation that in model simulations on connectomes from 
patients three months after a stroke the maximum in the average size of the second-largest cluster of active 
nodes was missing, and it reappeared in a subgroup of those patients when connectomes were acquired again 
twelve months after the stroke. The loss and reappearance of the peak were interpreted, respectively, as a loss and 
recovery of the brain’s ability to reach the critical state, parallel to the behavioral post-stroke recovery of a patient.

In order to explain the origin of these findings, we propose a minimal model of artificial strokes that recre-
ates two key features found in the empirical data: a) the signatures of criticality summarized in Fig. 1e, and in 
particular the anomalous behavior (the absence of a peak) in the second-largest cluster size, and b) the decrease 
in connectome integrity correlated with this behavior.

A minimal model of artificial strokes.  We introduce a model of a stroke-like modification to a healthy connec-
tome. Given a healthy empirical connectome, an artificial stroke changes the connectivity between a particular 
RSN with the rest of the brain. To this end, we randomly select a fixed fraction of nodes (a proxy of stroke sever-
ity) of the RSN and completely remove connections to their neighbors not belonging to the same RSN. This way, 
the internal structure of the RSN remains unchanged, while effectively decreasing the connection of the RSN 
with the rest of the brain. The model we propose aims to reproduce global characteristics found in real connec-
tomes affected by a stroke and does not purport to offer a biologically or neurologically plausible mechanism.

In Fig. 2, we compare the second-largest cluster size calculated for the Haimovici dynamics on (a) connec-
tomes with an artificial stroke of increasing severity located in a single RSN and (b) real post-stroke connectomes. 
In the latter case, the connectivity matrices were normalized (see “Haimovici model”) thereby shifting the critical 
point Tc → T̃c . We report a good qualitative agreement between the outputs of the proposed artificial stroke 
model and the real stroke dataset, as in both models the second-largest cluster sizes deviate from the standard 
(i.e. healthy) case with a pronounced peak.

Structural analysis.  We provide a deeper analysis of the dynamics of the Haimovici model and connectome 
integrity using graph-theoretic methods. In Fig. 3, the dynamical part is summarized on the y-axis by the area 
under the S2(T ) curve I2 =

∫

S2(T )dT  , which qualitatively captures the loss of a peak, explained by high values 
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Figure 2.   Size of the second largest cluster S2 as a function of the threshold parameter T  for artificial and real 
stroke. (a) Results for an artificial stroke afflicting the auditory RSN with varying stroke severity. The color lines 
correspond to the fraction of nodes in the RSN disconnected from the rest of the brain, ranging from 75% (the 
bottom-most dotted curve) to all (the topmost dashed curve). (b) Results for connectomes from the stroke 
dataset in both control and patient groups (cf. Fig 3b in Rocha et al.30). Each line corresponds to one person. 
(a,b) Artificial strokes successfully recreate an anomalous loss of peak in the S2 curve.
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of S2 for low T ≤ Tc . The connectome integrity is probed by the normalized modularity Q where the modules 
are found using the Louvain algorithm (cf. “Graph connectivity measures” for details). In Fig. 3a we present 
results for artificial strokes with six affected RSNs and different severity levels, i.e., disconnection of between 0% 
and 100% of the RSN nodes from the rest of the brain, while in Fig. 3b we plot real stroke results for three patient 
groups. The normalization is such that mildly affected dynamics are centered near the (0, 0) point, while dynam-
ics severely affected by a stroke tend to move away from the origin.

We provide an additional analysis of the artificial stroke in terms of the conductance, hG (cf. “Graph connec-
tivity measures”), an alternative measure of connectivity between network subsystems39. This measure, unlike 
modularity, quantifies the connectivity between a selected RSN and the rest of the connectome. It offers an 
additional test of the loss of integrity between known regions rather than any changes due to Louvain algorithm 
reconfiguring modules after the stroke. Figure 3c presents a plot of the normalized area I2 versus normalized 
conductance hG . We reveal a strong correlation between the network integrity and the anomalous behavior of 
the second-largest cluster size.

Clusters in a divided Ising model
In the previous section, we established that the loss of connectome integrity coincides with the anomalous 
behavior of the second-largest cluster size in both artificial and real strokes. In light of this relation, we continue 
to investigate the changes in connectome structure to understand the development of this anomalous behavior 
in more detail and reintroduce the question of criticality: is the brain’s critical state reachable, or is it lost after 
the stroke? In this part, we tackle it by combining the insights from connectome integrity with the Ising model, 
a paradigmatic case with an existing critical phase transition. Ising spins act as the neuron nodes, and the usual 
two-dimensional grid takes the role of the connectome. The stroke-induced loss of integrity is taken to an edge 
case where the connectome is completely divided into subsystems, thus modeling a severe artificial stroke. In 
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Figure 3.   Structural analysis of stroke-affected connectomes. (a) Normalized area under the S2 plot versus 
normalized modularity for the artificial strokes on Hagmann et al.’s connectomes with single RSNs gradually 
more disconnected from the rest of the brain, starting from 0% to 100% of nodes (from zero to high normalized 
modularity). The Pearson’s correlation coefficient between the normalized area under S2 and the normalized 
modularity is ρ = 0.88 , p-value ≪ 0.001 with 95% CI [0.84, 0.92]. (b) Similar to (a) but for empirical 
connectomes from the real stroke dataset for three patient groups with correlation coefficient ρ = 0.646 , 
p-value ≪ 0.001 , 95% CI [0.55, 0.73]. (a,b) Both types of strokes with variable severity result in an increase 
in the area under the S2 curve as well as the values of modularity. The latter is related to the loss of subsystem 
interconnectivity of the stroke-affected connectome. (c) Normalized area under the S2 plot for the Haimovici 
model versus the normalized conductance for Hagmann et al.’s connectomes with an increasing fraction 
of RSN’s nodes disconnected from the rest of the brain, from 0% to 100% (from low −hG(norm.) values to 
−hG(norm.) = 1 ). The correlation is ρ = 0.88 with p-value ≪ 0.001 , 95% CI [0.84, 0.92].
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particular, we recreate an anomalous lack-of-peak in the second-largest cluster size and describe the underlying 
mechanism as a competition within the hierarchy of subsystem-wide clusters.

Model description.  The Ising model is among the simplest systems that undergo a continuous phase transi-
tion as the temperature T changes40–43. In a similar context, it has been used to study and reproduce the behavior 
of neuronal populations in cultured cortical neurons, cortical slices, and visual cortex among others44–46, and in 
particular to study structural damage to functional networks at criticality29. Another study compared the fMRI 
correlations with the correlation matrices obtained from Ising model simulated on empirical connectomes to 
characterize disorders of consciousness with the model’s critical temperature47. The Ising model itself consists 
of a network whose sites take the values ±1 (originally representing two states of atomic spins) together with 
a particular definition of interactions between adjacent spins, which describes the time evolution of spin states 
(cf.“Ising model”).

The usual indicator of a continuous phase transition is the correlation length, i.e., the characteristic length-
scale below which the non-adjacent spins are correlated, and which diverges at the transition point. In addition, 
it is agreed upon that observables related to clusters, used in percolation theory, are viable probes of critical state 
in the two-dimensional Ising model48. Clusters (domains) are defined as maximal connected sets of sites with the 
same orientation of the spins. The size of a cluster is the number of its sites. The size distribution of the clusters 
depends crucially on T and is used to construct two well-established indicators of criticality: (a) an abrupt change 
in the time-averaged size of the largest cluster S1 and (b) a peak in the time-averaged size of the second largest 
cluster S2 ; both occur near the critical temperature Tc

49.
We introduce a key modification to the model’s connectivity matrix by removing certain links from the origi-

nal two-dimensional square lattice to form two completely disjoint subsystems, A and B. This mimics the loss 
of integrity, studied previously in the case of strokes, whereas the Ising dynamics fixes the critical behavior. We 
consider two cases: subsystems of (a) equal NA = NB , Fig. 4, and (b) unequal NA > NB number of nodes, Fig. 5. 
In what follows, we inspect the average cluster sizes S1 and S2 as indicators of criticality in the entire system (no 
superscript) and in each subsystem separately (superscripts A and B). Details of the simulations are discussed 
in “Methods”.

Inconsistent indicators of criticality.  In Fig. 4a, we revisit the average sizes of the two largest clusters in the 
standard Ising model on a 100× 100 square lattice. The size of the largest cluster (black dashed line) saturates at 
the size N of the entire system; the size of the second-largest cluster (black solid line) starts at zero for small T, 
increases to reach a peak near the critical temperature Tc , and decreases to a certain nonzero value for large T (a 
finite-size effect; S2/N → 0 for N → ∞).

In the next step shown in Fig. 4b, we consider the divided Ising model with two fully disconnected subsystems 
of equal size and shape (rectangles 100× 50 ). In this case, cluster sizes S1 and S2 both admit a similar functional 
form, as shown by the dashed and solid blue lines. Both quantities saturate similarly to the largest cluster calcu-
lated for the undivided system and have no maximum near Tc.

Via an introduction of a simple division of the system into two non-interacting parts we recreate the anoma-
lous lack of a peak in the second-largest cluster size S2 . To gain insight into how this emerges, we plot in Fig. 4c 
the average sizes of the two largest clusters but restricted to each subsystem: SA1 , S

A
2  for subsystem A (green) 

and SB1 , S
B
2  for subsystem B (orange). Unsurprisingly, the respective curves for each subsystem overlap and their 

functional form is identical, up to a rescaling, as that of the cluster size curves for the undivided lattice, described 
above and shown in the inset of Fig. 4b. Since the two subsystems are fully disconnected, each has its own inde-
pendent Ising dynamics: Both are critical around Tc , and their respective cluster sizes show typical signatures of 
criticality. However, the lack of the characteristic peak in the size of the second-largest cluster of the entire system 
shown in Fig. 4b is clearly flawed by suggesting the absence of a critical phase transition in the divided system.

Cluster ordering.  Below we refine our understanding of the ordering of entire-system clusters in terms of sub-
system clusters. As long as the subsystems are fully disconnected and thus have completely separate dynamics 
within each subsystem, it is the subsystem clusters that play a primary role, and the system-wide clusters only 
name the largest among them. The lack of a peak in the size of the second largest cluster observed at the level of 
the entire system comes merely from a particular ordering of the sizes of the subsystem clusters.

At each time step t, we are interested in the two largest clusters of the entire system S1(t) , S2(t) and of 
each of the subsystems SA1 (t), S

A
2 (t), S

B
1 (t), S

B
2 (t) . Note that in this paragraph we use momentary cluster sizes, 

not time averages. We can compare the sizes of the four above-mentioned subsystem clusters and write 
them down in a list in decreasing order. The first two entries in the list are the largest entire-system clusters: 
S1(t) = max1

(

SA1 (t), S
A
2 (t), S

B
1 (t), S

B
2 (t)

)

= max
(

SA1 (t), S
B
1 (t)

)

 and S2(t) = max2
(

SA1 (t), S
A
2 (t), S

B
1 (t), S

B
2 (t)

)

 , 
where maxi selects the i-th largest number. It is clear that regardless of the definitions of the two subsystems, 
S1(t) is either SA1 (t) or SB1 (t) , so the functional form of the average S1 corresponds to that of the largest sub-
system cluster. Crucially, however, since the role of S2(t) can be assumed by any of the remaining clusters 
SA1 (t), S

A
2 (t), S

B
1 (t), S

B
2 (t) , the functional form of the average S2 depends on the relative size of the subsystem 

clusters and the robustness of their ordering (i.e., whether the order of the subsystem clusters on the list remains 
constant throughout the simulation).

If NA = NB , then {S1(t), S2(t)} = {SA1 (t), S
B
1 (t)} for most of the simulation time (where = denotes set equal-

ity). In other words, the roles of the two largest entire-system clusters are decided by the competition of the 
largest cluster of subsystem A and the largest cluster of subsystem B. Therefore, S1 and S2 both share the typical 
characteristics of the largest subsystem cluster, resulting in the same functional behavior, as shown by the blue 
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lines in Fig. 4b. In the next section, we demonstrate the results of decreasing the robustness of the ordering by 
bringing SA2  and SB1  to comparable sizes.

Competition between clusters.  In the discussion above, we described how the momentary largest system clus-
ters are selected from an ordered list of subsystem clusters. In this section, we apply this to the case of unequally 
sized subsystems NA > NB , where the ordering is less stable in the simulation time. We use a square lattice of 
the same dimensions as previously but with subsystem B redefined as a smaller square patch in the middle of the 
lattice and with the connections changed accordingly, as shown in Fig. 8. This reduces the average sizes of the 
subsystem-B clusters SB1  and SB2  . For a certain patch size, the typical size of the largest cluster in subsystem B SB1  
is comparable to the second largest cluster in subsystem A SA2  , and these two clusters compete for the role of the 
second largest cluster in the entire system S2.

Figure 4.   Divided Ising model: temperature dependence of two largest cluster sizes. A schematic representation 
of a square lattice and dependence of average sizes of the largest cluster S1 (dashed lines) and of the second-
largest cluster S2 (solid lines) on temperature T. (a) In an undivided lattice (upper index 0), clusters exhibit 
a characteristic saturation of S01 for small temperature and a maximum of S02 in the vicinity of the critical 
temperature Tc ≈ 2.27 . Panels (b,c) show a system divided into two equally sized subsystems (as marked by the 
yellow dashed line on the lattices). Panel (b) shows the largest ( S1 ) and second-largest ( S2 ) clusters of the entire 
system. The graphs of S1 and S2 have both qualitatively the same shape, saturating for small T at half of the system 
size. The temperature dependence of both is similar to that of the largest cluster of the unmodified system ( S01 
in panel (a)), and in S2 no peak is present. Panel (c) shows the largest and second-largest clusters computed 
for each of the subsystems separately (superscripts A/B, green and orange lines). The curves are down-scaled 
versions of the clusters for the unmodified system (panel (a); note the different scale of the y-axis), with the 
signature peak in S2 . Corresponding curves for the subsystems fully overlap.
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In Fig. 5, this mechanism is demonstrated on a square lattice of N = 10000 sites divided into NA = 7500 and 
NB = 2500 sites. The loss of symmetry between the subsystem sizes results in a different temperature dependence 
of the cluster sizes. In the case of equally sized subsystems shown in Fig. 4b and described in previous sections, 
the average cluster sizes in subsystems A and B overlap: SA1 ≈ SB1  (dashed green and orange lines) and SA2 ≈ SB2  
(solid green and orange lines). On the other hand, the unequally sized case discussed currently is presented in 
Fig. 5a and shows a clear cluster size asymmetry: SA1 ≫ SB1  and SA2 ≫ SB2  near the critical temperature indicated 
by the blue vertical line. In this region, moreover, SA2 ≈ SB1  , which signals the breaking of the cluster ordering.

The competition between the clusters SA2  and SB1  is shown more closely in Fig. 5b. In this panel, we plot the 
dynamics of the clusters of interest at a fixed temperature T ≈ Tc . The solid orange line and the dashed green 
line trace the temporal evolution of the size of the clusters that compete for the role of the entire-system cluster 
S2 . In this particular time window, we observe a reversal of the roles, in which the role of S2 is played by SA2  in 
earlier time steps and by SB1  in later time steps. The plot reveals rich intermittent dynamics that elucidate the 
averaged picture in Fig. 5a. The cluster order is perturbed even beyond the competition of SA2  and SB1  , since, at 
certain moments such as t = 31 , the cluster SB1 is temporarily able to take over the role of S1 and reduce the cluster 
SA1  to the role of S2.

Loss of peak: a mechanism common to the models of Ising and Haimovici.  In Fig. 6, we juxtapose cluster analyses 
performed on (a) the divided Ising model of unequal sizes and (b) the Haimovici model with severe artificial 
stroke resulting in completely disconnected auditory RSN (different choices of base RSNs give similar results; 
see Supplementary Fig. 3 in Supplementary Information 2. For a detailed description of how the Ising model and 
the Haimovici brain model are different and how they allow a direct comparison, cf. “Differences between Ising 
and Haimovici models”. In both models, the average second largest cluster size S2 of the entire system changes 
its behavior in the same way: When subsystem B - or the auditory RSN - is completely disconnected, S2 loses 
its characteristic critical peak. The numerical data for both models fully support our prediction: At some value 
of the threshold parameter T  , the size of the largest cluster of the smaller subsystem SB1  exceeds the size of the 
second largest cluster of the larger subsystem SA2  . This change in the cluster size hierarchy leads to S2 monotoni-
cally decreasing as a function of T .

In Fig. 6, we presented the edge case of a fully disconnected subsystem, or a severe artificial stroke. In Fig. 7, 
we extend the presentation to a comparison of gradual system modifications in (a) the Ising model with vari-
ous sizes of the disconnected subsystem B and (b) the Haimovici model for varying degrees of connectivity 
between the auditory RSN, chosen as the smaller subsystem, and the rest of the network. Both the variation in 
the size of the smaller Ising subsystem and changes in connectivity between RSNs produce similar comb-like 
families of lines (cf. Fig. 2 for similar plots comparing connectomes affected by artificial and real strokes). These 
modifications are not strictly equivalent, but they provide a clear presentation of the idea. In Supplementary 
Information 1, we expand on the present analysis with complementary modifications. The small perturbation 
regime, where the subsystem has relatively few nodes (in the Ising model) or few interconnections are removed 
(in the Haimovici model), constitutes the lower part of the comb. In this region, the entire system cluster S2 has 
typical critical behavior with a peak near the critical Tc or Tc . The large perturbation regime is, in turn, reached 
when the subsystem is large (the Ising model) or almost completely disconnected (the Haimovici model), and 
constitutes the upper part of the comb. The upper limiting cases are reached if subsystem B occupies about half of 
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Figure 5.   Dependence of cluster sizes on temperature and time in the two-dimensional Ising model divided 
into two fully disconnected subsystems of unequal size. Subsystem A consists of NA = 7500 sites and subsystem 
B of NB = 2500 sites; see Fig. 8 for the geometric arrangement. (a) Temperature dependence of the largest 
and second-largest cluster sizes for the entire system (blue lines), subsystem A (orange lines), and subsystem 
B (green lines). The line styles follow Fig. 4. In subsystems, characteristic features such as saturation of S1 at 
small temperatures and a peak in S2 near the critical Tc persist, but the size symmetry breaking with NA > NB 
results in relative growth of clusters related to subsystem A with respect to subsystem B. The vertical blue line is 
a near-critical region where we probe the time evolution to be shown in the right panel. (b) Interplay between 
momentary clusters SB1 (t) , S

A
2 (t) and S2(t) over a number of time steps at a fixed T (the line styles are the same as 

for the averages in panel (a)). One can observe the competition for the place of the second largest cluster (blue 
solid line), with SA2 (t) (orange solid line) dominating earlier and SB1 (t) (green dashed line) later.
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the system or if the auditory RSN is fully disconnected, as studied in Figs. 4b and 6, respectively. In this regime, 
the cluster S2 loses its characteristic criticality peak.

Discussion
By considering the divided Ising model, we explained the rise of anomalous lack of peak in the size of the second-
largest cluster of active nodes, S2 , in terms of subsystem clusters forming an ordering for the entire system. We 
believe this observation lies at the source of the confusion about criticality illustrated in Fig. 1. It should be 
emphasized that each subsystem separately preserves the typical behavior of clusters related to criticality, i.e., 
growth of the largest cluster, S1 , and a maximum in the second largest cluster size, S2 . The critical phase transition 
is preserved, although it becomes obfuscated by the loss of connectome integrity. Let us note, that there might 
be another contributory factor: a shift in Tc connected to the change in the number of nodes in the network, as 
observed in a related model50. This effect, however, does not account for disparate behaviors of the criticality 
indicators, nor is it strong enough to explain a full loss of phase transition.

We were able to consistently translate the above explanation to the Haimovici model. There, an apparent 
loss of criticality was a consequence of changes in the ordering of subsystem clusters enabled by the changes in 
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Figure 6.   Cluster sizes in fully disconnected subsystems in the Ising and Haimovici models. (a) The Ising 
model with subsystems of unequal size NA = 7500 , NB = 2500 . (This example was shown in Fig. 5.) The legend 
is valid for both plots. (b) The Haimovici model with subsystems of sizes NA = 879 and NB = 119 , where B 
denotes the auditory RSN, and A is the rest of the network. (a,b) In the unmodified systems (insets), S2 shows 
a characteristic maximum near the critical point. With subsystem B disconnected, the second largest cluster 
saturates (panel (a) Ising) or grows monotonically (panel (b) Haimovici) (blue solid line) as we lower T  . In 
both cases, the second largest cluster in subsystem A (orange solid line) exhibits a maximum around the critical 
point, however, just below this point, near T ≈ 0.05 in the Haimovici model ( T ≈ 2.2 in the Ising case) the 
size of the largest cluster in subsystem B (dashed green line) becomes larger and takes over in the cluster size 
hierarchy.
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Figure 7.   The size of the second largest cluster in gradually modified systems. (a) The Ising model with varying 
subsystem size. The family of color lines represents S2 for different sizes of subsystem B ranging from NB = 400 
(the bottom dotted dark blue line) to NB = 3600 (the topmost dashed yellow line). Above a certain size of 
subsystem B, the critical maximum is lost. The red arrow marks the critical temperature. (b) The Haimovici 
model with changing RSN connectivity. The color lines represent S2 for connectomes with a varying number of 
connections between the auditory RSN and the rest of the brain removed, ranging from 75% of the connections 
removed (the bottom-most dotted light blue curve), to all connections between the RSN and the rest of the brain 
removed (the topmost dashed yellow curve). The red arrow indicates the critical value of the threshold. (a,b) In 
both models, above a certain proportion of removed connections, the maximum in S2 is lost.
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connectome integrity. In both models gradual subsystem changes led to the comb-like behavior of S2 , Fig. 7, seen 
previously in the real stroke data in Fig. 2b. Due to the particularities of the Ising dynamics, instead of varying 
the connectivity, which would render the comb a single line, we varied the subsystem size, which reproduces 
the expected effect. We discuss these complementary approaches in Supplementary Information. A similar 
subsystem-cluster analysis was performed with each of the eight RSNs entirely disconnected, see Supplementary 
Information, resulting in a similar effect.

Crucially, the change in connectome integrity was the primary driver while the dynamics itself was secondary. 
Despite the limiting assumptions, the artificial stroke model recreated quite well the overall loss of connectome 
integrity in Fig. 3. In both artificial and real strokes, we found that a stroke-induced loss of connectome integrity 
measured by an increase of the modularity Q and the decrease of conductance hG coincides with the anomalous 
behavior of the second-largest cluster size.

While the authors of another study simulating Ising dynamics on connectomes47 hypothesize that structural 
connectivity alone cannot explain some effects observed in functional correlations of patients after severe brain 
injuries, no other explanation has been provided in the literature. Our explanation of the anomalous behavior 
of the cluster-based indicator of criticality, on the other hand, is consistent with the distinction51,52 between 
well-known structurally-driven percolation phase transitions and dynamic transitions-for which less is known36. 
Reframed in these terms, our results would suggest that in brain strokes there is no change in whatever underlies 
dynamic transitions, but that there are structural changes that could disorganize the percolation-like transitions.

Summary and conclusions
In this study, we revisited the question of whether post-stroke brain dynamics stay at the critical point. To this 
end, we compared how indicators of criticality behave after real strokes and computer-simulated strokes proposed 
for this purpose, and we do not find evidence for the post-stroke loss of critical dynamics as previously suggested. 
Rather, we show that elementary indicators of criticality should be interpreted with caution. In particular, the 
behavior of the size of the second-largest cluster of activity in the brain affected by stroke may result solely from 
the loss of connectome integrity without the brain’s departure from a dynamic critical transition. From this per-
spective, the behavior is understood in terms of subsystem clusters competing for the top rank system-wide. The 
results have been reproduced in classic physical models and confirmed based on graph-theoretical characteristics 
calculated for the empirical connectomes. Thus, when a system with an unknown subsystem structure is ana-
lyzed, stroke-induced loss of critical dynamics may be illusory, and the simpler and more plausible explanation 
is the described mechanism cluster competition mechanism enabled by a loss of connectome integrity alone.

Outlook.  We hope that as the concept of criticality becomes increasingly relevant22, and the critical state of 
the brain is evaluated in relation to various diseases, disorders, states of consciousness, and tasks, this work offers 
an important consideration towards the robustness of these findings.

In addition to applications to neuroscience, our discussion is relevant in studies of artificial neural 
networks53,54 where, for the specific learning dynamics of the connectivity matrix, the network self-organizes 
towards a critical state. In such models, typical criticality indicators are based on avalanche sizes, which are 
structure-agnostic like the cluster sizes considered in this work.

Methods
Connectivity matrices.  Connectomes of post‑stroke brains.  The connectivity matrices that we used in 
Haimovici model in “Real and artificial strokes” were a set of 113 individual connectomes from 79 stroke patients 
and 47 connectomes from 28 control subjects acquired via Diffusion-Weighted Magnetic Resonance Imaging 
(DWI)30,55,56. The patients’ connectomes were acquired twice, 3 months ( t1 ) and 12 months ( t2 ) after the stroke. 
Each connectome encodes a network of N = 324 nodes of cortical ROIs, based on Gordon’s parcellation57. By 
convention, the diagonal elements of W are set to zero.

Connectomes in artificial strokes.  For the minimal model of artificial strokes the Hagmann et al.’s connectome34 
served as the base connectivity matrix representing the healthy brain.

Watts–Strogatz networks.  For the Haimovici model results presented in Fig. 1d, the empirical connectomes 
were substituted with Watts-Strogatz small-world networks58 of comparable size ( N = 2000 nodes). These 
networks are constructed from a ring of nodes, each symmetrically connected to its nearest neighbors with k 
edges whose ends are subsequently rewired to random nodes with probability π . Following35,36, to mimic the 
weight distribution of the human connectome34, the link weights were sampled from an exponential distribution 
p(w) = �e−�w , with � = 12.5 . The same Greenberg–Hastings33 dynamics was used as for the Haimovici model, 
with tmax = 10000 , tinit = 200 , r1 = 0.001 , r2 = 0.3 , and the unnormalized symmetric weight matrices W. Node 
degrees and rewiring probability in WS networks were set to k = 2,π = 0.5 to obtain non-critical behavior and 
to k = 10,π = 0.5 to obtain the critical one.

Graph connectivity measures.  First, we set the notation and some basic definitions for weighted directed 
graphs, such as connectomes, that we adopt throughout the paper.

For a weighted directed graph G with N nodes, we denote its binary adjacency matrix as A and aij as its 
element corresponding to the directed connection from node j to i, and analogously the weighted adjacency 
matrix as W and wij as the weight of the directed connection. The analog of degree in weighted directed 
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graphs are in-degree and out-degree strength: win
i =

∑

j wij ,w
out
i =

∑

j wji . The total strength of the graph is  
2w =

∑

i w
in
i =

∑

i w
out
i =

∑

i

∑

j wij , and the average in-degree strength is �win� =
∑

i w
in
i /N.

In a graph G with the set of nodes V, conductance of a node subset S ⊂ V  and its complement S̄ = V \ S is 
the quotient39

of the weighted size |cut(S, S̄)| =
∑

i∈S,j∈S̄ wij + wji of the cut, i.e., the set of all edges connecting S and S̄ , and the 
smaller of the total strengths vol(S) =

∑

i∈S w
out
i  summed over all nodes belonging to these sets. In our study, 

the connectome was divided into the nodes of the chosen RSN and the rest of the network.
Graph modularity Q can be computed for weighted graphs both undirected (Hagmann et al.’s connectome-

based networks) and directed graphs (stroke dataset connectomes)59 using the weighted adjacency matrix wij:

where ci is the label of the module to which node i belongs, and δci ,cj is the Kronecker delta symbol of two such 
labels. In our work, the modularity was always normalized to the maximal modularity of a perfectly mixed 
network,

The results presented for artificially modified connectomes are averages of 20 modification realizations for each 
value of parameters used.

We used the implementation of conductance and of Louvain modularity optimization algorithm from Net-
workX Python package60.

Normalization in Fig.  3.  To compare artificial and real strokes in Fig. 3, we propose a normalization of quanti-
ties defined as

where A0 denotes the value of the quantity in the unmodified system (i.e., a system not affected by stroke). Sys-
tems whose normalized parameters are close to zero are very similar to the unmodified system, whereas large 
values of normalized parameters indicate a large deviation from it.

For real strokes, as the proxy of the unmodified system, we use the control group averages.

Haimovici model.  For simulations of the Haimovici model, we use a publicly available Python code based 
on the Susceptible-Excited-Refractory model61. The simulation runs in time steps, each with the following three 
transitions performed on all nodes concurrently33: 

1.	 Active → Refractory; All nodes activated in the previous time step become dormant.
2.	 Refractory → Inactive; Each dormant node may become inactive with probability r2.
3.	 Inactive → Active; Inactive nodes become active in two ways: a) due to spontaneous activation with prob-

ability r1 and b) due to neighboring active nodes that satisfy the threshold criterion 
∑

j active wij > T .

Numerical simulations are performed for tmax = 10000 time steps for 30 threshold values T  , covering the criti-
cal value Tc . Each simulation starts in a random state with 1% of nodes active and the rest inactive. To account 
for this initial randomness, the first tinit = 200 time steps in all simulations are discarded from further analysis, 
leaving tsim = tmax − tinit simulation steps. The result, for each T  , is a N × tsim data matrix whose entries take 
the values 0 (inactive nodes), 1 (active nodes) and 2 (refractory nodes). Following the literature32,62, after finish-
ing the simulation, we apply a preprocessing step of conflating the inactive and refractory states by substituting 
2 → 0 in the data matrix.

The states of nodes si(t) at time t are used to calculate the total activity A(t) =
∑N

i=1 si(t) . The average activity 
〈A〉 and the deviation of the total activity σA are defined as follows:

An approximate critical value of the threshold in the Haimovici model can be computed using the mean-
field approach62:
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where r2 is the probability of transition from the refractory state to the inactive state. In all our calculations, fol-
lowing previous studies62, we keep r2 = r1

0.2 , where r1 is the probability of spontaneous activation set to r1 = 2/N . 
For Hagmann et al.’s connectome, the mean-field critical threshold value is Tc = 0.08 . This theoretical value 
agrees quite well with the results of our numerical simulations.

Modifications to the Haimovici model.  As a way of implementing the homeostatic plasticity principle in the 
Haimovici model, the network excitability was balanced by normalizing the incoming node’s excitatory input in 
the structural connectivity matrix62:

Such equalization minimizes the variability of activity and of the position of the critical point between individual 
connectivity matrices. It is noteworthy that the control parameter also becomes rescaled T → T̃  , so that the 
critical point moves to an empirical value T̃c ≈ 0.15 . The model exhibits a similar behavior of the cluster sizes 
as the Haimovici model, where at the critical value of the threshold the size of the second largest cluster peaks. 
Similarly to the Haimovici model, in numerical simulations, we use r1 = 2/N and r2 = r1

0.2 and simulate the 
activity of the system for tmax = 10000 time steps.

The normalized connectivity matrices W̃ from the stroke data set used in30 are available publicly63.

Clusters.  We define clusters as maximal sets of nodes sharing the same type of activity ( ±1 in the Ising model 
and active in the Haimovici model) connected following the adjacency matrix. The size of the cluster is the total 
number of participating nodes. Among all cluster sizes, we focus on the two largest cluster sizes S1 and S2 , which 
are standard order parameters in percolation theory64. We measured the sizes averaged over the simulation time 
tsim:

where Si(t) is the size of the momentary i-th largest cluster found at time t.

Ising model.  The Ising model on a lattice with the adjacency matrix A is defined in terms of the energy 
function:

where the spin variables si take values ±1 and J is the coupling parameter. The probability of a particular spin 
configuration s = (s1, s2, . . . , sN ) depends on temperature T according to the Boltzmann distribution

and the approximate value of the critical temperature is Tc = 2.27 , as shown in a classic paper by Kramers and 
Wannier65.

Details on numerical simulations.  The coupling parameter was set to unity J = 1 and a square lattice of dimen-
sions 100× 100 with nonperiodic boundary conditions was used. The size of the system N = 10000 was the total 
number of lattice sites. In the case NA = NB , the system was divided into two rectangles 100× 50 . In the case 
NA > NB , subsystem B was defined as a square patch in the center of the lattice and subsystem A as its comple-
ment (see Fig. 8), and modified the connections accordingly.

We performed numerical simulations using Monte Carlo importance sampling66. Spins in the initial condi-
tions were set to −1 with probability 0.75 and to 1 otherwise. Each time step (or sweep) comprised N spin-flips, 
which in turn followed the Metropolis approach67. First, the i-th node was flipped si → −si and the resulting 
change in energy was computed �E = E(spin-flip)− E0 . The new configuration was accepted with probability 
min(e−

1
T �E , 1) . Simulations were run for 30 equally spaced temperature values between T = 0.01 and T = 4.5 , 

each simulation continuing for tmax = 5000 sweeps with the tinit = 200 initial sweeps discarded. The resulting 
data matrix for a single temperature had dimensions N × (tmax − tinit).

Differences between Ising and Haimovici models.  Here, we describe differences between the Ising 
and the Haimovici models which are important for understanding the comparison between the models but are 
largely immaterial to our argument. The Haimovici model has starkly different dynamics than the Ising model. 
In the latter case, each spin, whether pointing up or down, always belongs to some cluster, unless it is surrounded 
by four spins of the opposite orientation. This results in large domains such that, in the low T regime, the larg-
est and second-largest clusters can cover virtually the entire subsystems A and B, respectively (see Fig. 4b). In 
contrast, in the Haimovici model, it is only the clusters of active nodes that are considered. An activated node 
becomes refractory at the very next time step and then waits to become inactive again (with the probability of 
becoming inactive at a given step r2 ≈ 0.29 ). This burst-like cluster formation results in the average sizes of the 
largest and second-largest clusters attaining much lower maximal values ( S1 ≈ 0.17N for T  near 0; S2 ≈ 0.006N 
at its peak) than in the case of the Ising model and rapidly decreasing to zero for increasing values of T > Tc . The 
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unmodified networks in both models are also significantly different: the Haimovici model uses Hagmann et al.’s 
connectome, which belongs to the small-world class35, whereas the Ising model uses a regular two-dimensional 
square lattice.

When comparing both models, one should be mindful that the role of the threshold parameter T  is inverse 
to that of the temperature T in the Ising model, i.e., small values of T  result in supercritical states with high total 
activity, and large values of T  result in subcritical states with low stochastically induced activity.

Data availability
The connectomes used in this work come from30 and are available from Zenodo repository63. They are derived 
from the raw neuroimaging data from55,56, which are publicly available at cnda.wustl.edu and require controlled 
access as they contain sensitive patients’ data.

Code availability
Scripts used in the simulations and data analysis are publicly available https://​github.​com/​grela​de/​criti​cal-​stroke.
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