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Both cell autonomous 
and non‑autonomous processes 
modulate the association 
between replication timing 
and mutation rate
Oriya Vardi‑Yaacov 1,4, Adar Yaacov 1,2,3,4, Shai Rosenberg 2,3 & Itamar Simon 1*

Cancer somatic mutations are the product of multiple mutational and repair processes, some of 
which are tightly associated with DNA replication. Mutation rates (MR) are known to be higher in 
late replication timing (RT) regions, but different processes can affect this association. Systematic 
analysis of the mutational landscape of 2787 tumors from 32 tumor types revealed that approximately 
one third of the tumor samples show weak association between replication timing and mutation 
rate. Further analyses revealed that those samples have unique mutational signatures and are 
enriched with mutations in genes involved in DNA replication, DNA repair and chromatin structure. 
Surprisingly, analysis of differentially expressed genes between weak and strong RT‑MR association 
groups revealed that tumors with weak association are enriched with genes associated with cell–cell 
communication and the immune system, suggesting a non‑autonomous response to DNA damage.

The process of DNA replication plays an important role in  mutagenesis1, with failures leading to the introduc-
tion of mismatches and/or to the conversion of DNA damages into mutations. It is therefore not surprising 
that replication timing (RT), defined as the time in S phase each region is replicated, is strongly associated with 
mutation rate (MR) in both germline and somatic  cells2,3. In general, there are many more mutations in regions 
that replicate in late S phase than in those which replicate in early S phase (reviewed  in4), suggesting that either 
mutagenesis, repair, or both occur at different rates in early and late replicating regions.

Mutational signatures are unique combinations of mutations characteristic of various mutagenesis  processes5. 
We and others have recently found that the association between replication timing and mutational signatures 
differs for different cancer mutational  processes6–8.

A possible approach for finding the mechanisms that distinguish between mutagenesis in early and late 
replicating regions (ERR and LRR) is to explore mutation rates in cells harboring a mutation in key genes that 
are components of the DNA replication or repair mechanisms. Indeed, such an approach was successfully car-
ried out by two groups who found that tumors with defects in either mismatch repair (MMR) or global genome 
nucleotide excision repair (GG-NER)  mechanisms9,10 do not show higher mutation rates in LRR, suggesting 
that differences in the efficiency of DNA repair mechanisms are the basis for the difference in mutation rates 
between ERR and LRR. This conclusion is further supported by analysis of the association of mutation rate and 
replication timing in xeroderma pigmentosum patients. Patients with severe impairment of the NER lost the 
 association11. Interestingly, a recent analysis of the association of replication timing with mutation signatures 
across 5120 whole-genome sequenced tumors from 40 cancer types did not support this conclusion. Many sig-
natures associated with MMR deficiency (such as SBS6, 14, 15, 20, 21, 26, and 44) show inconsistent association 
with replication  timing12.

Replication stress is a hallmark of cancer cells that is associated with increased genomic instability. Replication 
stress is a double-edged sword for cancer cells. While it promotes tumorigenesis by increasing genomic instability, 
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it also hinders their potential to proliferate by destabilizing replication  forks13, sensitizes them to chemotherapy 
and generates neoantigens that expose them to  immunotherapy14–16. This vulnerability is classically exploited 
in cancer treatment to increase replication stress to unsustainable  levels14,17, but new strategies are emerging, 
exploiting recently identified specificities of the replication stress response. Combination approaches integrating 
replication stress–inducing agents, such as carboplatin or gemcitabine, with immunotherapies like the immune 
checkpoint inhibitor nivolumab, have advanced to clinical trials (NCT02944396, NCT03662074, NCT03061188, 
NCT02734004, NCT02849496, NCT02657889 and NCT02571725).

In addition to cell autonomous effects of DNA damage, it was recently shown that DNA damage and especially 
replication stress can recruit the immune system to the damaged  cell18. It has been proposed that DNA damage 
and replication stress elicit the activation of inflammatory responses that contribute to tumorigenesis in some 
contexts and to senescence/aging in  others19,20. Recent studies have found that the two systems can have mutual 
effects on each other. On the one hand, defects in processing DNA replication stalled forks lead to accumulation 
of cytosolic DNA and to activation of the cGAS–STING pathway, resulting in the activation of the type I IFN 
pathway with consequent expression of ISG15 (interferon-stimulated gene 1515)21. On the other hand, inflam-
mation itself can cause replication stress. A recent study found that high levels of ISG15, intrinsic or induced by 
interferon-β, accelerates DNA replication fork progression, resulting in extensive DNA damage and chromosomal 
 aberrations22. Despite the growing evidence of association between replication stress and the immune system, a 
direct link between mutagenesis and the immune system in tumor samples has not yet been shown.

Here we readdressed the question of the contribution of RT to mutational distribution by identifying tumors 
in which this association is weaker. A systematic analysis of the association between RT and mutation rates using 
2787 whole-genome sequenced (WGS) tumors, which are available from the Pan-Cancer Analysis of Whole 
Genomes (PCAWG 23), reveals that the association of approximately a third of the samples is much weaker than 
that of the majority of samples. We hypothesized that analyses of the two groups of tumors, which differ in 
association between RT and MR, will help us to understand the molecular basis for this association. We show 
that, as expected, mutational signatures can partially explain the differences between the samples—tumors that 
contain a large number of mutations associated with mutational signatures that are prevalent in early replication 
regions have weaker association with RT. Similarly, we found that deleterious mutations in several pathways are 
enriched in samples showing weak association between RT and MR. Interestingly, analysis of genes differentially 
expressed between these two groups of tumors revealed involvement of cell–cell communication and of the 
interaction with immune cells in modulating the effect of RT on mutation rates. These findings go along with 
recent observations about a link between replication stress and immune response and, as far as we know, this 
is the first such relationship reported in vivo. Taken together, our comprehensive approach reveals the involve-
ment of both known and novel processes in controlling the genomic distribution of cancer somatic mutations.

Results
Using the degree of association between mutation rates and replication timing to character‑
ize tumor samples. Mutation rates (MR) are associated with replication timing (RT). As a rule, MR are 
higher in LRR (late replication regions) and lower in ERR (early replication regions)4,6. However, analysis of 
individual tumors revealed that this association varies considerably, and that there are many tumors with weaker 
association between MR and RT. In order to systematically investigate this phenomenon, we divided the genome 
into four equal bins of RT (limiting the analysis to genomic regions with constitutive RT, see “Methods”), and 
checked the mutation rate in these RT regions for each tumor. Then, we clustered the 2787 WGS tumors into two 
clusters according to the MR in each bin (“Methods”). Cluster 1 contains 1042 samples in which the association 
between MR and RT is weak, while cluster 2 contains the remaining 1745 samples in which the association is 
stronger (Fig. 1a, b). For simplicity of further analyses, we defined the RT-MRa (“RT-MR association”) metric as 
the  log2 of the ratio between the MR in the late and the early bins 

(

RT−MRa = log2
normalized mutation count (L1+L2)
normalized mutation count (E1+E2)

)

 . 
This RT-MRa metric ranges from − 1 to 2.5, and most of the samples with RT-MRa score < 0.8 were found in 
cluster 1 (Fig. 1a (the rightmost column) and c).

Next, we examined the possibility of an association of the RT-MRa metric with tumor type (Fig. 1d). There 
are cancer types (i.e., different projects) that contain almost only tumors with weak RT-MRa (cluster 1), such as 
kidney renal papillary cell carcinoma (KIRP) and breast cancer (BRCA), while others are heavily biased toward 
strong RT-MRa (cluster 2), such as esophageal adenocarcinoma (ESAD) and lung squamous cell carcinoma 
(LUSC). Furthermore, projects of similar cancer types showed similar behavior in this tendency (Fig. 1d—dif-
ferent projects of similar tumor types were given the same color).

The two clusters may be a consequence of confounding factors such as mutation load or age at diagnosis. In 
order to explore this possibility, we calculated the correlation between RT-MRa and those features in each project. 
Both correlations were distributed normally with a mean of 0 (Fig. 1e), suggesting that RT-MRa levels are not 
associated with mutation rate or age at diagnosis. Interestingly, we did find a small but significant correlation with 
tumor ploidy level, suggesting that tumors with higher level of duplication tend to have more somatic mutations 
in late replicating regions (Fig. 1e) Similarly, there is a very small correlation with tumor purity, suggesting that 
tumors infiltrated by other tissues show lower RT-MRa score (see “Discussion”).

Mutational signatures association with the RT‑MRa metric. In order to explore the factors that 
influence RT-MRa, we next analyzed the contribution of mutational signatures. The mutational signatures found 
in each tumor reflect the mutational processes that the tumor underwent. We have shown that mutational sig-
natures differ in their association with  RT6, and thus they may explain RT-MR association (RT-MRa). We would 
hypothesize, therefore, that a tumor that mostly underwent mutational processes that are ERR-biased will end 
up with more mutations in ERR, resulting in a weaker RT-MRa metric as seen in cluster 1.
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Figure 1.  Uneven association between replication timing and mutation rates. (a) Heatmap capturing the mutation rate in each 
sample for four RT bins (E1−L2). The samples were clustered into two distinct clusters (using K-means, see “Methods”) with 
distinct association between RT and mutation rates. The right heatmap column captures the ratio of the mutation rates between late 
(L1 + L2) and early (E1 + E2) regions. Similar results were obtained for indel analysis (Supplementary Fig. S1). (b) For each cluster, 
each line shows the mutation rate of a tumor sample at each RT region. (c) Histogram of the RT-MRa metric of all tumors is shown. 
The division into clusters is shown by colors (pink—cluster 1, green—cluster 2). (d) Box plot capturing the distribution of the RT-MRa 
metric in each cancer project. The projects are sorted by the medians of the distributions. Similar cancer types are labeled with the 
same color. The number of samples in each project is—BLCA-US:23, BOCA-UK:61, BRCA-EU:76, BRCA-UK:44, BRCA-US:92, 
BTCA-SG:12, CESC-US:20, CLLE-ES:90, CMDI-UK:62, COAD-US:46, DLBC-US:7, EOPC-DE:68, ESAD-UK:97, GACA-CN:32, 
GBM-US:41, HNSC-US:44, KICH-US:49, KIRC-US:40, KIRP-US:34, LAML-KR:8, LAML-US:33, LGG-US:19, LICA-FR:5, 
LIHC-US:54, LINC-JP:28, LIRI-JP:260, LUAD-US:42, LUSC-US:48, MALY-DE:100, MELA-AU:70, ORCA-IN:13, OV-AU:69, 
OV-US:45, PACA-AU:91, PACA-CA:143, PAEN-AU:47, PAEN-IT:34, PBCA-DE:230, PRAD-CA:110, PRAD-UK:78, PRAD-US:20, 
READ-US:16, RECA-EU:74, SARC-US:34, SKCM-US:38, STAD-US:39, THCA-US:50, UCEC-US:51. The top panel represents the 
percent of the tumors in cluster 1 in each project. (e) Box plot capturing the Pearson correlation coefficient between RT-MRa and age, 
mutation load, ploidy and purity (see “Methods”).
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To explore this relationship between mutational processes and RT, we checked the correlation between the 
RT-MRa metric and the relative contribution of different mutational signatures. We found mutational signatures 
that display positive correlation with the RT-MRa metric (i.e., samples with larger contribution of these signatures 
have stronger RT-MRa or belong to cluster 2), and mutational signatures that display negative correlation (i.e., 
samples with larger contributions of these signatures have weaker RT-MRa or belong to cluster 1) (Fig. 2a). In 
some cases, the reason for the associations is clear: signatures that are associated with ERR (such as SBS2 and 
 SBS1324) are associated with cluster 1 tumors, whereas signatures associated with LRR (such as SBS17a&b and 
 SBS7a24) are associated with cluster 2 tumors. In addition, it is known that defects in DNA repair pathways can 
cause a different association between RT and  MR9. Indeed, signatures associated with defects in DNA repair 
mechanisms (APOBEC, base excision repair, mismatch repair and homologous recombination; Fig. 2a—the bold 
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SBS) display negative correlation with RT-MRa, (i.e., contribute more to cluster 1 tumors). Similar association 
with signatures associated with DNA repair defects was found using the Kruskal–Wallis rank test (see “Methods” 
and Supplementary Fig. S2).

Next, we analyzed the association of the RT-MRa metric with mutational signatures for each project sepa-
rately. This allowed us to identify signatures that are cancer-type specific and thus are less prominent in a pan-
cancer analysis. This analysis revealed many signatures that are either positively or negatively associated with 
the RT-MRa metric in specific projects (Fig. 2b). As expected, signatures with a low mean correlation coefficient 
value are associated with cluster 1, whereas signatures with a high correlation are associated with cluster 2, which 
is graphically captured in Fig. 2c (left panel). The association between RT-MRa and mutational signatures is 
partially explained by the RT bias of each  signature6. Indeed, plotting the average correlation coefficient as a 
function of the RT bias (delta ERR-LRR) of each signature, demonstrates this association (Fig. 2c right panel). 
It should be noted that there are signatures, such as SBS7b and SBS16, that show a strong bias toward  ERR6, yet 
are not associated with low RT-MRa (absent in Fig. 2b–d). This is because those signatures have a relatively small 
contribution to the mutation load of the tumor, and thus their contribution to ERR is eclipsed by other signatures 
that contribute more mutations to LRR. For example, the UV related signature SBS7b is associated with ERR, yet 
we do not find it in samples with low RT-MRa, since it is always accompanied by the LRR associated signature 
SBS7a, which has an average higher contribution (47%) than SBS7b (16%).

After examining each signature separately, we checked whether combinations of signatures contribute to 
the RT-MRa. To this end, we represented each tumor by a vector containing the relative contribution of each 
signature, and used principal component analysis (PCA) followed by K-means clustering to define subgroups of 
tumors within each project (see “Methods”). Our approach revealed that there are distinct subgroups in many 
projects, and we examined whether these subgroups are associated with the RT-MRa metric using Wilcoxon 
rank sum test. In many projects, such as COAD-US, a strong association was found (Fig. 2d, Supplementary 
Fig. S4 and Supplementary Table S1). This finding illustrates the importance and impact of the contribution of 
signatures to the association between RT and mutation rates.

Taken together, as expected, mutational processes appear to have a strong association with the RT-MRa in 
many tumors. Yet in many cancer types we found variation in RT-MRa that cannot be explained by signatures 
(Supplementary Fig. S4 and Table S1).

Identification of pathways significantly mutated in tumors with weak RT‑MR associa‑
tion. Next, we explored the possibility that the differences in the RT-MRa scores stem from non-functional 
genes. To this end, we looked at the abundance of deleterious mutations in tumors with weak and strong RT-
MRa (the top 35% and the bottom 35% of scores, respectively). Since deleterious mutations are rare, we per-
formed this analysis at a pathway level, meaning that instead of asking whether a mutation in a particular gene is 
enriched, we asked if mutations in any gene belonging to a particular pathway are enriched. For the same reason, 
this analysis was performed in a pan-cancer manner, pooling together samples from all projects. We counted the 
number of genes with deleterious mutations in all Reactome major  pathways25and calculated the enrichment in 
the low RT-MRa group using a binomial test (see “Methods”). As was previously  suggested9–11, we found that the 
DNA repair pathway was enriched in the low RT-MRa group (adjusted P value = 3 ×  10–4; binomial test), suggest-
ing that the difference between the MR in early and late replicating regions is due to differential repair efficien-
cies. Such differential repair is probably due to differential chromatin structure and indeed mutations in genes 
associated with chromatin organization were highly enriched as well (adjusted P val = 5 ×  10–6; binomial test). 
In addition, we found enrichment of the DNA replication and cell cycle pathways (adjusted P values = 1 ×  10–3 
and 1 ×  10–8, respectively; binomial test), as well as additional pathways for which their influence on mutation 
distribution is less clear(Fig. 3a). This conclusion was independent of the definition of the deleterious mutations 
since similar results were observed using a different definition of effective mutations (Supplementary Fig. S5). 
Interestingly, dividing the DNA repair pathway into sub-pathways revealed that many of them were enriched 
(Fig. 3b), suggesting that the association between RT and MR is affected by multiple DNA repair mechanisms 
and not confined to MMR and GG-NER, as has been previously  suggested9–11. The ten most enriched genes in 
DNA repair, DNA replication and chromatin organization pathways are shown (Fig. 3c).

Figure 2.  Association between RT-MRa metric and Mutational signatures. (a) Pan-cancer analysis of the 
correlation between RT-MRa metric and signature contributions. Bar chart capturing the correlation coefficient 
(R) between the RT-MRa score and the relative contribution of each signature. The highlighted signatures 
indicate signatures with an association with DNA repair defects. Color of bars indicate the statistical significance 
of the correlation test (adjusted P value < 0.1, FDR-corrected correlation test). Small scatter plots display 
correlation of RT-MRa metric and signatures contribution for three signatures. (b) Project-specific analysis 
of the correlation between RT-MRa metric and signature contributions. Heatmap capturing the correlation 
coefficient (R) between the RT-MRa score and the relative contribution of each signature for each project. Only 
statistically significant associations (adjusted P value < 0.1) are shown. A few examples of signatures with positive 
or negative correlation between their contribution and RT-MRa are shown in Supplementary Fig. S3. (c) Scatter 
plot of the mean correlation coefficient vs. the mean percentage in cluster 1, taken from Fig. 1D (left panel), and 
the mean of delta ERR-LRR, taken  from6 (right panel). Only projects with significant correlation (those shown 
in b) were included in the analysis. (d) PCA plots of colon adenocarcinoma (COAD-US) samples separated into 
three groups based on their mutational signatures’ contribution data. Each dot (representing a tumor sample) is 
colored according to its RT-MRa score (left panel). Box plots of the RT-MRa distribution of the three different 
groups. All P values derived from FDR-corrected Wilcoxon rank–sum test. *, P < 0.1; ***, P < 0.001 (right panel).
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Identification of differentially expressed genes in tumors with weak RT‑MR association. In 
parallel to analyzing the mutated pathways, we performed differential expression analysis to identify correlation 
of gene expression and pathways with the RT-MRa metric. This analysis was performed on samples for which 
RNA-seq data exists in addition to the WGS mutation information in ICGC 23. We analyzed each project sepa-
rately, since different tissues differ in their expression profiles. As we have shown (Fig. 1d), the RT-MRa metric 
varies in most projects and thus can be used to define within each project a set of samples with stronger and 
weaker association between RT and MR. To this end, we divided the samples in each project into three equally 
sized groups according to the RT-MRa values and used DESeq2 to identify differential expressed genes between 
the strong RT-MRa and weak RT-MRa groups (Fig. 4a and Supplementary Fig. S6). We found numerous genes 
in most projects that passed the FDR < 0.1 criterion. In order to control for inflated FDR in DEseq2  analyses26, 
we calculated an experimental FDR by randomizing the tumors in each project, performed differential expres-
sion analysis and counted the number of genes that passed the FDR < 0.1 threshold in the randomized data. Only 
projects in which the number of differentially expressed genes in the randomized data that passed the threshold 

Figure 3.  Mutated pathway analysis. (a) Testing the different pathways for enrichment of deleterious mutations 
in the weak RT-MRa group. Binomial tests were performed to test which pathways are enriched. The statistically 
significant enrichment pathways are those that pass the threshold of adjusted P-value < 0.1 (i.e. − log10(adjusted 
P-value) > 1, the vertical dashed line). (b) The DNA repair and chromatin organization pathways were further 
divided into sub pathways (using Reactome definition) and the enrichment analyses were repeated. The vertical 
dashed line designates a threshold of adjusted P-val < 0.1. (c) Normalized mutation count for the two groups. 
For the designated pathways the ten genes with the lowest P-value are shown (see “Methods”; a complete list of 
enriched genes can be found in Supplementary Table S2).
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Figure 4.  Expression profile analysis. (a) Volcano-plots of three different projects. The red points are genes that 
are differentially expressed significantly between the groups (genes with higher expression in the weak RT-MRa 
group have  log2FC > 0). These points pass the thresholds of p.adjusted < 0.1 and |log2FC|> 1. (b) Heatmap 
capturing the significant enrichment of GO categories in the nine selected projects. Non-significant enrichments 
(p.adjusted < 0.1) are colored grey. (c) Histograms capturing the bias in the expression of immune related genes 
to the weak RT-MRa group in multiple cancer types. For each gene we counted the percentage of projects it was 
enriched (logFC > 0) in the weak RT-MRa group (orange bars). The distribution is strongly skewed to the right 
in comparison to a random group of tumors (gray bars) (P val <  10–16, effect size = 0.76; paired t-test). Note that 
this is not the case for a random set of genes (right histograms; P val < 0.007, effect size = 0.13; paired t-test).
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was less than 10% of the number of genes identified by DESeq2 in the original data were considered valid and 
were kept for further analyses. Following this analysis, we were left with 10 projects of interest. 9 of these had 
genes expressed higher in the weak RT-MRa group, and 6 had genes expressed higher in the strong RT-MRa 
group (5 projects contained genes in both groups). We performed GO annotation analysis on these genes using 
the Metascape  tool27, and identified several categories enriched in the weak RT-MRa group. Interestingly, very 
similar GO terms were enriched in multiple projects (Fig.  4b, Supplementary Tables  S3 and S4), suggesting 
common mechanisms, despite the wide range of tissues and phenotypes. Surprisingly, the reoccurring enriched 
categories were associated with communications between cells and with the immune system, suggesting that 
tumors with weak RT-MRa contain a higher degree of infiltration of immune cells (which most probably cause 
the enrichment of immunological categories). These results were confirmed using a more stringent differential 
expression identification approach (based on a Wilcoxon test  (following26)) (Supplementary Fig. S7, Supple-
mentary Tables S5 and S6). In order to confirm this surprising finding, we tried to confirm the generality of 
the association with the immune system. To this end, we looked at the group of genes that were enriched in 
several projects. Counting the number of projects each gene was enriched in revealed a large number of genes 
enriched in multiple projects (Fig. 4c). The 421 differential genes that are enriched in at least 3 projects are also 
enriched for immunity-associated processes (Supplementary Fig. S8). Furthermore, we were able to show that 
immune-related genes are expressed higher in the weak RT-MRa group in multiple cancer types (Fig. 4c and 
Supplementary Fig. S9). By contrast, analyzing genes with higher expression in samples with strong RT-MRa did 
not reveal any association with cell–cell communication or immunology (Supplementary Fig. S10, Supplemen-
tary Tables S7 and S8).

The association between RT-MRa and immune genes expression could be either causative or affected by a 
common confounding factor. It is generally hard to infer causality from associations and thus the only thing that 
can be done is to look for association between the RT-MRa and other potential confounding factors. Although 
there was no general association of the RT-MRa metric with either age or mutation load (Fig. 1e), we re-examined 
those associations in the nine tumor types with genes expressed higher in the weak RT-MRa group. We found 
that in colon cancer (COAD-US) the weak RT-MRa group is associated with high mutation load and also with 
neoantigens (see “Methods”). Moreover, for the 26 colon cancer samples, for which we have information about 
the status of microsatellite instability (MSI)23, the weak RT-MRa group is associated with MSI positive tumors 
(P val = 0.015; Chi square) (Fig. 5a). This suggests that for colon cancer, the association with the immune genes 
may be a consequence of high mutation load. On the other hand, in all other cases such associations were not 
found (Fig. 5b, c), suggesting that the involvement of the immune genes may be associated directly with mutation 
distribution. The associations with age at diagnosis were weak (Supplementary Fig. S11).

Discussion
Replication timing is strongly associated with mutation rates, with more mutations occurring at LRR (reviewed 
 in4). Previous studies suggested that this association stems from more efficient DNA repair in the early replicat-
ing, more accessible parts of the genome. Indeed, defects in either mismatch repair (MMR) or global genome 
nucleotide excision repair (GG-NER) mechanisms abolish the RT-MRa9–11. Here we expanded this approach 
and systematically analyzed the association between RT and MR using 2787 whole-genome sequenced (WGS) 
tumors (PCAWG;23). We found variability in RT-MRa between tumors. In approximately 30% of the tumors 
the association is weak, with almost the same number of mutations in early and late replicating regions. We 
grouped the samples according to the degree of their RT-MRa in order to identify the molecular processes that 
modulate the association.

We found a similar type of variability in RT-MRa for SNVs and for indels (Supplementary Fig. S1), however, 
when we compared individual samples we found many instances in which the extent of the association was 
different for SNVs and for indels. This supports the notion that such associations are a result of many factors, 
explaining why they show variability between individual samples. While the current work concentrates on SNVs, 
further research is needed for deciphering the factors that contribute to indels and also to CNVs.

Throughout this work we analyzed the association between RT and MR. Yet, we are not excluding the pos-
sibility that the actual association is between chromatin accessibility (for which RT is a proxy) and MR. Indeed, 
calculating a parallel metric, based on data about chromatin accessibility (CA-MRa = chromatin accessibility-MR 
association metric) gave almost identical results (Supplementary Fig. S12), suggesting that RT and chromatin 
accessibility are tightly associated and it is very hard to distinguish between them in the genomic context.

We have previously shown that different mutational processes have distinct associations with  RT6. Thus, we 
expected that the combination of signatures characterizing each tumor sample would affect the RT-MRa. Indeed, 
tumors that underwent mutational processes more abundant in ERR show weaker RT-MRa (Fig. 2), reflecting 
the fact that they have a lot of mutations in ERR. This simple explanation for the variability in RT-MRa explains 
much of the difference in the RT-MRa score between different tumor types (Figs. 1d and 2c). We also found that 
mutational signatures related to DNA repair have a greater contribution in tumors with the weaker association, 
supporting previous observations that defects in DNA repair pathways can affect the association between RT 
and  MR9–11. These results differ from the results of a recent pre-print that analyzed the association of cancer 
mutational signatures with chromatin topographical features including replication  timing12. They found that 
signatures associated with MMR deficiency vary in their association with RT between cancer types, whereas 
our pan cancer analysis revealed much stronger association (bold signatures in Fig. 2a). These differences are 
probably a consequence of the analysis method. We have analyzed the data in a pan cancer manner while Otlu 
et al., analyzed each cancer type separately. In addition, we have restricted our analysis to the parts of the genome 
that replicate at the same time in all examined tissues, whereas Otlu et al., used the entire genome. While each 
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Figure 5.  Confounding factors. (a) Confounding factors in COAD-US project: Statistic of MSI positive and 
negative tumors counts in the Strong/Weak groups (left panel), boxplots of the mutation load distribution of the 
strong and weak groups (middle panel) and of the neoantigen mutations count distribution of the strong and 
weak groups (right panel). (b) Boxplot of the mutation load distribution of the strong and weak groups in the 
different projects. All adjusted P values derived from one-tailed t-test and Benjamini & Hochberg correction 
(FDR). (c) Boxplot of the neoantigen mutations count distribution of the strong and weak groups in the 
different projects (see “Methods” for the neoantigen mutations definition). All adjusted P values derived from 
one-tailed t-test and Benjamini & Hochberg correction (FDR).
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methodology has advantages, we prefer using only the RT constitutive parts of the genome in order to avoid 
noise introduced by the differences in RT between tissues.

Clustering the samples based on the mutational signatures results in subgroups that differ in their RT-MRa 
metric (Fig. 2d). Yet, in many cases the signatures are not associated with RT-MRa, suggesting that other pro-
cesses are modulating the genome-wide distribution of mutations.

Next, we were able to show that deleterious mutations in several pathways are enriched for tumor with weaker 
RT-MRa. Moreover, this enrichment is not limited to the MMR and GG-NER pathways but extends to additional 
types of DNA repair mechanisms (Fig. 3b), as well as replication and chromatin structure pathways, suggesting 
that multiple cellular processes contribute to the uneven distribution of mutations. Interestingly, performing 
the same analysis on all the Reactome pathways revealed additional pathways which are significantly enriched 
in deleterious mutation in the low RT-MRa group (Fig. 3a). This suggests that many other processes, including 
metabolism of RNA and cellular response to stimuli, are somehow involved in the association between RT and 
MR. Further research is needed in order to decipher the underlying mechanisms for it.

It has been shown that mutations in replication-associated genes (e.g. polymerase proofreading errors) gener-
ate more mutations in late replicating  regions28, nevertheless we found enrichment for mutations in DNA repair 
genes in the weak RT-MRa group of tumors. This does not exclude the presence of tumors with DNA repair 
mutations in the high RT-MRa samples which may be the case of mutations in the replicating polymerases. 
Nevertheless, our analysis only partially supports those previous observations, since only SBS9 (associated with 
Pol Etta mutations) is positively correlated with the RT-MRa metrric, whereas SBS10a and b (associated with 
Polymerase epsilon proofreading defects) show no or slightly negative correlation with the RT-MRa metric, 
respectively (Fig. 2a).

Interestingly, a larger fraction of tumors with high RT-MRa association contain deleterious mutations in DNA 
repair genes (50%) than in the low RT-MRa group (33%). This finding apparently contradicts the enrichment 
in DNA repair associated signatures in the low RT-MRa group (Fig. 2a) and the enrichment in the number of 
deleteriously mutated DNA repair genes in the low RT-MRa group (Fig. 3a). This contradiction together with 
the recent finding that signatures associated with MMR deficiency vary in their association with RT between 
cancer  types12 suggests that mutations in DNA repair genes contribute to perturbation in the RT-MRa but are 
not always sufficient.

Differential expression analyses revealed that genes highly expressed in the weak RT-MRa samples were 
enriched in cellular processes involved with interactions between cells and especially with the immune system. 
Due to the unexpected nature of these results, we took additional measures of precautions. First, we ruled out 
the possibility of artefacts in the differential expression analysis, by calculating an experimental FDR (based on 
randomization of the group assignments) and by using a different, more conservative differential expression 
algorithm (based on a non-parametric test). Secondly, we considered only GO terms that were enriched in several 
projects (Fig. 4b). Thirdly, we found the same pathways enriched for genes that are differentially expressed in 
several projects (Supplementary Fig. S8). Finally, we showed that the immune-related categories are enriched in 
many additional projects (Fig. 4c and Supplementary Fig. S9). We also addressed the possibility that the identified 
association is due to other confounding factors, by looking at the contribution of mutation load, age at diagnosis 
and tumor sub-type (Fig. 5 and Supplementary Fig. S11). Finding immune genes highly expressed in samples 
with weak RT-MRa suggests that these samples have higher degrees of immune cells infiltration. This explana-
tion cannot be valid for the acute myeloid leukemia project (LAML-US) since it is not a solid tumor in which it 
seems that the immune genes are from the tumor itself. It is important to clarify that that the mutations found 
in the samples that were used to calculate the RT-MRa score are from the tumor and not from any infiltrating 
cells, since somatic mutation calling requires multiple occurrences of the same mutation, which is achieved in 
tumors due to their clonally but not in infiltrating normal cells. This explains why we found immunology genes 
in the expression profile analysis (Fig. 4) and did not find it in the mutation analysis (Fig. 3).

Interestingly, the finding of immune genes in samples with weak RT-MRa was not associated with the overall 
RT-MRa level, and it can therefore be found both in colon cancer in which most of the samples have relatively 
high RT-MRa levels (cluster 2; Fig. 1d) and in thyroid cancer in which most of the samples have relatively low 
RT-MRa levels (cluster 1; Fig. 1d). This would suggest that the overall level is affected by other factors, including 
the mutational signatures characteristic of each tumor type, and the immune cells infiltration affects the level of 
RT-MRa within the general range which is characteristic for each tumor type.

Our findings of a correlation between immune cell infiltration with weak RT-MRa is supported also by the 
analysis of tumor purity (Fig. 1e), that suggests that tumors that are mixed with other tissues (low purity) are 
associated with low RT-MRa. It could be explained by two opposite explanations. It is possible that cells with 
weak RT-MRa recruit the immune system with higher efficiency than those with strong RT-MRa; alternatively, 
it may be that cell–cell interactions, and particularly interactions of the cancer cells with immune cells, affect 
the genome-wide distribution of mutations. Indeed, tumors with high mutation loads and especially higher 
neoantigens load, tend to be more  immunogenic29,30. This is the case in colon cancer (COAD-US), where we 
found that the weak RT-MRa group is associated with higher mutation load and with MSI positive tumors 
(Fig. 5a) suggesting that in this case immune cells infiltration is a consequence of the higher mutation load that 
is associated with the weak RT-MRa group. On the other hand, we did not find such associations with the other 
tumor types (Fig. 5b and c), suggesting that either the non-conventional distribution of mutations recruits the 
immune system, or the involvement of the immune system somehow modulates mutation distribution. Expres-
sion profiling reports on the current situation of the sample, while mutation analysis reports on the mutational 
history of the sample since mutations accumulate over time. Thus, according to the first possibility we interpret 
the results that the current situation of non-conventional mutation distribution recruits the immune system, 
whereas according to the latter explanation we ought to assume that the infiltrating immune cells exist also in pre-
vious stages of the development of the cancer. Both explanations are consistent with recent findings regarding the 
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association of the immune system with replication  stress13,18–20. Accumulating evidence indicates that replication 
stress–inducing agents such as topoisomerase inhibitors and cells deficient in replication stress response genes 
induce the expression of type I IFNs and pro-inflammatory  cytokines21,31–33. On the other hand, inflammation 
causes replication stress, by the influence of  ISG1522. The fact that there is enrichment of immune genes in the 
weak RT-MRa samples, raises the question of why is it confined to those samples. This can be explained by the 
assumption that collision between replication and transcription machineries is the main cause of the immune-
related replication  stress34,35. Such collisions are expected to be found especially in early replicating regions, due 
to the prevalence of highly expressed genes in these  areas36–39. This, in turn, leads to weak RT-MRa40. Indeed, a 
higher percentage of mutations fell within genes in the samples with weak RT-MRa, in most (7/9) of the relevant 
projects (Supplementary Fig. S13).

An association between replication stress and inflammation (by IFI16/STING pathway) has been shown in 
hidradenitis suppurativa (HS)  patients41. Yet in the context of cancer, this was demonstrated only in tissue cul-
ture  systems13,21,22,31,33. To the best of our knowledge, this is the first demonstration of the association between 
mutation distribution and the immune system in patients’ tumor samples.

Which parts of the immune system are involved in the identified process? Our results suggest that both the 
innate and acquired parts of the immune response are involved (Figs. 4b, c and S9), however a more detailed 
analysis trying to deconvolve the immune cell signal is needed for deeper understanding of the particular con-
tribution of the immune system.

Are infiltrating immune cells always associated with a change in cancer somatic mutation distribution? 
Although our analysis hints at such a connection, it is not sufficient to support such a strong statement due to the 
following reasons. First, we were only able to identify reliably differentially expressed genes in 10 cancer types. 
Secondly, even within this limited group we found enrichment of immune genes only in several projects. Finally, 
although we ruled out the involvement of neo-antigens in recruiting the immune system in most projects (Fig. 5), 
it is very hard to rule out the involvement of other confounding factors. Thus, further research is needed in order 
to confirm and to understand the molecular mechanisms underlying this intriguing finding.

What is the evolutionary advantage of the uneven distribution of mutations along the genome? The regular 
trend of fewer mutations in the early replicating regions can be understood as a way to guard genes (which are 
concentrated in the early replicating regions) from mutations and thus its evolutionary advantage is clear. Our 
finding that in many cancer samples the distribution of mutations is almost even between early and late replicat-
ing regions raises a question about its advantages. It may be that it does not give advantage and is merely con-
sequence of factors that affect mutation distribution. Yet, it is plausible to speculate that it may be advantageous 
in recruiting the immune systems to those cells. Thus it may be that actually, the low RT-MRa pattern is more 
abundant but cells with higher mutation rate in ERR specifically recruit the immune system and get eliminated 
before developing into a mature cancer. This intriguing speculation should be tested by performing a similar 
analysis in normal cells for somatic  mutations42.

Methods
Data sources. We downloaded somatic mutation calls (VCF files) from the PCAWG consortium release 
of 2,787 whole-cancer genomes across 38 tumor  types23. The data consists of two sources—The International 
Cancer Genome Consortium (ICGC; 1902 samples) and The Cancer Genome Atlas (TCGA; 885 samples). Each 
source utilized its standard variant call pipeline (Consensus calls for ICGC, and the Broad Institute variant call-
ing pipeline for TCGA). The somatic mutation profile of the two consortiums were very similar both in terms of 
96 trinucleotide context, and in terms of mutational  signatures6. Accordingly, we combined the mutation calls 
data for all analyses.

In addition, we downloaded expression data available for 1401 of the WGS samples in ICGC. We only 
included data from primary tumors for the differential expression analysis.

Cluster division. To minimize the effect of variation in RT between cell types, we only used the constitutive 
RT regions for our analyses, which constitute approximately 40% of the human genome that have the same RT 
in 26 tissues  examined43 and are also similar in  cancer6. Constitutive RT regions were divided into 4 equal bins 
each spanning the same range of RT: earliest, intermediate early, intermediate late, latest (E1, E2, L1, L2 respec-
tively). Among the constitutive RT regions—498.6 Mb are defined as E1; 227.6 Mb are defined as E2; 238.4 Mb 
are defined as L1; and 324.6 Mb as L2. For each tumor, the number of mutations in each of the four regions was 
counted. These counts were normalized for the regions’ sizes and the number of mutations per 1 Mb were kept. 
Thus, each tumor is characterized by a vector of length four, which we used for k-means clustering (Spearman 
rank correlation method) that divided the data into two different clusters. The RT-MRa (“RT-MR association”) 
metric is RT −MRa = log2

normalized mutation count (L1+L2)
normalized mutation count (E1+E2).

The association between the confounding factors and RT‑MRa. To analyze the effect of some con-
founding factors on the RT-MRa measurement we downloaded data of ages, ploidy and purity of the tumors 
from the PCAWG  consortium23 and calculated the mutation load for each tumor. For each cancer type we 
calculated the correlation coefficient between the RT-MRa of the tumors and the specific factor. We show the 
distribution of the correlation coefficient measurements in all cancer types in Fig. 1e.

The association between the signature contribution and clusters tumors. The data of the muta-
tional signatures and their association to RT were taken from Yaacov et al.6. For each mutational signature we 
performed correlation test (by the cor.test function in R) with the RT-MRa metric. This was done both for a pool 
of all tumors (pan-cancer analyses) and for individual projects separately. In the pan-cancer analysis, the test was 
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performed on the tumors in which the signature contribution was above zero. In the cancer-specific analysis, the 
test was performed on the condition that the mean signature contribution in the project’s tumors was above 5%. 
The FDR correction was done by the p.adjust (Benjamini–Hochberg Procedure) function in R.

Pan-cancer analyses were also done using ranking statistics. For each mutational signature the tumors were 
sorted according to the relative contribution of the signature to the overall mutation load. We excluded tumors 
for which the contribution of the specific signature was below 5%. The association of the rank versus the cluster 
annotation was assessed using the Kruskal–Wallis rank test. Only statistically significant signatures were shown 
in Supplementary Fig. S2.

For examining the contribution of combinations of signatures to the RT-MRa we represented each tumor 
sample by the vector of the contribution of each mutational signature to it and used principal components 
analysis (PCA) to identify groups of similar samples. The resulting groups were further separated by K-means 
clustering (using the kmeans function in R) to determine the number of clusters by the maximum number 
of average silhouette widths of the clusters (using the factoextra::fviz_nbclust R function). We examined the 
association between our RT-MRa metric and the different groups by Wilcoxon rank-sum test for each pair of 
clusters. Finally, we computed and plotted the PCA using the stats::prcomp and ggplot2::autoplot functions, 
using the clusters we found.

Mutational analysis. We focused on all the Reactome  pathways25. As an additional control we also per-
formed the analysis three times with 500 random chosen genes.. For the DNA repair and chromatin organization 
pathways we also analyzed sub pathways (defined by the Reactome).

To focus only on mutations that have a deleterious effect on the protein we used vcf2maf  software44, which 
provide three different predictions based on Ensembl Variant Effect Predictor (VEP)45, the Sorting Intolerant 
from Tolerant (SIFT)  algorithm46 and PolyPhen (Polymorphism Phenotyping)47.

In order to analyze the most different tumors from the two clusters we only focused on the top and bottom 
35% RT-MRa score tumors.

For each pathway, deleterious mutated genes in each group were counted, and then we performed a one-sided 
binomial test to examine which mutated pathway is enriched in the weak RT-MRa group. The null hypothesis is 
that a similar ratio of deleterious mutations between the groups should be found in all pathways. Thus, we used 
the ratio in the total deleterious mutations in the strong and weak groups as the P in the binomial test. In all cases 
we corrected for multiple hypotheses testing by FDR. Sub pathway analyses were performed in the same way.

We performed the same statistical test for all individual genes (Supplementary Table S2). The 10 genes with 
the lowest P value are shown in Fig. 3C. The mutations in each gene in each group were counted and normalized 
to 100 K mutations.

For counting the neoantigen mutations in the tumors (Fig. 5) we included only mutations in genes that follow 
these definitions in the vcf2maf results: Splice Site, Nonsense Mutation, Frame Shift Del, Frame Shift Ins, Nonstop 
Mutation, Translation Start Site, In Frame Ins, In Frame Del, Missense Mutation, Splice Region.

Differential expression analysis. The differential expression analysis was performed for each cancer pro-
ject separately. Each project is divided into 3 equal groups according to the RT-MRa score. Then, we used the 
available expression data from the ICGC to examine which genes are expressed differently between the two 
extreme groups either by  DEseq248 or by Wilcoxon rank-sum  test26. The Wilcoxon test was performed on a 
preprocessed count matrix using the edgeR  package49. The obtained P values of both methods were corrected 
for multiple hypotheses using FDR. In addition, for the DEseq2 results, we calculated an experimental FDR by 
randomizing the tumors in each group in each project, re-identifying differentially expressed genes and count-
ing the number of genes that passed the FDR < 0.1 criteria in the randomized data.

To examine the bias in the expression of immune-related genes in the weak RT-MRa group in multiple cancer 
types (Fig. 4C) we calculated the average expression of genes from immune-related GO terms (and from control 
GO terms) in the weak and strong RT-MRa groups. Then we calculated the percentage of projects with higher 
expression (logFC > 0) in the weak RT-MRa group. We performed the same analysis on the results of DESeq2 
run on 2 random groups of tumors and performed a paired t-test on both lists. From this result we calculated 
the effect size using this formula: d = t

√

n1+n2
n1·n2

GO annotation analysis. For each project we took the genes that were differentially expressed in one of 
the groups (strong or weak) separately and analyzed it for GO pathways enrichment using  Metascape27. Using 
all human genes as the background. We limited our analyses to “GO Biological Processes (1148)”. We used the 
“Heatmap of enriched terms across input gene lists” from the result page. The identification of genes differen-
tially expressed in multiple projects was done using the “Evidence.csv” file (Supplementary Tables S3, S5 and 
S7). The genes enriched in multiple projects were rerun in Metascape and used the “Heatmap of selected GO”. In 
addition, we provided the “FINAL_GO.csv” file (Supplementary Tables S4, S6 and S8).

Chromatin annotations. We downloaded chromatin annotation data from a recent  publication50. Regions 
annotated as either “active” or “active2” were defined as active chromatin whereas the “inactive” regions were 
defined as inactive chromatin. For each tumor, the number of mutations in each of the two regions was counted. 
These counts were normalized for the region’s sizes and the number of mutations per 1 Mb were kept. The Chro-
matin accessibility—MRa (“CA-MR association”) metric is
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Finally, we calculated the correlation between RT-MRa and Chromatin-MRa across the tumors.

Statistics. Statistical analyses were performed using R version 4.1.2. For multiple comparisons, P values 
were corrected by FDR using the p.adjust(method = “BH"”) function in R. Plots were generated using ggplot2, 
ggpubr, and pheatmap R packages.

Data availability
The datasets analyzed during the current study are available in the PCAWG consortium repository [https:// dcc. 
icgc. org/].
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