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Review of calibration strategies 
for discrete element model 
in quasi‑static elastic deformation
Xianyang Liu 1, Qunwei Wang 2, Yongwei Wang 1* & Qinxi Dong 1,3*

This study first reviewed theories of the mechanical response of structures under loading, and 
the discrete element method provides a route for studying mechanical response including elastic 
deformation and structure failure. However, the direct acquisition of the microscopic parameters from 
the governing equations of the discrete element method via experiments encounters challenges. One 
possible strategy to obtain these microscopic parameters is parameter calibration that are widely 
used by researchers. Secondly, the governing equations and failure criterion of the discrete element 
method are summarized, and the microscopic parameters that would be calibrated are pinpointed. 
Next, the principles of classical calibration methods of discrete element method are explicated in 
detail, alongside the validation and discussion of their properties. Lastly, this study examined the 
applicability of calibrated parameters and points out that the size ratio, porosity, maximum radius, 
and minimum radius of particles should be identical in both the geometric calibration model and that 
for applications.

When an external force is applied to a structural system, mechanical responses occur. Classical continuum 
mechanics is commonly employed in the investigation of these mechanical responses, with the governing equa-
tions involving partial differential equations. However, when classical continuum mechanics encounters fractures, 
it is faced with difficulties due to the nonexistence of derivatives at discontinuities1 (e.g., fracture ).

Various methods have been proposed by researchers to address fracture-related issues, including phase field 
theory2, extended finite element method3,4, peridynamics1, and discrete element method5. Phase field theory for 
fractures utilizes a continuous damage function to approximate the presence of free discontinuity surfaces6,7. 
However, it should be noted that phase field fracture technology solely describes the progression of highly 
localized damage, and not the nucleation and propagation of discontinuities. Therefore, it is fundamentally a 
continuous field-based technology. The extended finite element method (XFEM) is a numerical method that 
adds a function capable of reflecting discontinuities to the displacement function of the traditional finite ele-
ment method, The method utilizes the level set method to dynamically track interface changes, allowing for 
the resolution of various types of discontinuities, such as cracks, holes, and inclusions8. However, XFEM may 
encounter challenges when dealing with crack branching. Peridynamics, instead of relying on traditional differ-
ential equations, employs integral equations to avoid singularity at crack tips1. Peridynamics holds tremendous 
advantages in solving non-continuous problems such as fracture9,10. However, stiffness reduction issues around 
material boundaries may arise in peridynamics. The DEM regards materials as discrete media, where each block 
or particle moves according to Newton’s second law5. They can simulate displacement, rotation, sliding, and even 
separation. DEM can realistically and intuitively simulate fracture and other large deformation phenomena. The 
fracture of bulk systems comprised of particles initiates from the separation of particles. The disappearance of 
the force between two particles means the onset of a crack. With decades of development, DEM has been widely 
applied in various fields such as geotechnical engineering11–16, mining17–20 and agriculture21–25. Accordingly, 
several DEM software packages have been developed26–29.

Before conducting simulations using DEM, it is essential to determine the material parameters involved in the 
model. In classical continuum mechanics, material parameters such as Young’s modulus and Poisson’s ratio can 
be determined through experiments. However, parameters from DEM need to be specified at the microscopic 
level, such as normal contact stiffness and tangential contact stiffness which are called microscopic parameters. 
These microscopic parameters are different from the macroscopic parameters. It has difficulties to measure 
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experimentally30. At present, the method for determining microscopic parameters in DEM is parameter calibra-
tion. It is noteworthy that this study focuses on the elastic deformation of the solid structure that is assumed to be 
composed of millions of particles under quasi-static loading. The study of elastic deformation primarily relies on 
the principles of elasticity theory while the dynamic particulate systems rely on other mechanics (e.g. theoretical 
mechanics)31–38. As a result, the key parameters and calibration methods differ significantly between the elastic 
structure and dynamic particulate systems. For instance, particle density is measured using a gas pycnometer, and 
the sliding friction coefficient is determined through the sliding friction test in dynamic particulate systems31,32. 
Linearly elastic deformation employs constitutive equations of linear elasticity. The fundamental macroscopic 
parameters in linear elasticity are Young’s modulus and Poisson’s ratio. These macroscopic parameters have a 
great influence on the deformation of structure39. In the context of linear elasticity, these macroscopic param-
eters correspond to the microscopic parameters of the discrete element model, namely the effective modulus 
and stiffness ratio.

With the widespread application of the discrete element method, scholars developed several calibration 
strategies. Yoon stated that the trial-and-error method was the only method available before 200640. With the 
increasing application of DEM, the empirical method was proposed and the experience could be used to deter-
mine the initial values of the calibration. In 2007, the design of experiment (DOE) methodology was proposed for 
calibrating macroscopic and microscopic parameters through the utilization of experimental designs40. Machine 
learning has a remarkable capability in handling nonlinear issues. In 2011, the application of neural network 
training was utilized in DEM calibration41. Now various machine learning methods have been explored for 
parameter calibration42–44. In 2019, Qu made a contribution by presenting a theoretical derivation for DEM 
calibration45. The basic idea of this method is that the elastic energy density characterized by the DEM and that 
described by classical continuum mechanics are equivalent. In 2021, the evolutionary algorithms (e.g., particle 
swarm optimization and the differential evolution algorithm) were proposed for calibration without training 
data46,47. These calibration strategies were described and discussed in the following sections.

The primary goal of this paper is to review these calibration methods. The remainder of the paper is organized 
as follows: in “Basic concept of discrete element model” section describes the basic concepts of the discrete ele-
ment method, including governing equations, failure criterion, and related microscopic parameters that should be 
calibrated; In “Review of calibration strategies” section introduces the principles and processes of the calibration 
methods and discusses their advantages and disadvantages; In “The applicability of calibrated parameters” section 
studies the applicability of calibrated parameter via particle distribution and particle radius; In “Conclusions” 
section presents recommendations and conclusions on the calibration methods based on the previous research.

Basic concept of discrete element model
The DEM is proposed by cundall5 in the 1970s. The core of DEM is Newton’s second law. There are several con-
stitutive models in DEM. The classification of constitutive models is usually divided into two categories: elastic 
and inelastic models. The elastic models can be divided into linear and nonlinear models. Hertz-Mindlin model 
and Johnson-Kendall-Roberts model belong to nonlinear models48–50. The linear contact model, linear contact 
bond model, and linear parallel bond model are linear models that were discussed in this study. This section 
provides a brief overview of the governing equations of DEM and the microscopic parameters involved.

Governing equations.  DEM has a strong capacity to simulate elastic deformation, crack initiation, crack 
evolution, and structural failure due to its ability to imitate the evolution of material crack formation51–53. This 
ability mainly relies on the governing equations of DEM5, which are as follows:

•	 Equilibrium equations: 

•	 Constitutive equations: 

•	 Kinematic admissibility and compatibility equations: 

In equilibrium equations, Fi,j is the contact force exerted by particle j on particle i. N is the total number of 
particles in contact with particle i. bi is the body force acting on the particle i. mi is the mass of particle i. ai is the 
acceleration of particle i. The interaction between the above particles is shown in Fig. 1.

And Fi,j = F
n
i,j + F

s
i,j , where Fni,j is the decomposition of Fi,j in the normal direction, and Fsi,j is the decomposi-

tion of Fi,j in the tangential direction.
In constitutive equations, Kn

i,j is the normal contact stiffness between particles i and j. Ks
i,j is the tangential 

contact stiffness. Un
i,j is the normal overlap. Note that the stiffness and overlap from the dynamic particulate sys-

tems are commonly described by k and δ , respectively54. Because the linear model cannot bear tension between 

(1)
N
∑

j=1

Fi,j + bi = miai

(2)

{

F
n
i,j = Kn

i,jU
n
i,jn for Un

i,j > 0
�

F
s
i,j = −Ks

i,j

�
Us
i,js for

∣

∣

∣
Fsi,j

∣

∣

∣
<

∣

∣

∣
µFni,j

∣

∣

∣

(3)
{

Un
i,j = ri + rj −

∣

∣xi − xj

∣

∣

�
Us
i,j = Vs

�
t



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13264  | https://doi.org/10.1038/s41598-023-39446-2

www.nature.com/scientificreports/

particles. Equation (2) exists when Un
i,j is greater than 0. n is the normal unit vector at the contact point of two 

particles i, j. 
�

F
s
i,j is the increment of tangential contact force between particles i, j. 

�
Us
i,j is the tangential incre-

ment of overlap. s is the tangential unit vector. µ is the friction coefficient between the particles, which determines 
whether frictional slip occurs.

In kinematic admissibility and compatibility equations, ri and rj are the radius of particles i, j. xi and xj are the 
coordinate vectors of particles i, j, respectively. 

�
Us
i,j is the relative displacement increment generated tangentially 

in time 
�

t . Vs is the relative tangential velocity between contact particles.

Other models.  Apart from the linear model, the bond model is another commonly utilized model in the 
field55. The major distinction between them is the fact that bond models permit the development of tensile 
forces, as evidenced by their disparate constitutive equations.

•	 Constitutive equation of linear contact bond model 

•	 Constitutive equations of the linear parallel bond model 

Where 
�

F
n
i,j and 

�
F
s
i,j are the normal and tangential contact force increments, respectively. kni,j is the normal 

stiffness per unit area. ksi,j is the tangential stiffness per unit area. And A is the bonded cross-sectional area. 
�

Un
i,j 

is the normal relative displacement increment.

Failure criterion.  The failure of the bond is mainly controlled by the three parameters of tensile strength σc , 
cohesion c and internal friction angle φ29. From Fig. 2, it is shown that the bond breaks when the tensile strength 
σc or shear strength τc is reached. The shear strength is determined by τc = c + σ tanφ , where σ = F

n
i,j/A is the 

average normal stress acting on the cross-section of the parallel bond. When φ is 0, τc becomes a constant, which 
also applies to the linear contact bond model.

Microscopic parameters.  From the above, it is shown that different models require different microscopic 
parameters. Among the models, the normal and tangential stiffness are related to the size of the particles. To 
facilitate the calibration, effective modulus E∗ = Kn

i,j l/2rmin where l = ri + rj , rmin is the smallest radius between 
ri and rj and stiffness ratio K∗ = Kn

i,j/K
s
i,j are used. The specific microscopic parameters to be calibrated are listed 

in Table 1 below:
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Figure 1.   Interaction between particles.

Figure 2.   Failure criterion in linear parallel bond model29.
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Review of calibration strategies
Trial‑and‑error method.  Calibration principle.  Several researchers have conducted extensive studies on 
parameters calibration of DEM with the trial-and-error method30,40,42,56. Some researchers employed uniaxial 
testing in their research57,58. Figure 3 illustrates the calibration procedure of the trial-and-error method, which 
begins by obtaining the material’s macroscopic parameters through experiments. The DEM microscopic param-
eters are randomly selected for numerical simulation, and the resulting macroscopic parameters are calculated. 
If the error between the measured macroscopic parameters and the calculated macroscopic parameters does not 
meet the requirement, the DEM microscopic parameters are updated until the error meets the requirement. This 
process continues until the DEM-calibrated parameters are obtained.

Several researchers have conducted extensive studies on calibrating the parameters in DEM, with the trial-
and-error method being a common method30,40,42,56. Figure 3 illustrates the calibration procedure of the trial-
and-error method, which begins by obtaining the material’s macroscopic parameters through experiments. The 
DEM microscopic parameters are randomly selected for numerical simulation, and the resulting macroscopic 
parameters are calculated. If the error between the measured macroscopic parameters and the calculated macro-
scopic parameters does not meet the requirement, the DEM microscopic parameters are updated until the error 
meets the requirement. This process continues until the DEM-calibrated parameters are obtained.

For homogeneous, isotropic linear elastic materials, equation (6) or equation (7) is utilized to calculate the 
macroscopic parameters E and υ from simulation results of uniaxial compression.

Where 
�

σy is the increment of component of the Cauchy stress tensor in the direction of the compression. �
εx is the increment of the component of the infinitesimal strain tensor in the transverse direction. 

�
εy is the 

increment of component of the infinitesimal strain tensor in the direction of the compression. And the stress 
component σy can be calculated by equation (8).
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Table 1.   Microscopic parameters to be calibrated. (Pb_emod is bond effective modulus, Pb_kratio is bond 
normal-to-shear stiffness ratio).

Linear model Linear contact bond model Linear parallel bond model

Emod E∗ Yes Yes Yes

Kratio K∗ Yes Yes Yes

Fric µ Yes Yes Yes

Shearf τc Yes

Tenf σc Yes Yes

Pb_emod pb_E∗ Yes

Pb_kratio pb_K∗ Yes

Coh c Yes

Fa φ Yes

Figure 3.   Trial and error method process.
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Where F is the external force in the direction of uniaxial compression and A′ is the cross-section area where F 
acts directly. The strain component εy can be calculated by equation (9).

Where L is the original length of the specimen in the uniaxial compression direction. And L0 is the change in 
length of the specimen in the uniaxial compression direction after deformation.

Validation.  After calibration, Zhou59 used the calibrated parameters to conduct simulations. By comparing the 
simulation and experimental results of Shanghai clay, as shown in Fig. 4, it was found that the curve obtained 
from the experiment did not fit the curve obtained from the simulation.

The comparison between the stress-strain curves obtained from DEM simulation and experiments, as 
conducted by zhou59, is shown in Fig. 4. Figure 4 shows that the DEM simulated curve encounters a nonlin-
ear deformation before reaching the peak. The experimental curve and the DEM simulated curve bifurcate 
largely at the beginning of loading. The strength from the experiment is 166.8 KPa while that of the DEM 
simulation is 149.5 KPa. The relative error between them is 10.3%. Note that the relative error is defined by 
∣

∣strength from experiment − strength from DEM
∣

∣/strength from experiment . Moreover, the strain value of the peak 
point from the experimental curve is much larger than that of the DEM simulated curve. The DEM simulated data 
are not in good agreement with the test results. Because it has difficulties pinpointing the target of macroscopic 
parameters under the trial-and-error method (see Fig. 5). The star in the macroscopic parameter space on the 
right represents the true solution, and the dashed circle around it represents its neighborhood.

Discussion.  The trial-and-error method is easy to operate. However, it has great difficulty to get satisfactory 
results due to a high degree of randomness. Meanwhile, it has high computational costs. Furthermore, the trial-
and-error method lacks scientific rigor, and calibrated parameters may only map into a subset of the macro-
scopic parameter space close to the true solution, as shown in Fig. 5.

(8)σy =
F

A
′

(9)εy =
L− L0

L

Figure 4.   Comparison between experiment and simulation59.

Figure 5.   Calibration results and true solution.
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Empirical method.  Determining microscopic parameters to improve the agreement between simulation 
results and experimental data has been a longstanding challenge for researchers. With an increasing number 
of studies and applications of DEM, calibration techniques have been developed and refined over time, such as 
estimating appropriate initial values of certain material parameters based on prior knowledge of their expected 
ranges. Researchers55,60–73 have conducted DEM simulations of different materials, such as sand, clay, granite, 
and synthesized material-specific properties. With the widespread application of the discrete element method, 
scholars become more experienced in understanding material characteristics described by DEM. Zhang74 con-
ducted triaxial simulations and observed that an increase in the normal bond strength led to large increments 
in the macroscopic elastic modulus and peak stress. Through sensitivity analysis, scholars have identified the 
sensitivities of macroscopic parameters to variations of the stiffness ratio75. Similarly, sensitivities of macroscopic 
parameters to the contact modulus were found following the order of the elastic modulus, the tensile strength, 
the compressive strength, and Poisson’s ratio. Zhou performed biaxial simulations on cohesive soils, revealing 
that the normal and tangential bond strength governed the material’s shear failure morphology64.

Not only the microscopic parameters but also the geometrical modeling influences the accuracy of the cali-
bration. Some researchers31,76–89 have explored calibration strategies from the perspective of particle shape and 
extracted useful information, which can enhance the accuracy of the calibration process. Zhang conducted biaxial 
analyses using four distinct particle forms: circular, elongated (similar to rectangles), triangular-like, and square-
like particles. Their findings indicated that, when the microscopic parameters were identical, the particle shape 
exerted a significant influence on the macroscopic characteristics of the particle samples 76. Similarly, Coetzee77,90 
employed clusters composed of particles with various shapes. It was observed that clusters comprising eight or 
four particles demonstrated superior accuracy compared to those consisting of two clusters. Xu91 implemented 
digital imaging techniques to enable automated modeling for discrete element simulations.

The aforementioned studies represent the collective research experience of various scholars in the field of the 
discrete element method. These experiences can facilitate parameter calibration, such as estimating appropriate 
initial values of certain materials. This type of method is named the empirical method. This section provides an 
overview of the empirical method obtained from the two perspectives of particle shape and material parameters.

Calibration principle.  Several researchers emphasized the significance of the particle shape and generated geo-
metric models using digital imaging techniques. The first step is to select several representative rock particles 
from a sample that is scanned for equivalent blocks, as shown in Fig. 6. Three sets of clusters were created using 
2, 4, and 8 spheres, respectively, and are referred to as 2-cluster, 4-cluster, and 8-cluster. Generally, as the number 
of spheres increases, the differences in volume between the generated model and the actual block decrease. These 
are some modeling experiences from the perspective of shape.

The mechanical properties of different materials can be very different, so the calibration experience of differ-
ent materials may also vary greatly. The calibration experience of some rock materials is discussed in this part. 
According to the experience of previous tests, one can determine the initial microscopic parameters as the initial 
values for updating. These initial parameters are determined based on experience, which can help reduce the 
computational cost of calibration in the trial-and-error method.

Figure 6.   Scan maps and discrete element clumps31.
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Based on experience, the Poisson’s ratio of rock is mainly influenced by the stiffness ratio (i.e., pb_K∗ ). The 
main influencing factor of Young’s modulus is the contact modulus of the particles (i.e., pb_E∗ ). For the failure 
model of the material, experience indicates that the ratio of tensile strength σc and cohesion c controls the failure 
mode of the material. In uniaxial tests, when the ratio is larger, the specimen is more likely to show shear failure. 
When the ratio is smaller, the specimen is more likely to show brittle failure. According to Shi82 experience, this 
ratio is between 0.5 and 2. One can determine the ratio value based on the failure mode. After determining the 
ratio, the other tensile strength σc can also be calculated by assuming a cohesive c. The two values obtained are 
called the reference bonding strength. Based on the reference bonding strength, one can multiply it by a coef-
ficient (e.g., 0.5, 1.0, 2.0) to obtain different peak strengths.

Validation.  Shi believes that DEM simulations not only require reasonable microscopic parameters but also 
need to consider the mineral distribution within the microscopic structure of rocks82. Therefore, he employed 
digital imaging techniques to characterize the microscopic structure for geometric modeling. This model was 
subsequently compared with experimental data, as illustrated in Fig. 7. The results demonstrate that DEM simu-
lations exhibited marginally elevated stresses in the early phases of the experiment, which later matched closely 
with the experimental curve during the middle phase. However, the DEM simulation produced markedly higher 
stresses than experimental data during the onset of cracks. The calculated Young’s modulus from the DEM 
simulation is 20.5 GPa while that from the experiment is 21.04 GPa. The relative error between them is 2.57%. 
Note that the relative error is defined by |Ec − Ee|/Ee , where Ec is Young’s modulus from DEM simulation while 
Ee is Young’s modulus from the experiment. Moreover, the uniaxial compressive strength from the experiment 
is 225.4 MPa while that of the DEM simulation is 216.43 MPa. The relative error between them is 4.04% which 
demonstrates a similarity. The strain value of the peak point from the DEM simulated curve approximates that 
of the experimental curve. The DEM simulated data are in good agreement with the test results which validates 
the calibration method.

Discussion.  Many researchers use their engineering experience to guide DEM calibration. These experiences 
help scholars complete calibration faster and more accurately. However, there are still some issues with empiri-
cal methods that cannot be ignored. A certain amount of trials are still required. Empirical methods may help 
scholars find the initial value or the direction of calibration faster, but it’s not a one-shot solution. Trial and error 
is required, and the calibration is still somewhat blind.

Based on these issues, some researchers have proposed the DOE method to carry out the calibration for 
quickly and scientifically determining the values of microscopic parameters, which may reduce the computa-
tional cost.

Design of experiments method.  DOE is a method of using experimental design to quickly identify the 
linear and nonlinear relationships between macroscopic and microscopic parameters. Based on some condi-
tions, a set of optimization equations are developed. By solving these equations, the specific values of micro-
scopic parameters can be obtained without further trial and error.

Yoon40 applied the DOE methodology to DEM parameter calibration. Then, numerous researchers have 
conducted extensive research on the DOE method. Kevin92 utilized an appropriate experimental design 
(Taguchi method) and concluded that individual parameter calibration was unsuitable. Yan and other 
scholars93–97performed calibration on different materials using the DOE method, explored the impact of micro-
scopic parameters on macroscopic parameters and further proposed corresponding adjustment criteria. Deng 
Shuxin and other researchers56,98–101 used the DOE method to calibrate a 3D model and they discovered insig-
nificant deviations in the results. Peng and other researchers102–104 believed that the Plackett-Burman (PB) design 
was insufficiently accurate and therefore developed various methods, such as spherical symmetry design and 
central composite design. These investigations have made significant contributions to DEM calibration. Nguyen105 

Figure 7.   Comparison of experiment and simulation82.
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simulated multiple DEM models of tensile tests with varying microscopic parameter values to generate a mac-
roscopic parameter response database. They analyzed the database with thousands of data sets using nonlinear 
least squares and derived analytical laws.

Calibration principle.  Firstly, macroscopic and microscopic parameters are selected. The macroscopic param-
eters of the homogeneous isotropic linear elastic material are taken such as the uniaxial compressive strength σu , 
Young’s modulus E, Poisson’s ratio υ and uniaxial tensile strength σt . The microscopic parameters of the linear 
contact bond model are determined such as the effective modulus E∗ , stiffness ratio K∗ , friction coefficient µ , 
tensile strength σc and shear strength τc . The macroscopic and microscopic parameters are expressed by α and β 
respectively, as shown in equation (10) and equation (11).

Then several sets of numerical simulation experiments were performed. Different microscopic parameters were 
selected for each set of experiments and macroscopic parameters were calculated based on the simulation results.

After obtaining the simulation results, the functional relationship between the microscopic and macroscopic 
parameters is established as shown in equation (12).

More specifically, we establish a linear relationship.

Where A is a matrix of linear coefficients, denoted specifically as A =
[

X1 X2 X3 X4

]T . X1 is a vector of linear 
coefficients of σu . X1 is denoted specifically as X1 =

[

a1 a2 . . . a6
]T . The remaining parameters follow this rule 

similarly. According to equation (13), the key to establishing the relationship between macroscopic and micro-
scopic parameters is to determine the coefficient matrix A . There are various ways to obtain the matrix A. Here, 
we can solve X1 , X2 , X3 and X4 respectively. Taking X1 as an example, we first establish the following equation (14)

There are 6 unknowns in X1 , and at least n equations (where n ≥ 6 ) are required to solve equation (14). Therefore, 
it is necessary to conduct n sets of DEM simulations of the same system with varying microscopic parameters. 
Each set of simulations aims to determine the corresponding macroscopic parameters. Finally, the least squares 
method can be used to obtain X1 . By analogy, X2 , X3 , and X4 can also be obtained, leading to the determination 
of A.

The previously obtained relationship between macroscopic response and microscopic parameters is linear. 
To further obtain the non-linear relationship between macroscopic response and microscopic parameters, two 
microscopic parameters with the most significant impact on a particular macroscopic parameter are selected. For 
instance, Yoon40 identified σc and τc as the two microscopic parameters that have the greatest impact on tensile 
strength. Considering the mutual influence between these two coefficients, a non-linear relationship between 
macroscopic parameters and microscopic parameters is established according to equation (15).

Where γ =
[

τc σc τcσc τ 2c σ 2
c 1

]T is the microscopic parameter vector and the nonlinear coefficient vector is 
denoted as x1 =

[

e1 e2 . . . e6
]T . The coefficient vector x1 in equation (15) can be obtained via the least square 

method.
To minimize the discrepancy between the numerical simulation results and the physical experiment results, 

an optimization problem is formulated to seek the optimal values of the microscopic parameters in DEM. The 
objective of the optimization is to minimize the absolute difference between the laboratory-measured material 
parameters and the DEM simulation parameters. The optimization problem can be formulated as shown in 
equation (16).

To achieve the optimization objective, it is necessary to impose linear equality and linear inequality constraints, 
i.e., the macroscopic parameters must satisfy linear and nonlinear equations. In addition to these constraints, 
other inequality conditions must also be satisfied. For instance, the ratio of uniaxial compressive strength to 
Brazilian tensile strength in the bond-particle model should be between 3 and 10, etc106–109.

According to the above analysis, the optimization problem has four objective functions, six output variables, 
and several constraints, which contain quadratic terms and belong to a multi-objective nonlinear constraint 
problem.

Validation.  The comparison between the stress-strain curves obtained from DEM simulation and experiments, 
as conducted by Li104, is shown in Fig. 8. Figure 8 shows that the DEM simulated curve maintains an ideal elastic 
response, characterized by a linear trajectory before reaching the peak. The experimental curve and the DEM 

(10)α =
[

σu E υ σt
]T

(11)β =
[

E∗ K∗ µ τc σc 1
]T

(12)α = f (β)

(13)α = Aβ

(14)σu = X
T
1 β

(15)σt = x
T
1 γ

(16)Minimize
∣

∣Simulation result − Laboratory test result
∣

∣ → 0.
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simulated curve bifurcate slightly at the beginning of loading which may result from insufficient initial exposure 
between the experimental equipment and the test specimen. Then the experimental curve ascents approximately 
parallel to the DEM simulated curve that demonstrates comparable Young’s moduli. The calculated Young’s 
modulus from the DEM simulation is 41.07 GPa while that from the experiment is 40.17 GPa. The relative error 
between them is 2.24%. Note that the relative error is defined by |Ec − Ee|/Ee , where Ec is Young’s modulus from 
DEM simulation while Ee is Young’s modulus from the experiment.

Moreover, the uniaxial compressive strength from the experiment is 136.4 GPa while that of DEM simulation 
is 139.49 GPa. The relative error between them is 2.26% which demonstrates a similarity. However, the strain 
value of the peak point from the experimental curve is a little larger than that of the DEM simulated curve which 
may result from the bifurcations of curves at the beginning of loading.

Table 2 presents a comprehensive compilation of experimental and simulated data for various materials. The 
DEM simulated data are in good agreement with the test results which validates the calibration method.

Discussion.  Although the DOE method can obtain the sensitivity of each microscopic parameter to the mac-
roscopic parameter in a relatively scientific, fast, and accurate manner, and can calculate the specific values of 
the required microscopic parameters, there are still some disadvantages that cannot be ignored. The calibration 
results of the design of experiments are highly sensitive to the selection of microscopic parameters. Inappropri-
ate choices of microscopic parameters can lead to inaccurate calibration results in DOE. Furthermore, there may 
exist coupling relationships among the parameters, indicating that the adjustment of one parameter can affect 
others. Neglecting the coupling relationships between parameters during DOE calibration can result in inac-
curate outcomes. The formula, calibrated by DOE, is specifically applicable to particular material models with 
different parameter ranges. When the microscopic parameters fall outside the defined range, the reliability of the 
calibration formula diminishes. Moreover, DOE exhibits limitations when it encounters nonlinear issues, which 
may introduce substantial errors.

With the development of computer technology, machine learning has become increasingly popular. The use 
of machine learning to analyze the nonlinear relationships between microscopic parameters and macroscopic 
parameters seems to be a further step beyond the DOE method.

Figure 8.   Comparison of experiment and simulation104.

Table 2.   Simulated and experimental results of macroscopic mechanical parameters for different rocks under 
uniaxial compression104.

Rock type

E V σu

Cal./ GPa Exp./ GPa Error/% Cal./GPa Exp./GPa Error/% Cal./GPa Exp./GPa Error/%

Red sandstone
11.12 10.64 4.22 0.272 0.273 0.74 63.96 61.11 0.06

10.67 10.67 0.28 0.27 0.27 1.11 64 64 4.52

Lac du Bonnet 69.08 68.91 0.12 0.26 0.262 0 206.4 199.71 3.20

granite 69 69 0.13 0.26 0.27 2.96 200 200 0.14

Carrara marble 50 49 2.04 0.228 0.23 0.87 94.44 101 6.50

BS granite 41.07 40.17 2.24 0.268 0.27 0.74 139.49 136.4 2.26

Wonju granite 47.31 46 2.85 0.216 0.22 1.82 165.71 173 4.21

Hwangdeung granite 51 50.7 2.04 0.278 0.28 0.87 94.44 162 6.50

Rock-like material 17.6 16.98 3.65 0.186 0.19 2.10 60 63.19 5.05
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Machine learning method.  Machine learning is a method of data analysis. In machine learning, algo-
rithms are trained on data, that identify patterns and relationships in the data. These algorithms can then make 
predictions or take actions based on new data that they have not seen before. Compared to the design of experi-
ments method, machine learning methods can more efficiently handle high-dimensional and nonlinear issues. 
Various machine learning methods have been utilized by researchers to address parameter calibration issues, 
including random forest method44,56, support vector machine method44,56, Bayesian filtering method110–113, and 
neural network method30,42,61,95,114.

The fundamental principle of random forest is to train data by constructing an ensemble of decision trees, 
each independently making predictions. The final prediction is obtained through collective decision-making 
and voting among these trees. This approach offers notable advantages, such as high accuracy and robustness, 
making it particularly suitable for handling high-dimensional and large-scale datasets. Shentu employed the 
random forest algorithm for the calibration of the discrete element method and observed promising precision. 
The calibration process involved the utilization of 500 data sets44. This method has the possibility of overfitting 
issues when a small amount of data is available. As a result, the model may exhibit high accuracy on the training 
data but struggle to deal with the new data. Support vector machine calibration is primarily employed to deter-
mine an optimal hyperplane for classification and prediction. The notable advantage of this method lies in its 
robustness when it encounters limited samples. Shentu et al. has applied the support vector machine algorithm 
for the calibration of the discrete element method with 500 data, observing favorable precision in calibration 
results44. However, this method is susceptible to noise and overlapping data. Bayesian filtering calibration pri-
marily utilizes the probabilistic inference approach. Bayesian filtering calibration leverages prior experience as 
the initial estimate, and it is iteratively updated through comparisons with simulated experiments, resulting in 
refined posterior estimates. This iterative process continues until the desired convergence is achieved. The notable 
advantages of this method lie in its capacity to effectively handle uncertainty and noise, as well as its adaptability 
to dynamic system variations. Cheng et al. applied Bayesian filtering for the calibration of the discrete element 
method with 1000 instances and observed highly accurate predictions110. However, it demands a meticulous 
specification of prior experience. Neural networks are composed of interconnected artificial neurons, which are 
fundamental for receiving input signals, performing computations, and generating output signals. These neurons 
collectively form intricate connections within the neural network. Typically, a neural network comprises input 
layers, hidden layers, and output layers. The training process of a neural network involves iteratively adjusting 
the weights between neurons for high prediction accuracy. Neural networks can effectively model complicated 
nonlinear relationships and exhibit strong adaptive learning capabilities. Long et al. employed neural networks 
for parameter calibration, leveraging a dataset consisting of 270 observations, and the result demonstrated a 
substantial improvement of approximately 50% in predictive accuracy compared to the traditional design of 
experiments approach114.

In summary, random forest demonstrates high accuracy when it owns large-scale data. However, it is prone to 
overfitting when the data is limited. Conversely, support vector machines exhibit good precision when working 
with limited samples, but are susceptible to the influence of noise. Bayesian filtering proves effective in handling 
noise, but it requires prior experience for training. The neural networks effectively model complicated nonlinear 
relationships and exhibit strong adaptive learning capabilities.

Calibration principle.  A neural network comprises three types of layers: an input layer, a hidden layer, and an 
output layer. The input layer receives external information, while the hidden layer facilitates the learning process 
within the network. Finally, the output layer generates the ultimate information. Each layer is composed of mul-
tiple neurons. The neurons in adjacent layers of the neural network are interconnected through synapses with 
associated weights. These weights act as parameters that regulate the significance or influence of the input signals 
transmitted between the layers (as depicted in Fig. 9). The weights play a pivotal role in shaping the network and 
they are adjusted through training the network using collected data.

The initial step in the parameter calibration via a neural network entails data collection. It is essential to 
ascertain the microscopic parameters with reasonable ranges. Upon establishing the microscopic parameters, 
several simulations should be conducted. The outcomes of each simulation, encompassing both microscopic and 
macroscopic parameters, are meticulously recorded to assemble a comprehensive dataset.

Figure 9.   Schematic diagram of the machine learning115.
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After data collection, data splitting is a crucial process that involves dividing the entire dataset into two 
distinct subsets: the training subset and the testing subset. The training subset is utilized to train the neural 
network, while the testing subset is employed to assess the performance of the trained neural network model by 
comparing its outputs with the target outputs.

Following the data splitting, the determination of the neural network model’s architecture becomes impera-
tive, encompassing the configuration of the input layer, hidden layer(s), and output layer. As previously indi-
cated, the input layer necessitates the inclusion of neurons, where the count should correspond to the number of 
microscopic parameters. Similarly, the number of neurons within the output layer should align with the count of 
macroscopic parameters. Both the input and output layers should derive data from the same set. Furthermore, 
in this study, a single hidden layer is exclusively employed.

After the establishment of the network architecture, the subsequent step involves the selection of a suit-
able training algorithm. Numerous training methods exist for neural networks, including the backpropagation 
algorithm, stochastic gradient descent algorithm, and various others. The judicious choice of an algorithm can 
significantly enhance computational efficiency.

Upon completing data collection, finalizing the neural network architecture and training algorithm, the neural 
network can be subjected to training data to ascertain the neural network model (e.g., the weights). This resulting 
neural network model can then be effectively employed for parameter calibration purposes.

Validation.  Zhai used neural networks training for parameters calibration that chose the marble of Jinping 
Hydropower Station as the calibration object. The calibration results are shown in Table 3. From Table 3, one 
can find that the maximum error is 27.985% from cohesion strength while the minimum error is 1.527%95 from 
cohesion strength too. The maximum relative error for Young’s modulus is 21.176% while the maximum relative 
error for Poisson’s ratio is 9.615%. The maximum relative error for uniaxial compressive strength is 12.031%. 
These findings suggest that a larger dataset may be necessary for the parameters calibration with neural net-
works. Insufficient data during the calibration process can result in significant errors.

Discussion.  Although machine learning calibration has addressed nonlinear problems effectively, several issues 
cannot be overlooked. This includes the requirement for voluminous data and the time-consuming nature of 
manual operations, resulting in low efficiency. With insufficient data, results may be less reliable. Due to the 
disadvantages of machine learning, some scholars have turned their research toward evolutionary algorithms.

Evolutionary algorithms method.  Evolutionary algorithms possess the attributes of self-organization, 
self-adaptation, and self-learning, and are capable of efficiently addressing complicated problems. Two evolu-
tionary algorithms are employed for calibration, i.e., the differential evolution and the particle swarm optimiza-
tion. Both of these methods do not need data for training. They adaptively generate data during the calibration 
process. The differential evolution algorithm randomly generates many sets of microscopic parameters. Then 
it pinpoints some sets of microscopic parameters whose macroscopic parameters are close to the given macro-
scopic parameters. The differential evolution algorithm then generates new sets of microscopic parameters from 
the pinpointed parameters through differential mutation and crossover operations47,116. This process continues 
until the microscopic parameters meet the requirement. In particle swarm optimization algorithm46,117, each 
particle has a position and velocity and iteratively updates them based on information from individual and 
global best solutions.

Wang46 utilized the particle swarm optimization117–120 algorithm to automate the calibration of the micro-
scopic parameters. The method is based on the concept of individual learning and evolution through mutual 
information sharing during the variation process, to achieve the target value. The method is automatically 
implemented, thereby avoiding the laborious and time-consuming manual operation, and showing considerable 
potential for practical applications. Ji47,116 proposed an optimized differential evolution calibration method that 
automatically calibrates the microscopic parameters to the target macroscopic parameters. Simulation experi-
ments demonstrated that the macroscopic parameters, such as Young’s modulus, Poisson’s ratio, uniaxial com-
pressive strength, and direct tensile strength, can be calibrated with a relative error of less than 5%. Furthermore, 
based on the calibration results, Ji conducted a uniqueness analysis of the microscopic parameters, unveiling the 
correlation between the microscopic parameters and the macroscopic mechanical behavior. These studies have 
made substantial contributions to the calibration.

Table 3.   Machine learning: comparison of experimental and simulated data95.

Property
Laboratory 
test results

Simulation 
results Relative error

Unconfined compressive strength (MPa) 77.3 77.3 68 80 12.031% 3.493%

Young’s modulus (GPa) 85 85 67 88 21.176% 3.529%

Poisson’s ratio 0.26 0.26 0.285 0.28 9.615% 7.692%

Cohesion strength (MPa) 26.8 22.9 19.3 22.55 27.985% 1.527%

Internal friction angle ( ◦) 27.1 33.4 30.549 31.791 12.726% 4.816%

Average error 16.714% 4.211%
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Calibration principle.  First, we assume the existence of a macroscopic parameter space whose dimensions are 
determined by the number of parameters in the macroscopic parameter vector α . For example, if there are 
two parameters in α , the macroscopic parameter space would be 2D. Each point in this space corresponds to a 
unique set of macroscopic parameters, which we refer to as the target value.

Next, m sets of microscopic parameter vectors β are randomly selected (e.g., β1 , β2 , ..., βm ). The microscopic 
parameters in each β vector can be related to a set of macroscopic parameters through numerical simulation 
experiments. In other words, each set of microscopic parameters corresponds to a point in the macroscopic 
parameter space. However, in general, the computed coordinates of these m microscopic parameters will not 
match the target value.

To address this issue, we need to update the microscopic parameter vectors β . Let the change of microscopic 
parameter vector 

�
β i be.

Where vi is the change of per microscopic parameter. Since there is no evolutionary experience at the beginning, 
all these variables are random. The update is expressed in equation (18).

At this stage, the coordinates are acquired by simulations. Equation (19) is used to determine whether the target 
is obtained.

Where σUCS is the uniaxial compressive strength measured in the laboratory. σu is the uniaxial compressive 
strength derived from numerical simulations. Eex is Young’s modulus measured in the laboratory. And E is 
Young’s modulus obtained from numerical simulations.

In fact, the smaller the value of equation (19), the closer the calculated value is to the target value. Based on 
equation (19), the optimal position location Pi, pbest for the evolution of Zi and the optimal position Pgbest for 
the evolution in these Z can be determined.

Then, according to equation (20) and equation (21), the amount and position of all Z changes are updated again.

Where k is the number of iterations (starting from 1), w is the inertial learning factor, c1 is the individual learning 
factor, c2 is the social learning factor, and r1 and r2 are random numbers. w, specific values of c1 and c2 , inappropri-
ate numbers can lead to non-convergence, which is where the evolutionary algorithm is most prone to errors.

The termination condition for evolution is that the value of equation (19) is less than or equal to 0.05, and 
calibration will stop if the condition is met; otherwise, it will continue to iterate. The successful evolution dia-
gram is presented in Fig. 10 below, where the stars marked with represent the position of the target value α . The 
other solid circles are Z , the dashed drawn circles are β , and the solid arrows represent the position of the first 
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Figure 10.   Schematic diagram of evolutionary process.
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move, and the dashed arrows represent the final position reached after several moves, which is also the process 
of evolution.

Validation.  The calibrated model was compared with the experiment data, and Ji116 repeated the calibration 
process five times to verify the repeatability of the calibration, as shown in Fig. 11. One can observe a remark-
able similarity in the slopes of the six stress-strain curves, suggesting a close approximation of Young’s modulus 
values. The annotated data on the graph indicates a minute relative error of 0.29% for the uniaxial compressive 
strength. These findings highlight a good calibration result, demonstrating a high fidelity of both the elastic and 
fracture stages of the material behavior.

Discussion.  Evolutionary algorithms have made significant contributions to the computation of nonlinearity 
and automation. However, they still suffer from several limitations including a lack of dynamic adjustment, pos-
sibility to reach local optimum, resulting in low accuracy and difficulty in achieving convergence. Additionally, 
appropriate parameters must be chosen for different models to achieve optimal results.

Theoretical derivation method.  The DOE method, following the trial-and-error method, as well as the 
machine learning method and evolutionary algorithms method, utilize statistical methods in varying degrees. 
These mathematical algorithms provide researchers with the ability to quantify various phenomena and are 
seemingly a panacea for many complicated problems. They only offer an empirical approximation and lack 
precise descriptions of physical laws. Some researchers have pursued the calibration of DEM through theoretical 
derivations. Notably, Qu45 has made significant contributions to the theoretical derivation. This section primar-
ily elucidates his theoretical idea about DEM calibration.

Calibration principle.  The study focuses on a linear model and adopts the Voigt hypothesis121, which assumes 
uniform deformation throughout the domain. The basic idea for calibrating microscopic and macroscopic 
parameters is that the elastic energy density should be equal. In other words, the elastic energy density ωdiscrete 
characterized by the DEM and the strain energy density ωcontinuum described by classical continuum mechanics 
are equivalent, i.e., equation (24).

In this context, the term elastic energy refers to the energy stored in a material as a result of deformation under 
contact forces122. The change of elastic energy occurs due to the displacement change on the tangential and 
normal contacts under the influence of external forces. Given that the topology of the particles does not change 
with their rotation123, the total stored elastic energy in the system is expressed by the following equation (25).

Where �discrete is the elastic energy of all the domains. k represents the contact points of the particles. �k is the 
strain energy of contact k. Nc is the total number of contact points. Un

k  and Us
k denote the normal and tangential 

relative displacements of contact k. dδn and dδs are the infinitesimal deformations in the normal and shear direc-
tions, respectively. Fn and Fs are contact forces in the normal and shear directions, i.e., |Fn| =
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The elastic energy density of the whole system is given by the following equation (26).
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Figure 11.   Evolutionary algorithm: comparison of experimental and simulated stress-strain116.
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Where V is the total volume.
According to the theory of elasticity, the stress tensor σpq of a continuum can be obtained by differentiating 

the elastic energy density with respect to the corresponding strain tensor εpq as following equation (27).

The elastic stiffness tensor can be obtained by differentiating the stress tensor σpq with respect to the correspond-
ing strain tensor εpq as equation (28).

Equation (28) is a generalized description and can be applied to any particle packing. Under the condition that all 
particles are of equal size and have the same material properties, Equation (28) can be deduced as equation (29).

Where r is the particle radius. δmn is the Kronecker function.
Although the particle assembly is essentially amorphous and generally heterogeneous, the mechanical behav-

ior of the particle assembly can still be considered as an elastomer in the case of small deformations. Therefore, 
based on the equation established by solid mechanics, the relationship between the equivalent elastic parameters 
and the particle scale parameters can be established. The elastic stiffness tensor Cpqmn of the isotropic elastic solid 
from classical continuum mechanics is shown as following equation (30).

Comparing equation (31) and equation (32), we get.

Validation and discussion.  Qu conducted a comparative validation of the derived formulas. He used macro-
scopic parameters to obtain microscopic parameters via Eqs. (31) and (32). Then, he conducted simulations with 
the calculated microscopic parameters and obtained the simulated results, which are the macroscopic param-
eters. As illustrated in Fig. 12, the curves indicate a significant discrepancy between the simulated results and the 
analytical solutions (kinematic and static solutions) for different stiffness ratios. Generally, the simulated results 
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Figure 12.   Components of equivalent stiffness tensor in DEM models with varied 1/K∗45.
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should be between the kinematic and static solutions. From Fig. 12, we can see that the simulated results are 
much smaller than the analytical results. The discrepancy may be attributed to the non-uniform properties and 
arrangement of particles, which contradicts the assumption of homogeneity. The significant difference observed 
is attributed to the distinct modes of load transfer between particulate materials and continuous media.

The applicability of calibrated parameters
Is it possible to directly apply parameters calibrated by other researchers? This question arises from the consid-
eration that, apart from the microscopic parameters, additional factors such as particle distribution and porosity 
can potentially influence the macroscopic response. The primary aim of this section is to delve into the issue of 
parameter applicability, specifically exploring the circumstances under which calibrated parameters obtained 
by others can be reliably utilized.

Influence of particle distribution.  The DEM eschews the notion of a grid and instead relies on the 
spatial distribution of the particles. A fundamental phenomenon is found that simulation results are different 
when subject to identical microscopic parameters, different particle distributions, and particle size. This section 
explores the influence of particle distribution. Note that particle distribution refers to the physical arrangement 
or spatial distribution of particles within a given space.

Testing samples.  To investigate particle distribution, this study employs four geometric models. The length of 
all the geometric models is 0.1 m and the width is 0.05 m. All four geometric models are subjected to the same 
uniaxial tension, achieved by specifying the velocity of the loading particles (shown in Fig.  13). Meanwhile, 
the four geometric models have the same porosity which is 0.16. The particles from four geometric models are 
randomly generated where radii ranging from 0.02 mm to 0.032 mm satisfy the Gaussian distribution. The main 
difference between the four models is the spatial distribution of the particles that are generated via the Gaussian 
random distribution function.

For the convenience of icon identification later, the empirical method, machine learning, and evolutionary 
algorithms are abbreviated as EM, ML, and EA respectively. Table 4 displays the microscopic parameters cho-
sen from the papers among the various methods(EM data from Bahaaddini’s model124, DOE data from Peng’s 
model102, ML data from Guo’s model30, EA data from Wang’s model46).

Testing results.  We calculate the macroscopic parameters from simulation results, which are shown in Tables  5, 
6, 7, 8. Table 5 shows macroscopic parameters from Bahaaddini’s result and the four sets of geometric models. 
Note that all the microscopic parameters in geometric models are from Bahaaddini’s paper. Table 6 shows mac-
roscopic parameters from Peng’s result and the four sets of geometric models. Note that all the microscopic 
parameters are from Peng’s paper. Table 7 shows macroscopic parameters from Guo’s result and the four sets of 
geometric models. Note that all the microscopic parameters are from Guo’s paper. Table 8 shows macroscopic 
parameters from Wang’s result and the four sets of geometric models. Note that all the microscopic parameters 
are from Wang’s paper.

To show the differences more visually, the above tables are formed into bar graphs of Poisson’s ratio and 
Young’s modulus. The results are shown in Fig. 14 as follows

Figure 13.   The geometry and boundary conditions.

Table 4.   Microscopic parameters of different methods.

E∗ (GPa) K∗ µ pb_E∗ (GPa) pb_K∗ σc(MPa) c(MPa)

EM 2.8 1.45 0.6 2.8 1.45 20 20

DOE 22.63 1.379 0.5 22.63 1.379 150.91 150.91

ML 3.2 1 0.65 3.2 2.15 34.7 9.746

EA 1.76 0.57 6.28 55.96 2.94 64.04 73.63
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Analysis of Poisson’s ratio.  The statistical analysis of Poisson’s ratio is shown in Table 9 below. vMax is the maxi-
mum value of the Poisson’s ratio in the geometric models. vMin is the minimum value of the Poisson’s ratio in the 
geometric models. va is the Poisson’s ratio in these papers. χv1 is the relative error between the maximum and 
minimum values of the Poisson’s ratio in the geometric models. χv2 is the maximum relative error between the 
Poisson’s ratio in the paper and the Poisson’s ratio in the geometric models.

In the EM group, the relative error between the maximum and minimum values of the Poisson’s ratio in the 
geometric models is 0.15%. 0.15% is calculated from |(υMax − υMin)|/υMax , and the following calculations are 
done by analogy. This indicates that the difference in Poisson’s ratio among the EM group is very small. Fig. 14 
also shows that the Poisson’s ratio difference among the four geometric models generated by particles’ random 
distribution in the EM group is indeed relatively small. However, there is a large discrepancy between the data 
from the four geometric models and the data from the paper, with a relative error of 33.5% between the Poisson’s 
ratio in the paper and the minimum Poisson’s ratio in the geometric models.

In the DOE group, the relative error between the maximum and minimum values of the Poisson’s ratio in the 
geometric models is 0, indicating almost no difference. Figure 14 also shows that each group’s data in the DOE 
group are identical. However, there is still a large discrepancy between the data from the geometric models and 
the data from the paper, with a relative error of 36.67% between the Poisson’s ratio in the paper and the minimum 
Poisson’s ratio in the geometric model.

Table 5.   Results of simulations with empirical parameters.

Youngs modulus(GPa) Poisson’s ratio

Data from paper 4.2 0.2

Model 1 data 3.38 0.135

Model 2 data 3.38 0.133

Model 3 data 3.38 0.135

Model 4 data 3.38 0.133

Table 6.   Results of simulations with DOE parameters.

Youngs modulus (GPa) Poisson’s ratio

Data from paper 20.21 0.2037

Model 1 data 27.8 0.129

Model 2 data 27.8 0.129

Model 3 data 27.7 0.129

Model 4 data 27.8 0.129

Table 7.   Results of simulations with machine learning parameters.

Youngs modulus (GPa) Poisson’s ratio

Data from paper 3.62 0.244

Model 1 data 3.36 0.175

Model 2 data 3.37 0.173

Model 3 data 3.36 0.176

Model 4 data 3.37 0.173

Table 8.   Results of simulations with evolutionary algorithms parameters.

Youngs modulus (GPa) Poisson’s ratio

Data from paper 23.3 0.17

Model 1 data 43.0 0.189

Model 2 data 43.0 0.188

Model 3 data 42.9 0.189

Model 4 data 43.0 0.188
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In the ML group, the relative error between the maximum and minimum values of the Poisson’s ratio in the 
geometric models is 1.73%, which indicates that the difference in Poisson’s ratio data among the four groups is 
also relatively small. Figure 14 also shows that the Poisson’s ratio difference among the four geometric models 
in the ML group is indeed relatively small. However, there is still a large discrepancy between the data from the 
geometric models and the data from the paper, with a relative error of 29.1% between the Poisson’s ratio in the 
paper and the minimum Poisson’s ratio in the geometric model.

In the EA group, the relative error between the maximum and minimum values of the Poisson’s ratio in the 
geometric models is 0.512%, indicating that the difference in Poisson’s ratio data among the four groups is also 
relatively small. Figure 14 also shows that the Poisson’s ratio difference among the four geometric models in 
the EA group is indeed relatively small. However, there is still a large discrepancy between the data from the 
geometric models and the data from the paper, with a relative error of 10.05% between the Poisson’s ratio in the 
paper and the maximum Poisson’s ratio in the geometric models.

Analysis of Young’s modulus.  The Young’s modulus group analysis calculation table is shown in Table 10 below. 
EMax is the maximum value of Young’s modulus in the geometric models. EMin is the minimum value of Young’s 
modulus in the geometric models. Ea is Young’s modulus in these papers. χE1 is the relative error between the 
maximum and minimum values of Young’s modulus in the geometric models. χE2 is the maximum relative error 
between Young’s modulus in the paper and Young’s modulus in the geometric models.

In the EM group, the relative error between the maximum and minimum values of Young’s modulus in the 
geometric models is 0, with almost no difference. This indicates that the differences in Young’s modulus within 
the EM group are small, and it can be seen from Fig. 14 that each data calculation within the EM group is the 
same. However, there is a significant difference between the data from the four geometric models and the data 

Figure 14.   Comparison of results from different models.

Table 9.   Poisson’s ratio from simulation results.

υMax υMin υa χυ1 χυ2

EM 0.135 0.133 0.2 0.15% 33.5%

DOE 0.129 0.129 0.2037 0 36.67%

ML 0.176 0.173 0.244 1.73% 29.1%

EA 0.189 0.188 0.17 0.51% 10.05%

Table 10.   Young’s modulus from simulation results.

EMax(GPa) EMin (GPa) Ea χE1 χE2

EM 3.38 3.38 4.2 0% 19.52%

DOE 27.8 27.7 20.21 0.36% 27.3%

ML 3.37 3.36 3.62 0.29% 7.18%

EA 43.0 42.9 23.3 0.23% 45.8%
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in the paper. The relative error between Young’s modulus in the paper and the minimum Young’s modulus in 
the geometric models is 19.52%.

In the DOE group, the relative error between the maximum and minimum values of Young’s modulus in 
the geometric model is 0.36%, indicating a small difference. It can also be seen from Fig. 14 that there is little 
difference between each data calculation within the DOE group. However, there is still a significant difference 
between the data of the geometric model and the data in the paper. The relative error between Young’s modulus 
in the paper and the minimum Young’s modulus in the geometric models is 27.3%.

In the ML group, the relative error between the maximum and minimum values of Young’s modulus in the 
geometric models is 0.29%, and the differences in Young’s modulus among these four groups are small. It can 
also be seen from Fig. 14 that the differences in Young’s modulus among the four geometric models in the ML 
group are indeed small. However, there is still some difference between the data of the geometric model and the 
data in the paper. The relative error between Young’s modulus in the paper and the minimum Young’s modulus 
in the geometric model is 7.18%.

In the EA group, the relative error between the maximum and minimum values of Young’s modulus in the 
geometric model is 0.23%, and the differences in Young’s modulus among these four groups are also small. It can 
also be seen from Fig. 14 that the differences in Young’s modulus among the four geometric models in the EA 
group are indeed small. However, there is still a significant difference between the data of the geometric models 
and the data in the paper. The relative error between Young’s modulus in the paper and the maximum Young’s 
modulus in the geometric models is 45.8%.

Discussion.  Based on the data presented above, it is apparent that the discrepancies in Poisson’s ratio and 
Young’s modulus among the four sets of randomly generated models are relatively small. However, in compari-
son to reported data30,46,102,124, these differences are quite significant. One can attribute this disparity to the lack 
of certain critical information, such as maximum and minimum particle radii and porosity. Notably, the four 
sets of random models are constructed with identical maximum and minimum particle radii and porosity set-
tings, with the sole distinguishing factor being their spatial distribution of particles. The macroscopic properties 
from simulations exhibited minor differences. One can conclude that the influence of the spatial distribution of 
particles on macroscopic properties is negligible under the constraint of equivalent maximum and minimum 
particle radii and porosity.

Influence of particle size.  After studying the spatial distribution of the particles, this subsection focuses 
on the influence of the particle size. In this subsection, we generate three geometric models (i.e., model A, model 
B, and model C) with different features (i.e., dimension of geometric model and particle size). Then, we conduct 
simulations with consistent microscopic parameters to study the influence of these features on the macroscopic 
parameters.

Testing samples.  In order to investigate the influence of particle size in DEM, this study employs uniaxial ten-
sion tests with three sets of geometric models (see Fig. 13). The length of model A is 0.2 m and the width is 0.1 m. 
The length of model B is 0.1 m and the width is 0.05 m. The dimension of model C is the same as that of model 
B. These models are designed to maintain a consistent porosity of 0.18 and consistent microscopic parameters. 
Model A and Model B set identical maximum and minimum particle radii with values of 0.032 mm and 0.02 
mm, respectively. Model C sets exhibited halved maximum and minimum radii. The linear parallel bond model 
is used in the simulations. The microscopic parameters are E∗ = 15 GPa , K∗ = 1.8 , µ = 0.5 , pb∗E = 15 GPa , 
pb∗K = 1.8 , σc = 73.63MPa , c = 64.04MPa . The leftmost and rightmost particles are used as loading bounda-
ries, and uniaxial tension is achieved by specifying the velocity of the loading particles during simulations.

Testing results.  After we conducted the simulations, one can calculate the macroscopic parameters from simu-
lation results, which are shown in Table 11.

Analysis of results.  From the Table 11, Young’s modulus of model A and model B exhibit a relative error of 
1.96% while that of model B and model C have the difference with a relative error of 2.47%. Model A and model 
C have a difference in Young’s modulus with a relative error of 0.53%, suggesting that their data are almost iden-
tical. The Poisson’s ratio of model A and model B exhibit a relative error of 6.75%. The Poisson’s ratio of model B 
and model C exhibit a relative error of 7.31%. Meanwhile, the relative error of Poisson’s ratio between model A 
and model C is only 0.6%, suggesting that their data are almost identical.

We propose the concept of size ratio, which aims to delve deeper into the influence specifically exerted by 
particle size. The size ratio is defined as follows,

Table 11.   Results of simulations about Young’s modulus and Poisson’s ratio.

Youngs modulus (GPa) Poisson’s ratio

Model A 16.87 0.163

Model B 16.54 0.152

Model C 16.96 0.164
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where r is the equivalent radius and r =
√

A1

π
 . A1 is the area of the geometric model. rmax is the radius of the 

maximum particle. Note that DEM has a high computational cost. To address this issue, the coarse-graining 
approaches are used, summarizing particles of the original system into grains. Lumping a pre-set number of 
particles into a spherical grain is the main principle of coarse-graining. The physical properties of the coarse-
graining and the bigger-size of particles are different. The goal of the coarse-graining is to reduce computational 
cost while the goal of size ratio is to ensure the applicability of microscopic parameters 36–38,125–131.

The size ratios of each model are calculated (see Table 12).
From Table 12, firstly we know the differences between model A and model B are the size ratio, length, and 

width of the model. They have the same maximum particle radius. Secondly, we know the differences between 
model B and model C are the size ratio and maximum particle. They have the same dimension as the geometric 
model. Finally, we know the differences between model A and model C are the maximum particle radius, length, 
and width of the model. They have the same size ratio.

According to Table 12, it can be seen that model A and model B have the same maximum particle radius 
and different dimensions, resulting in different size ratios. From Table 11, it can be observed that model A and 
model B have a relative error of 6.75% in Poisson’s ratio and a relative error of 1.96% in Young’s modulus. This 
suggests that the size ratio and dimensions may be factors affecting the macroscopic parameters of the models. 
Furthermore, based on Table 12, model B and model C have the same dimensions and different maximum par-
ticle sizes, resulting in different size ratios. From Table 11, it can be observed that model B and model C have 
a relative error of 7.31% in Poisson’s ratio and a relative error of 2.47% in Young’s modulus. This also indicates 
that the size ratio and maximum particle radius may be factors influencing the macroscopic parameters of the 
models. Moreover, according to Table 12, model A and model C have different maximum particle radii, differ-
ent dimensions, and the same size ratio. Based on Table 11, it can be observed that model B and model C have 
a minimum relative error of 0.6% in Poisson’s ratio and a minimum relative error of 0.53% in Young’s modulus. 
This phenomenon rules out the individual influence of the maximum particle radius or size on the macroscopic 
parameters. In fact, it is the combined effect of the maximum particle radius and size (i.e., size ratio) that impacts 
the macroscopic parameters.

The relative errors of Young’s modulus and Poisson’s ratio for models A and C are 0.53% and 0.6% respectively, 
and one can find that the ratio of the size ratio of model A to that of model C is 1. When this ratio becomes 2 (i.e., 
the ratio of the size ratio of model A to that of model B), the relative errors of their Young’s modulus and Poisson’s 
ratio become 1.96% and 6.75%, respectively. We observe that when the size ratio doubles, the relative errors of 
Young’s modulus and Poisson’s ratio increase by nearly 4 times and 11 times, respectively. This indicates that even 
small variations in the size ratio lead to a significant change in the relative errors of the macroscopic parameters.

Discussion.  Based on the above analysis, it can be concluded that the size ratio has an impact on the macro-
scopic parameters. Therefore, in order to apply the calibrated microscopic parameters, we need to ensure that the 
size ratio in the application simulation is consistent with the size ratio in the calibration simulation.

Conclusions
One can find that the discrete element method provides a route for studying mechanical response including 
elastic deformation and structure failure. This study describes the governing equations of the discrete element 
method and pinpoints the microscopic parameters involved in different constitutive models. Since it has difficul-
ties to experimentally measure the microscopic parameters, researchers proposed to obtain them via calibration 
strategies that were described in detail.

The calibration method initially applied by scholars is the trial-and-error method. It is very easy to operate. 
However, it has high computational costs. Furthermore, the trial-and-error method lacks scientific rigor, and 
calibrated parameters may only map into a subset of the macroscopic parameter space close to the true solu-
tion. The empirical method helps scholars find a reasonable initial value or the direction of calibration which 
highly reduces the computational cost. However, a certain amount of trials are still required. It’s not a one-shot 
solution. The DOE method studies the sensitivity of each microscopic parameter to the macroscopic parameter 
and constructs formulas for macroscopic parameters and microscopic parameters. The formulas can calculate 
the specific values of the required microscopic parameters. However, the formula is specifically applicable to 
particular material models with different parameter ranges. Moreover, DOE has limitations in dealing with 
nonlinear issues. Machine learning calibration has addressed nonlinear problems effectively. However, it requires 
voluminous data. With insufficient data, results may be less reliable. The evolutionary algorithm for parameter 
calibration does not require a training process and it has made significant contributions to the calculation of 

(33)κ =
r

rmax

Table 12.   The different between the three models.

Size ratio Maximum particle (mm) Length of model (m) Width of model (m)

Model A 1.406 0.032 0.2 0.1

Model B 0.703 0.032 0.1 0.05

Model C 1.406 0.016 0.1 0.05
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nonlinearity. The evolutionary algorithm has high stability, and the calibrated results are compared with the 
experimental values, with a relative error of only 0.29%. The theoretical derivation method directly derives the 
formulas between macroscopic and microscopic parameters via assumptions. However, the assumption condi-
tions are strict, so the theoretical values differ greatly from the experimental results. These mentioned calibration 
methods have made great contributions to the calibration of the discrete element method. Among them, the 
evolutionary algorithm is a promising calibration method with high accuracy.

Moreover, the applicability of calibrated parameters is an additional concern because particle distribution 
and size may influence the mechanical response of structures under loading. After simulations, we find that (1) 
during the elastic phase, the spatial distribution of particles has little influence on the simulation results when 
the porosity, maximum radius, and minimum radius of particles are identical in both the geometric calibration 
model and that for applications. Simulation results uncover that the maximum relative error of Young’s moduli 
is 0.36%, while that of Poisson’s ratios is 1.73%. (2) We define the concept of size ratio. Then we find that the 
size ratio has a great influence on the simulation results. To ensure the applicability of calibrated parameters, 
the size ratio in different geometric models should be identical. This study identifies the application conditions 
of the calibrated parameters.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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