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Demonstrating the successful 
application of synthetic learning 
in spine surgery for training 
multi–center models with increased 
patient privacy
Ethan Schonfeld 1* & Anand Veeravagu 1,2*

From real–time tumor classification to operative outcome prediction, applications of machine 
learning to neurosurgery are powerful. However, the translation of many of these applications are 
restricted by the lack of “big data” in neurosurgery. Important restrictions in patient privacy and 
sharing of imaging data reduce the diversity of the datasets used to train resulting models and 
therefore limit generalizability. Synthetic learning is a recent development in machine learning that 
generates synthetic data from real data and uses the synthetic data to train downstream models 
while preserving patient privacy. Such an approach has yet to be successfully demonstrated in the 
spine surgery domain. Spine radiographs were collected from the VinDR–SpineXR dataset, with 1470 
labeled as abnormal and 2303 labeled as normal. A conditional generative adversarial network (GAN) 
was trained on the radiographs to generate a spine radiograph and normal/abnormal label. A modified 
conditional GAN (SpineGAN) was trained on the same task. A convolutional neural network (CNN) 
was trained using the real data to label abnormal radiographs. A CNN was trained to label abnormal 
radiographs using synthetic images from the GAN and in a separate experiment from SpineGAN. 
Using the real radiographs, an AUC of 0.856 was achieved in abnormality classification. Training on 
synthetic data generated by the standard GAN (AUC of 0.814) and synthetic data generated by our 
SpineGAN (AUC of 0.830) resulted in similar classifier performance. SpineGAN generated images with 
higher FID and lower precision scores, but with higher recall and increased performance when used 
for synthetic learning. The successful application of synthetic learning was demonstrated in the spine 
surgery domain for the classification of spine radiographs as abnormal or normal. A modified domain–
relevant GAN is introduced for the generation of spine images, evidencing the importance of domain–
relevant generation techniques in synthetic learning. Synthetic learning can allow neurosurgery to 
use larger and more diverse patient imaging sets to train more generalizable algorithms with greater 
patient privacy.

Machine learning (ML) has already made significant impacts on neurosurgery. Such impacts include advances 
in surgical planning and outcome  prediction1–4,  neuronavigation5,6, and  robotics7–11. A 2020 global survey found 
that 28.5% of neurosurgeons use ML in their clinical practice, most commonly applied for outcome prediction 
and interpretation of  imaging12. However, for most desired applications of ML in neurosurgery that requires 
complex data types beyond those found in large claims datasets, there has been limited progress. This is due to 
the lack of available, diverse “big” data in neurosurgery. Until 2021, the largest publicly available dataset in the 
spine domain contained only 797 images labeled with only the spine  position13. In 2018, only 60  images13. A 
major identified barrier to “big data” in neurosurgery is that of data ownership and exchange where providers 
and systems are hesitant to share data largely motivated by legal and data privacy  considerations14.

Such privacy preservation prohibits the sharing of medical data across institutions which not only restricts the 
ability to build large datasets, required for the training of most deep learning models, but also restricts algorithms 
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to learn from data from largely only one  institution15. This “domain shift” in turn results in internally validated 
algorithms failing to generalize and externally  validate16. One possible solution is to share synthetic data that 
represents the clinical information of patient data but preserves its privacy; state-of-the-art efforts have begun 
to use GANs to generate this synthetic data and thereby allow for its release and sharing across institutions. 
Synthetic Learning (SL) is unbiased and downstream models trained on the synthetic data have achieved high 
performance on brain  tumor17 and nuclei  segmentation17 tasks.

It is imperative to determine the success of SL in a domain specific method. The generation of certain data 
types may be possible in one neurosurgical domain but not the other. Furthermore, while generation of synthetic 
data may be possible, successful training of downstream ML models on the synthetic data in certain neurosurgi-
cal subdomain and subtasks may be impossible. Therefore, it is imperative to determine the success of SL in a 
domain specific method before large, expensive efforts commit to use the technique to build towards “big data” 
in neurosurgery. While a federated learning (FL) study has demonstrated vertebral body  segmentation18, we 
could not find any study of SL in the spine domain. Furthermore, all the aforementioned demonstrations of SL 
in neurosurgery have only been validated on physical tasks of segmentation and not clinical tasks such as imag-
ing analysis. In this study we seek to study the application of generative SL in the spine domain and validate 
the method’s success for the first time on a clinical analysis task of determining image abnormality from spine 
radiographs.

Methods
Data source. VinDR-SpineXR dataset has 10,466 spine radiographs that are annotated for 13 different clas-
sifications with respective bounding  boxes13. These radiographs, coming from the Hanoi Medical University 
Hospital, were labeled for the 13 lesions by a committee of three experienced radiologists. Example classifica-
tions are enthesophytes, vertebral collapse, or spondylolisthesis. Each of the 5000 studies included in the dataset 
was labeled by one of the three radiologists. For each imaging study, information on the presence of an abnor-
mality, the classification of the abnormality, bounding boxes of each abnormality, and basic demographic infor-
mation of the patient is provided.

Variables and outcomes. For each imaging study, information on the presence of an abnormality, the 
classification of the abnormality, bounding boxes of each abnormality, and basic demographic information of 
the patient is provided.

The primary outcome of the study was the binary prediction of a radiograph being abnormal or normal using 
a machine learning model trained only using synthetic “fake” data.

Data pre–processing. After data pre–processing there were 1470 abnormal radiographs and 2303 normal 
radiographs to be included in the study which were split 80–20 into a training and testing set. Due to high com-
putational cost of training the GAN and SpineGAN, and to maximize the size of training sets, no validation set 
was used to determine hyperparameters. Instead, hyperparameters were selected from reported literature and 
the standard NVIDEA implementation of StyleGAN2 with Adaptive Discriminator  Augmentation19,20.

Each image is in DICOM format with some identifying information removed. The pixel arrays of the DICOM 
images are grayscale and of varying dimensions and resolutions. Because DICOMS were identified, many are 
missing information, some even missing pixel arrays, and thus require serious preprocessing. Each DICOM 
was preprocessed to extract its pixel array and its abnormality status using the image ID. To further preprocess 
each pixel array, the smallest dimension was taken of the image, and a square, centered at the image’s center 
was cropped for final use from the pixel array. Any image with the smallest dimension less than 128 pixels was 
not used for model training. Finally, all square cropped images were downsampled using a nearest neighbors 
approach to 256 by 256 resolution. After preprocessing, there were 1470 abnormal radiographs and 2303 normal 
radiographs to be used for all later model training.

All training was done on a google cloud virtual machine using 1 × NVIDIA Tesla A100. Data augmentation 
for the classification models included a random horizontal flip with 0.3 probability, a random rotation from − 5 
to 5°, and a random resized crop (scale = 0.8, 1.0) and (1.0, 1.0) ratio. Preprocessing for all classification models 
included a resize to 224 square pixels, and normalization to (mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 
0.225]).

Generating synthetic data. To generate synthetic spine radiographs from the real spine radiographs, a 
generative adversarial network (GAN) was used (Fig. 1). A GAN uses two competing deep neural networks 
(DNN), one that attempts to generate synthetic data, and one that competes to determine if data is from the real 
training set or is synthetic. By alternating the training of the two DNNs, both improve, and the generative DNN 
may be used to generate synthetic data. The GAN was made to be conditional such that after training, it could 
generate an abnormal spine radiograph when prompted, or a normal radiograph when prompted. While most 
GANs take as input a vector of random noise to generator a unique image, the GANs trained in this work take 
an additional input of the desired class of image to generate (ie. normal, abnormal).

To improve the generation of synthetic data, we introduce a novel GAN method that first trains a classifier 
on the real data to classify abnormal spine radiographs (Fig. 1). Then, when training the two competing DNNs, 
both the score from the competing DNN determining if the image is real or synthetic, and the score from the 
trained classifier determining if the image is clinically abnormal or normal is passed back as feedback to the 
generative model. The purpose of this novel GAN, which we call SpineGAN, was to introduce clinical informa-
tion during GAN training to generate better labeled synthetic images. The novel loss term for the SpineGAN 
generator is included below:
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The first line of the loss formula represents the standard loss term for the generator of SpineGAN. The second 
line represents the novel term that is a standard cross entropy loss for a classifier which represents whether the 
conditional label matches the predicted label by the pretrained network S.

1. Generator Loss Function (Gℓ): This term represents the loss function used to train the generator network. It 
measures the discrepancy between the generated samples (obtained by applying the generator network to a 
vector of class labels) and the discriminator’s prediction. The goal is to minimize this loss, which encourages 
the generator to produce samples that are indistinguishable from real data.

2. Vector Obtained by the Generator Network ( −→x  ): It refers to the output vector generated by the generator 
network when provided with a vector of class labels ( −→c  ) for a mini-batch of size m. This vector represents 
the synthetic data samples created by the generator.

3. Discriminator Network (D): The discriminator network is responsible for distinguishing between real data 
and the generated samples. It takes a data sample (either real or generated) as input and produces a prob-
ability score using the sigmoid activation function (σ). This score indicates the likelihood of the input being 
real.

4. Sigmoid Activation Function (σ): The sigmoid activation function is a mathematical function that maps the 
input values to a range between 0 and 1. In the context of the discriminator network, it is used to squash the 
output into a probability score, where values closer to 1 indicate a higher likelihood of the input being real.

5. Regularization Term (γ): This term represents a regularization parameter that is used to control the influence 
of regularization in the loss function. Regularization helps prevent overfitting and encourages the model to 
generalize well to unseen data. By adjusting the value of γ, you can control the impact of regularization on 
the overall loss.

6. Class Label  (ci): It refers to the class label assigned to the ith element in the mini-batch. In the context of the 
generator network, these class labels are used as input to generate samples corresponding to specific classes 
(normal or abnormal).

Figure 1.  Architecture SpineGAN generation of synthetic images and training of downstream machine 
learning models. The StyleGAN2 Generator architecture is given as a blue box in the figure and fully detailed 
in the original publication (Karras et al.)19 as is the StyleGAN2 Discriminator architecture with the orange 
box (Karras et al.)19. The SpineGAN modification to StyleGAN2 network is to introduce a pre-trained 
abnormality classifier to supplement the generator’s loss term with  cp in addition to the standard  Lp loss from the 
discriminator output. All loss terms are represented in red.
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7. Output of the Pretrained Abnormality Classification Network S ( S(−→x i) ): This term represents the output 
of a pre-existing abnormality classification network, denoted as S. It takes the ith element in the mini-batch 
( −→x i ) as input and produces a numerical value, which represents the abnormality classification score for that 
element. The value can be interpreted as the likelihood of abnormality in the input.

Lastly, a multi–conditional GAN was trained to generate spine radiographs with a detailed abnormality 
label on command. These abnormality labels included: No finding, Disc space narrowing, Foraminal steno-
sis, Osteophytes, Spondylolisthesis, Surgical implant, Vertebral collapse, Other lesions. The purpose of this 
multi–conditional GAN was to provide preliminary evidence that generating synthetic data in spine surgery 
domain applies to more complex tasks than binary classification. The training details and hyperparameters for 
the multi–conditional GAN were the same as for the conditional (normal/abnormal) GAN and SpineGAN. 
However, due to computational cost, the multi–conditional GAN was only trained for 1,200,000 images shown 
to the discriminator, where for GAN and SpineGAN, 4,200,000 images were shown to the discriminator. There-
fore, the multi-conditional GAN was used as proof of concept of the ability to generate abnormality conditional 
synthetic spine radiographs. Please see Supplemental Methods for more information regarding GAN training.

Classifier models. A convolutional neural network (CNN) was trained on the real radiographs and evalu-
ated on the test set of the real radiographs to determine the ability for abnormality binary classification using the 
real data. Then, in two experiments, using 10,000 synthetic images generated either by the GAN or SpineGAN, 
the same CNN was trained on the synthetic images and tested on the real data test set to evaluate the perfor-
mance of synthetic learning. The Adam optimizer with learning rate 0.001 and batch size of 32 was used to train 
all classifiers. Please see Supplemental Methods for more information regarding classifier model training.

Performance metrics. Frechet´ Inception Distance (FID), Precision, and Recall metrics were computed 
to evaluate the generative ability of the GAN both during training and at the completion of training. Lower 
FID indicates that the synthetic images appear closer to the real images, and thus lower FID metric indicates 
improved GAN training. Higher precision similarly evidences improved GAN training, and higher recall indi-
cates that the synthetic images generated are more diverse. The Precision metric calculates the probability that a 
random generated image falls within the support of the real image distribution. The Recall metric calculates the 
probability that a random real image falls within the support of the generated image distribution. Both preci-
sion and recall were calculated according to the NVIDEA implementation of  StyleGan219,20 and are formulai-
cally developed and defined in Sajjadi et al.21. Roughly, to evaluate whether an image falls within the real image 
distribution, one determines if the image’s embedding is within the space containing the embedding of the real 
images.

Results
Predicting abnormality classification using real radiographs. A CNN was trained on real radio-
graphs to predict whether each radiograph was abnormal or normal. The CNN achieved an AUC of 0.856 which 
shows similar performance to the state-of-the-art performance on this task reported by Nguyen et al. as 0.88613 
(Table 1).

Generating synthetic data. Both a GAN and a domain relevant SpineGAN were trained to each generate 
synthetic radiographs with a corresponding label of either abnormal or normal. The real data, comprised of both 
normal and abnormal labeled spine radiographs, is shown in Fig. 2. Figures 3 and 4 demonstrate the successful 
generation of synthetic data by a classical GAN and SpineGAN respectively. The quality of the spine radiographs 
generated with a normal label (Figs. 3a–d, 4a–d) does not seem to markedly differ from the quality of those gen-
erated with an abnormal label (Figs. 3e–h, 4e–h). From Figs. 3f and 4f, h, both the GAN and SpineGAN learned 
to generate abnormal radiographs that had a surgical implant.

From Table 2, both the GAN and SpineGAN achieved high scores on generative metrics, with the GAN having 
superior scores on FID and Precision (FID: 32.7, Precision: 0.460) as compared to SpineGAN (FID: 33.9, Preci-
sion: 0.418), and SpineGAN having a superior score for Recall (0.0194) compared to that of the GAN (0.0159).

SpineGAN(Gℓ)=− logσ(D(�x, �c))+ γ

m∑

i=1

ci logS(�xi)− γ

m∑

i=1

(1− ci)log(1− S(�xi))

Table 1.  Classifier performance on held–out test set. Comparing state–of–the–art trained classifier with 
classifiers trained on the real data, synthetic data from GAN, and synthetic data from SpineGAN.

Abnormality classification Test AUC 

Nyugen et al. (State of the art) 13 0.886

Real data 0.856

Synthetic data (GAN) 0.814

Synthetic data (SpineGAN) 0.830
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Predicting abnormality classification using synthetic radiographs. A CNN was trained on syn-
thetic radiographs to predict the binary task of abnormal or normal. When trained on synthetic images from the 
GAN, the CNN achieved an AUC of 0.814, while the CNN that was trained on synthetic images from SpineGAN 
achieved an AUC of 0.830 (Table 1).

Generating multi–conditional synthetic data. Examples from the successful proof of concept of gen-
erating synthetic spine radiographs with specific abnormalities are shown in Fig. 5a–d. In the four examples 
provided, both spondylolisthesis and surgical implant are visualized.

Discussion
Using spine radiographs labeled as either normal or abnormal, we conditionally generated synthetic spine radio-
graphs that were respectively labeled. We demonstrate both the successful generation of synthetic spine imaging 
and successful training of a machine learning classifier on the synthetic data with similar performance to a clas-
sifier trained on the real data. This represents the first time that synthetic learning (SL) has been demonstrated 
in the domain of spine surgery and the first time that SL has been demonstrated in neurosurgery to work for 
imaging analysis. These results have immediate clinical application for efforts seeking to release patient data to 
the research community without privacy concerns. By generating and sharing synthetic data using the approach 

Figure 2.  Real spine radiographs used to train the abnormality classifier on real data and train the generative 
models (GAN and SpineGAN), (a–d, g) No finding, (e) spondylolisthesis, (f) surgical implant), (h) disc space 
narrowing.

Figure 3.  GAN generated synthetic spine radiographs specified to produce normal radiographs (a–d) and 
abnormal radiographs (e–h), (a–c, g–h) no finding, (d) disc space narrowing, (e) spondylolisthesis, (f) surgical 
implant.
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Figure 4.  SpineGAN generated synthetic spine radiographs specified to produce normal radiographs (a–d) 
and abnormal radiographs (e–h), (a–c, e) no finding, (d) spondylolisthesis, (f) surgical implant, (g) disc space 
narrowing, (h) surgical implant.

Table 2.  Quantitative metrics (Fréchet Inception Distance, Precision, Recall) are provided for the GAN and 
SpineGAN generated synthetic spine radiographs.

Generative metric analysis FID Precision Recall

GAN 32.7 0.460 0.0159

SpineGAN 33.9 0.418 0.0914

Figure 5.  Selected examples from the proof-of-concept conditional generation of synthetic spine radiographs 
with a specific abnormality label options: No finding, Disc space narrowing, Foraminal stenosis, Osteophytes, 
Spondylolisthesis, Surgical implant, Vertebral collapse, Other lesions. (a) disc space narrowing, (b) no finding, 
(c–d) surgical implant.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12481  | https://doi.org/10.1038/s41598-023-39458-y

www.nature.com/scientificreports/

outlined in this work, institutions can together build generalizable, big datasets of clinically meaningful imaging 
information, with confidence from our results of the successful ability to train machine learning models on the 
synthetic data with similar performance. Furthermore, we introduce a domain specific method to generate the 
synthetic data, that we demonstrate results in greater clinical information generated with improved ability to 
train downstream machine learning models. This method is outlined and can be adopted for all future applica-
tions of synthetic learning in neurosurgery and other medical domains.

Evidence of the successful generation of spine radiographs by both a traditional GAN and a modified domain 
relevant GAN that we term SpineGAN is provided by quantitative metrics. Both generative models achieved 
very strong FID scores that measure the quality of the generated images (Table 2) as well as high precision 
scores (Table 2). As both of these metrics are domain agnostic, increased confidence of the successful generative 
quality is provided by the success of training the downstream abnormality classifier (Table 1). For generative 
ML, evaluating the quality of generations suffers from a lack of metrics that consider medical factors. Instead, 
qualitative analysis of generated examples is crucial. For both the GAN (Fig. 3) and SpineGAN (Fig. 4), both 
normal and abnormal generated radiographs resemble the real radiographs (Fig. 2) in their diversity of beam 
orientation, levels, and abnormality types. As a proof of concept for the success of SL for more clinically com-
plex tasks, a multi–conditional GAN to generate specific abnormalities on spine radiographs was trained for 
the project. Despite limited training due to high computational costs of the project, successful generation was 
achieved (Fig. 5).

A key element of this work is the development of a modified GAN for the task of SL in spine domain. Spin-
eGAN relies on a preliminary trained model that can differentiate normal and abnormal radiographs to be used 
during its training. While traditional GANs are trained with feedback on whether the fake image was deemed 
real, SpineGAN trained with additional feedback on whether the fake image’s label was deemed correct by the 
classifier. Motivation for this approach was to incorporate domain specific information during training time to 
push the generative training towards clinically relevant differences in its generations, for the success of training 
downstream models on the synthetic data. From Supplementary Fig. 1, SpineGAN not only achieved similar 
performance on traditional generative metrics as the GAN, but it had higher recall likely corresponding to more 
clinically diverse images and trained faster. This faster training is an important consideration as these models 
take multiple days and hundreds of dollars to train. Finally, SpineGAN achieved an AUC of 0.830 compared to 
an AUC of 0.814 by the traditional GAN for training the SL classifier (Table 1). Considering the AUC of 0.856 
using real data, SpineGAN more closely preserves clinical information in its synthetic generations compared to 
the traditional GAN.

Preserving data privacy while building datasets representative of multiple centers is currently a major topic 
of discussion in  neurosurgery22. The most common approach to this problem, Federated Learning (FL), trains 
an ML model at each institution and then aggregates these models without any data ever leaving each institu-
tion. FL has been successfully demonstrated for the detection of intracranial  hemorrhage22, vertebral body 
 segmentation18, and tumor boundary detection for  glioblastoma23. However, there are two problems with FL. 
The first problem is that recent work has demonstrated that computational attacks can rederive the patient data 
used in  FL24. The second problem is that once the FL algorithm is trained, it is impossible to use the data across 
the institutions to train a similar ML model for another purpose without starting over. With SL as demonstrated 
in this work for spine surgery, the research community benefits from a dataset of synthetic images that can be 
used and reused to train ML models.

As the synthetic learning strategy presented in this work is expanded to more complex downstream machine 
learning tasks or to generating synthetic scans to be used for education, it likely will be important to have a 
method to filter bad–quality synthetic images. Here we propose a few such methods. The most traditional method 
is easily accomplishable from the current code release. For each generated image, a noise vector is passed as input 
alongside the conditional label (normal/abnormal). These noise vectors come from a probability distribution, 
where the generative model produces more standard images from noise vectors that are closer to the center of the 
distribution. To encourage high–quality images, the noise vectors used for input can be thresholded to only use 
those that come from within a selected area near the center of the distribution, depending on the downstream 
task. However, while this is currently feasible and highly scalable, it is not a full guarantee of high quality. Other 
strategies include using a downstream classifier that can classify an image as being a spine radiograph or not and 
filtering out any synthetic images that do not pass this test.

Despite the findings, the study has several limitations. Firstly, the SL approach used requires high technical 
capability and computational costs (~ 500 USD) to train the model used to generate the synthetic data. Because 
SL has immediate clinical applications, but a large technical barrier, a simple package was developed that can be 
used to replicate the method on new real data with the only prerequisite of very basic coding experience. This 
repository is publicly available (https:// github. com/ Ethan- schon feld/ Spine GAN) and future work can develop 
the provided code into a clinically accessible application. Another limitation of the work is that while the SL 
approach was validated on abnormality classification, it may not apply for more complex image analysis such as 
benign and malignant diagnosis of spinal tumors by ML on  MRI25. This work is the first demonstration of the 
success of SL on any neurosurgical clinical image analysis beyond structural segmentation and future work will 
investigate SL on more complex analysis.

Conclusion
The successful application of synthetic learning was demonstrated in the spine surgery domain for the clas-
sification of spine radiographs as abnormal or normal. For the first time in neurosurgery, synthetic learning 
was demonstrated for a clinical image analysis task. A modified domain–relevant GAN is introduced for the 
generation of spine images, evidencing the importance of domain–relevant generation techniques in synthetic 

https://github.com/Ethan-schonfeld/SpineGAN
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learning. Synthetic learning can allow neurosurgery to use larger and more diverse patient imaging sets to train 
more generalizable algorithms with greater patient privacy.

Data availability
The datasets generated and/or analysed during the current study are available in the VinDR-SpineXR PhysioNet 
repository, https:// www. physi onet. org/ conte nt/ vindr spine xr/1. 0.0/. Please contact ethan.schonfeld@stanford.
edu for more information.
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