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A statistical package for evaluation 
of hybrid performance in plant 
breeding via genomic selection
Szu‑Ping Chen , Chih‑Wei Tung , Pei‑Hsien Wang  & Chen‑Tuo Liao *

Hybrid breeding employs heterosis, which could potentially improve the yield and quality of a 
crop. Genomic selection (GS) is a promising approach for the selection of quantitative traits in plant 
breeding. The main objectives of this study are to (i) propose a GS‑based approach to identify potential 
parental lines and superior hybrid combinations from a breeding population, which is composed of 
hybrids produced by a half diallel mating design; (ii) develop a software package for users to carry 
out the proposed approach. An R package, designated EHPGS, was generated to facilitate the 
employment of the genomic best linear unbiased model considering additive plus dominance marker 
effects for the hybrid performance evaluation. The R package contains a Bayesian statistical algorithm 
for calculating genomic estimated breeding value (GEBVs), GEBV‑based specific combining ability, 
general combining ability, mid‑parent heterosis, and better‑parent heterosis. Three datasets that have 
been published in literature, including pumpkin (Cucurbita maxima), maize (Zea mays), and wheat 
(Triticum aestivum L.), were reanalyzed to illustrate the use of EHPGS.

Hybrid plant breeding can potentially be used as a method that employs heterosis to boost yield stability, allow 
the combination of dominant major genes, and offer a built-in plant variety protection  system1 https:// www. 
pnas. org/ doi/ full/ 10. 1073/ pnas. 15145 47112. Several field, vegetable, and flower crops use hybrids, including 
maize, sorghum, and sunflower. Interestingly, hybrid rice has been adopted and hybrid wheat research is drawing 
new  attention2. Therefore, it is important and challenging to develop a highly efficient approach for identifying 
potential parental lines and superior hybrid combinations from many possible candidates. To create such an 
approach, we constructed a prediction model to screen out the desired individuals based on genomic selection 
(GS)3. To facilitate practical applications, we also generated a software package to implement our proposed GS-
based approach.

Diallel mating designs have been traditionally used to evaluate the combining ability of parental lines in 
hybrids and to predict hybrid performance on quantitative traits of interest. To analyze diallel crosses, the total 
genetic variability is often separated into the general combining ability (GCA) for parental lines, and the specific 
combining ability (SCA) for hybrid combinations. The GCA is a measure of additive gene activity that relates to 
the average performance of a particular inbred line in hybrid combinations. The SCA is a measure of combining 
ability that links to the non-additive effects, including dominance and epistatic effects. In addition, mid-parent 
heterosis (MPH) is defined as the difference between a hybrid’s performance and the average performance of 
its parental lines, while better-parent heterosis (BPH) is defined as hybrid performance superior to the higher 
or better parental  line4. However, the number of crossing combinations can be prohibitively high for extensive 
testing in a field experiment.

Due to the availability of high-density single nucleotide polymorphism (SNP) markers across an entire 
genome, GS becomes a promising approach to reduce cost and accelerate breeding cycles for plant  breeding5,6. 
The conceptual basis of GS is the utilization of a training population with known phenotype and genotype data 
to build a prediction model that uses individuals with known genotype data only to predict genomic estimated 
breeding values (GEBVs)7. This GS-based approach has been applied to predict hybrid performance for several 
crops, such as  barley8,  maize9,10,  rice11,12,  wheat13,14, and  pumpkin15. More recently, hybrid rice performance 
based on parental characteristics was evaluated using artificial neural networks, adaptive neuro-fuzzy inference 
system, and support vector  machine16.

In this study, we obtained the required estimates for hybrid performance evaluation based on a GBLUP model, 
which took both additive and dominance marker effects into account. The GBLUP model was built based on a 
training population with known phenotype and genotype data. Here, we proposed a Bayesian statistical algorithm 
for the parameter estimation. Three datasets that have been published in literature, including pumpkin (Cucurbita 

OPEN

Department of Agronomy, National Taiwan University, Taipei, Taiwan. *email: ctliao@ntu.edu.tw

https://www.pnas.org/doi/full/10.1073/pnas.1514547112
https://www.pnas.org/doi/full/10.1073/pnas.1514547112
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-39434-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12204  | https://doi.org/10.1038/s41598-023-39434-6

www.nature.com/scientificreports/

maxima), maize (Zea mays), and wheat (Triticum aestivum L.), were reanalyzed to illustrate the application of 
our proposed approach.

Materials and methods
The genomic selection‑based approach. The GBLUP model. The GBLUP model considering additive 
plus dominance effects can be described as follows:

where y is the vector of the phenotypic values; 1n is the unit vector of length n (here n is the number of pheno-
typic values); gA is the vector of genotypic values for the additive effects; gD is the vector of genotypic values for 
the dominance effects; and e is the vector of random errors. It is assumed that gA , gD , and e are mutually inde-
pendent and follow multivariate normal distributions, denoted by gA ∼ N
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D-GRM; and the variance component σ 2
D represents the cumulative variability of the dominance marker effects, 

abbreviated as D-VC. For the additive effects, the SNP at each locus is coded as − 1, 0, or 1 for the homozygote 
of the minor allele, the heterozygote, and the homozygote of the major allele, respectively. For the dominance 
effects, the marker score is coded as 1 for the heterozygote, and 0 for both homozygotes. Then, XA and XD are 
the standardized marker score matrices for the additive effects and dominance effects, respectively, and p is the 
number of the SNP markers.

Estimation for GEBVs and genomic heritability. Let µ̂ be the best linear unbiased estimate (BLUE) for 
µ , ĝA be the BLUP for gA , and ĝD be the BLUP for gD . Then, µ̂ , ĝA , and ĝD can be obtained from the Henderson’s 
 equations17:
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D . The estimate for genomic heritability was then obtained as:

In this study, the breeding population was composed of all possible hybrid combinations in a half diallel mat-
ing design. Let K (bp)

A  and K (bp)
D  respectively denote the A-GRM and D-GRM between the breeding population and 

the training population. Moreover, let ĝ (bp)A  and ĝ (bp)D  denote the BLUPs for the breeding population of additive 
and dominance effects, respectively. From the  article18, ĝ (bp)A  and ĝ (bp)D  can be obtained as:

and

The genomic estimated genotypic values for the individuals in the breeding population were then predicted 
by:

where N1 is the number of hybrid combinations in the breeding population. Here, N1 = CN0

2  with N0 as the 
number of parental lines.

Estimation for GCA, SCA, MPH, and BPH. Let GCAi and GCAj separately denote the GCAs for the 
parental lines Pi and Pj , and SCAij denote the SCA for their hybrid combination Pi ⨂ Pj. Moreover, let g (ij)A  and 
g
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From Eq. (8), the BLUP for SCAij was obtained as:

Let

and

where G(i)
A  is the average over the additive genotypic values of the parental line i, and GA is the average over all 

of the additive genotypic values. From Eq. (7), the BLUP for GCAi is given by:

From the  article15, the GEBV-based MPH and BPH for Pi ⨂ Pj can be estimated by:

and

where 
∣∣∣ĜCAi − ĜCAj

∣∣∣ is the absolute value of ( ̂GCAi − ĜCAj ). Under the positive heterosis assumption, the value 
of MPH or BPH is larger, and the heterosis of the hybrid combination is stronger.

The Bayesian statistical algorithm. For a given training population with known phenotype and geno-
type data, a Bayesian Gibbs sampling (BGS) algorithm, modified from an algorithm presented in the  article20, 
was used to estimate the required parameters. The algorithm can be described as follows.

• Step 1: Set initial values for the parameters in the model.

The default values are given by:
µ = y (the sample mean of the phenotypic values), gA = gD = 0 , σ 2

e = 1 , and σ 2
A = σ 2

D = 0.5.

• Step 2: Rewrite Eq. (2) as
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ii (γ i − Ci,−ig−i) for i = 1, 2, 3. Here, Ci,−i denotes Ci,j for 
all j  = i ; and g−i is g j for all j  = i.

• Step 3: Calculate the vector of residuals as: e = y − g1 − g2 − g3.
• Step 4: Update σ 2

e  as σ 2
e = (eTe + S∗v∗)/χ2

n+v∗ , where χ2
n+v∗ is the chi-square random variate with n+ v∗ 

degrees of freedom; S∗ = 0.5V  with V as the sample variance of the values in y ; and v∗ = 5.
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• Step 7: Repeat Steps 2–6 K times to generate a series of results over the K iterations, which are denoted by:
• µ(k) , g (k)A  , g (k)D  , σ 2(k)

A  , σ 2(k)
D  , and σ 2(k)

e  for k = 1, 2, · · · , K.
• Step 8: Discard the results from the first 0.9K iterations, and average the results from the remaining 0.1 K 

iterations. The number of iterations K is defaulted as 5000.
• Step 9: Repeat Steps 1–8 M times to generate M sets of the averages of the parameters generated from Step 

8. The number of chains M is defaulted as five.
• Step 10: Average the resulting mean values of the parameters over the M chains, and the resulting averages 

are treated as the estimates for the parameters.
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An R package called as EHPGS generated for executing the proposed approach is available from GitHub 
(https:// github. com/ spcsp in/ EHPGS). A referenced manual and a tutorial including a demonstration example 
are provided in the package.

A comparison study. The pumpkin dataset was analyzed using a two-stage approach in the  article15, in 
which the authors first estimated GEBVs, SCAs, GCAs, MPHs, and BPHs based on a whole genome regression 
model using Bayes C estimation in the R package  BGLR21. Then, they calculated A-GRM and D-GRM by the two 
different  formulas22,23. The restricted maximum likelihood estimation (REML) method was performed for esti-
mating the variance components by using another R package  sommer24. A comparison of the results obtained 
from the two-stage approach and ours was discussed in the next section.

The Bayesian reproducing kernel Hilbert space (RKHS) method in BGLR is another Bayesian algorithm that 
has been commonly used to perform GEBV prediction for the GBLUP model in Eq. (1). To compare the use of 
the Bayesian RKHS method with our proposed BGS algorithm, the three datasets was reanalyzed by using BGLR. 
The priors specified in BGLR were the same as ours, the number of iterations was set to 10,000, the number of 
burn-in was fixed at 9000, and the number of chains was set to five (the BGLR function was repeatedly run five 
times). These settings are exactly the same as our algorithm in analyzing the datasets.

A simulation study. To further examine whether the proposed BGS algorithm can more accurately esti-
mate known variance components compared to established methods, such as the REML method in sommer, 
and the Bayesian RKHS method in BGLR, a simulation study was conducted as follows. The estimated values 
for the model parameters obtained from the training data (displayed in Table 3) were used to generate 3000 sets 
of phenotype data for the training population in each dataset (119, 276, and 600 realized observations in each 
simulated dataset for the pumpkin, maize, and wheat datasets, respectively). For a stimulated dataset, the vari-
ance components were estimated by the REML, Bayesian RKHS, and our BGS methods.

A cross‑validation analysis. A tenfold cross-validation analysis using empirical data was also performed 
to compare the accuracy on GEBV prediction among the three methods. There were 119 and 276 empirical 
observations available in the pumpkin and maize datasets, respectively. For the sake of computational cost sav-
ing, 500 individuals randomly selected from the 2556 available hybrids in the wheat dataset were used for this 
analysis. The procedure can be described as follows. Step 1: Each of the three datasets was partitioned into 10 
exclusive clusters at random. Step 2: During the cross-validation process, each of the 10 clusters was progres-
sively and alternately used as the testing set. At the same time, the remaining nine clusters were pooled as the 
training set. Step 3: After the GEBV prediction by each method, Pearson’s correlation between GEBVs and phe-
notypic values in the testing set was calculated for each dataset. Here, the procedure was repeated five times to 
generate 50 correlation coefficients for each dataset.

The genome datasets. Three datasets that have been published in literature were reanalyzed to illustrate 
the use of EHPGS.

Pumpkin dataset. A pumpkin dataset which contained 119 intra-crossing hybrid combinations of C. maxima 
with phenotypic values for fruit weight (FWT) (kg) was analyzed for evaluation of hybrid  performance15. The 
phenotype data were historical data collected from 1988 to 2016. All the trials were conducted at a single loca-
tion experiment in southern area of Taiwan. Every hybrid had six to ten observations at each time point, and the 
average of them was used as the phenotypic observation for the hybrid of the year. Because the phenotypic values 
of every hybrid were observed for more than one year, the different year effects were therefore removed based on 
the assumption that they were random effects following a normal distribution.

The germplasm collection of the pumpkin set consisted of 320 parental lines, which were classified into 
three clusters: C. maxima with 142 inbred lines, C. pepo with 60 inbred lines and C. moschata with 118 inbred 
lines. After SNP calling, 76,815 SNPs were extracted from the parental lines, and only 4,521 SNPs remaining 
for C. maxima after the filtering by missing rate ≥ 0.05, minor allele frequency (MAF) < 0.05, and a series of 
operations for determining linkage disequilibrium (LD) blocks. The 142 inbred lines produced C142

2 = 10, 011 
potential hybrid combinations in a half diallel mating design. The means adjusted from the year effects for the 
119 C. maxima hybrids were used in the current study to build a GBLUP model for evaluating the performance 
of the 10,011 hybrid combinations.

Maize dataset. A maize dataset was analyzed to study the optimal designs for GS in hybrid crops, which con-
sisted of 276 hybrids derived from 24 parental lines in a half diallel mating  design2. The 24 diverse parents 
were classified into two groups according to the germplasm origin and a principal component analysis. The 
two groups were (i) the temperate and mixed (TM) group, consisting of 11 inbred lines (i.e., B73, B97, Ky21, 
M162W, Mo17, MS71, Oh43, OH7B, M37W, Mo18W, and Tx303); and (ii) the tropical and sub-tropical (TS) 
group consisting of the remaining 13 inbred lines (i.e., CML52, CML69, CML103, CML228, CML247, CML277, 
CML322, CML333, Ki3, Ki11, NC350, NC358, and Tzi8). There were C11

2 = 55 hybrid combinations in the TM 
group, C13

2 = 78 hybrids in the TS group, and 11 × 13 = 143 hybrids between the two groups. Three trait values, 
flowering time, ear height, and grain yield (YLD) (Mg/ha), were evaluated for all of the hybrids at two locations 
(i.e., Columbia, MO and Clayton, NC) in 2005 and 2006. In our study, the combined BLUP values from the two 
locations for YLD were evaluated.

https://github.com/spcspin/EHPGS
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Genotype data for the 24 inbred lines were extracted from the Maize HapMap  V225 at www. panzea. org, which 
consisted of 10,296,310 SNP markers. The SNP markers were first filtered by missing rate ≥ 0.05 and MAF ≤ 0.1, 
resulting in 134,726 SNPs remaining. Missing genotypes were then imputed with the homozygote of the major 
allele. To screen out reliable SNPs for building a GBLUP model, the retained SNPs were further filtered by LD 
blocks. The LD parameter r2 (i.e., the squared Pearson’s correlation coefficient) of the SNPs for each chromosome 
was estimated using TASSEL5.2.4126 with a sliding window = 10. A smooth function between r2 and the physical 
distance (bp) was built using an R function loess.smooth( ) with a second-degree locally weighted polynomial 
regression. The LD decay of ten chromosomes is displayed in Fig. S1 of the Supplementary Materials. Filtering 
the 134,726 SNP markers by the LD block sizes if r2 approached 0.2, resulting in 46,134 SNPs remaining. A SNP 
was also deleted if its corresponding column for the dominance effects was a zero vector. Finally, 30,239 SNP 
markers were retained for further analysis. In the current study, all 276 hybrids with known trait values were 
used as the training population for the prediction model construction.

Wheat dataset. A genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding 
was investigated, and the study was based on 135 advanced elite winter wheat  lines27. A set of 1604 wheat hybrids 
produced from crosses among the 15 male lines and 120 female lines were then evaluated for grain yield (YLD) 
(Mg/ha) in 11 environments. Grain yield data for all C135

2 = 9045 unique hybrids were predicted based on those 
of the phenotyped individuals. For the genotype data, the 135 lines were fingerprinted by using a 90,000 SNP 
array based on an Illumina Infinium array. After quality tests, 17,372 high-quality SNP markers were retained.

To study optimal designs for GS, 2556 hybrid combinations, produced by the half diallel mating design on 72 
lines selected from the original 135 elite wheat lines, were analyzed in the  article2. An optimal training population 
with 600 individuals, determined by the r-score  criterion28, was used in the current study to build the GBLUP 
model for the performance evaluation on the 2556 hybrid combinations.

Results and Discussion
Pumpkin dataset. By the half diallel mating design, the 142 parental lines produced C142

2 = 10, 011 hybrid 
combinations in the breeding population. For illustration purposes, we only reported the top 25 superior hybrid 
combinations with the largest GEBVs, together with their SCAs, MPHs, and BPHs in Table 1; and the top 10 
potential parental lines with the largest GCAs in Table 2. Table 1 illustrates the important finding that both 
MPHij and BPHij are greater than 0 for all of the selected hybrids, showing that they had better performance in 

Table 1.  The top 25 superior hybrid combinations with the largest GEBVs for fruit weight (FWT) within 
a pumpkin population. Note that GEBVij is the genomic estimated breeding value; SCAij is the specific 
combining ability; MPHij is the mid-parent heterosis; BPHij is the better-parent heterosis for hybrid Pi ⨂ Pj.

Pi ⨂ Pj GEBVij SCAij MPHij BPHij

P026 ⨂ P236 3.432 0.686 0.686 0.648

P026 ⨂ P234 3.396 0.676 0.676 0.612

P026 ⨂ P235 3.385 0.660 0.660 0.601

P026 ⨂ P027 3.362 0.656 0.656 0.578

P026 ⨂ P028 3.321 0.626 0.626 0.537

P026 ⨂ P237 3.315 0.646 0.646 0.531

P026 ⨂ P302 3.107 0.527 0.527 0.322

P007 ⨂ P026 3.105 0.526 0.526 0.321

P026 ⨂ P254 3.062 0.440 0.440 0.277

P026 ⨂ P253 3.060 0.433 0.433 0.276

P026 ⨂ P255 3.034 0.425 0.425 0.250

P227 ⨂ P236 3.012 0.569 0.569 0.302

P227 ⨂ P235 3.005 0.584 0.584 0.337

P227 ⨂ P234 2.999 0.582 0.582 0.341

P100 ⨂ P234 2.998 0.532 0.532 0.340

P100 ⨂ P235 2.990 0.520 0.520 0.323

P100 ⨂ P236 2.982 0.490 0.490 0.272

P026 ⨂ P252 2.974 0.356 0.356 0.189

P234 ⨂ P313 2.959 0.619 0.619 0.300

P235 ⨂ P313 2.950 0.605 0.605 0.281

P027 ⨂ P100 2.947 0.495 0.495 0.318

P028 ⨂ P227 2.936 0.544 0.544 0.328

P236 ⨂ P313 2.930 0.564 0.564 0.219

P028 ⨂ P100 2.926 0.485 0.485 0.318

P027 ⨂ P227 2.923 0.521 0.521 0.293

http://www.panzea.org
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FWT than both of their parents. More interestingly, every superior hybrid presented in Table 1 was derived from 
one or two of the potential parental lines presented in Table 2. Particularly, P026, the parental line with the high-
est GCA, involved the top 11 hybrids with the greatest GEBVs among the 25 selected hybrids.

The estimates for the variance components and genomic heritability are shown in Table 3. From the table, the 
estimates of the A-VC, D-VC, and genomic heritability are given by σ̂ 2

A = 0.306, σ̂ 2
D = 0.159 , and h2 = 0.807 . 

The high heritability explains why the values of MPHij and BPHij in Table 1 are all positive, and indicates strong 
heterosis in FWT among the intra-crossing hybrid combinations of C. maxima.

Maize dataset. There were C24
2 = 276 hybrid combinations derived from the 24 parental lines.

For illustration purposes, we reported the top 15 superior hybrids with the largest GEBVs, together with 
their SCAs, MPHs, and BPHs in Table 4; and the top 5 potential parental lines with the largest GCAs in Table 5. 

Table 2.  The top 10 potential parental lines with the largest GCAs for fruit weight (FWT) within a pumpkin 
population. GCAi is the general combining ability for parental line Pi.

Pi GCAi

P026 0.6143

P236 0.5766

P235 0.5552

P234 0.5506

P027 0.5360

P028 0.5251

P237 0.4993

P253 0.4565

P254 0.4514

P252 0.4473

Table 3.  The estimates for the variance components, genomic heritability, and constant term in fruit weight 
(FWT) for a pumpkin dataset and in yield (YLD) for maize, and wheat datasets.

Dataset σ̂
2

A σ̂
2

D σ̂
2
e h2 µ̂

Pumpkin 0.306 0.159 0.111 0.807 1.577

Maize 0.434 0.420 1.202 0.415 11.567

Wheat 0.066 0.014 0.002 0.976 10.792

Table 4.  The top 15 superior hybrid combinations with the largest GEBVs for grain yield (GYD) within a 
maize population. Note that GEBVij is the genomic estimated breeding value; SCAij is the specific combining 
ability; MPHij is the mid-parent heterosis; BPHij is the better-parent heterosis for hybrid Pi ⨂ Pj. *Represents a 
hybrid belonging to the inter-group between TM and TS.

Pi ⨂ Pj GEBVij SCAij MPHij BPHij

OH7B ⨂ CML228* 12.975 0.587 0.587 0.385

B73 ⨂ CML228* 12.697 0.635 0.635 0.452

MO17 ⨂ TZI8* 12.589 0.582 0.582 0.454

MO18W ⨂ CML103* 12.512 0.447 0.447 0.228

M162W ⨂ CML228* 12.504 0.460 0.460 0.239

TX303 ⨂ CML228* 12.499 0.358 0.358 0.132

B73 ⨂ CML69* 12.476 0.347 0.347 0.308

OH43 ⨂ CML228* 12.463 0.389 0.389 0.182

MO17 ⨂ OH7B 12.460 0.466 0.466 0.400

MO17 ⨂ CML228* 12.450 0.401 0.401 0.265

B73 ⨂ M162W 12.432 0.336 0.336 0.298

CML52 ⨂ CML103 12.361 0.294 0.294 0.076

MS71 ⨂ TZI8* 12.360 0.474 0.474 0.462

MS71 ⨂ CML228* 12.331 0.342 0.342 0.065

B97 ⨂ CML103* 12.311 0.317 0.317 0.188
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From Table 4, both MPHij and BPHij are greater than 0 for all of the selected hybrids, showing that they had 
better performance in YLD than both of their parents. A total of 12 out of the 15 selected hybrids belong to the 
inter-crossing group between TM and TS. From Table 5, the top five parental lines with the greatest GCAs are 
CML228, CML103, Mo17, B97, and B73, and involved all of the 15 superior parental lines, with the exception 
of MS71 ⨂ Tzi8.

The estimates for the variance components and genomic heritability are also displayed in Table 3. From 
the table, the estimates of the estimates of the A-VC, D-VC, and genomic heritability are given by σ̂ 2

A = 0.434, 
σ̂ 2
D = 0.420 , and h2 = 0.415 , partially explaining why the values of MPHij and BPHij in Table 4 are all positive, 

and showing that there is an obvious heterosis in YLD within the breeding population.

Wheat dataset. By the half diallel mating design, the 72 parental lines produced C72
2 = 2556 hybrid com-

binations in the breeding population. For illustration purposes, we only reported the top 20 superior hybrids 
with the largest GEBVs, together with their SCAs, MPHs, and BPHs in Table 6; and the top 10 potential parental 
lines with the largest GCAs in Table 7. The estimates for the variance components and genomic heritability are 
also displayed in Table 3. From Table 6, all of the MPHij are greater than 0, showing that they had a larger YLD 
than the mean YLD of their parents. Most of the BPHij are noticeably smaller than MPHij , probably because the 
additive effects (σ̂ 2

A = 0.066, Table 3) were stronger than the dominance effects ( ̂σ 2
D = 0.014 , Table 3). Moreover, 

11 of the 20 BPHs are negative, showing that the corresponding hybrids were inferior to their better-parents. 
Every superior hybrid presented in Table 6 was derived from one or two of the potential parental lines presented 

Table 5.  The top five potential parental lines with the largest GCAs for grain yield (GYD) within a maize 
population. GCAi is the general combining ability for parental line Pi. TS the tropical and subtropical group, 
TM the temperate and mixed group.

Pi GCAi

CML228TS 0.2361

CML103TS 0.1827

MO17™ 0.0999

B97™ 0.0538

B73™ 0.0527

Table 6.  The top 20 superior hybrid combinations with the largest GEBVs for grain yield (GYD) within a 
wheat population. Note that GEBVij is the genomic estimated breeding value; SCAij is the specific combining 
ability; MPHij is the mid-parent heterosis; BPHij is the better-parent heterosis for hybrid Pi ⨂ Pj.

Pi ⨂ Pj GEBVij SCAij MPHij BPHij

F6 ⨂ F102 11.491 0.354 0.354 0.083

F102 ⨂ M6 11.436 0.070 0.070 0.032

F102 ⨂ M9 11.435 0.151 0.151 0.029

F97 ⨂ F102 11.414 0.191 0.191 0.007

F1 ⨂ F102 11.409 0.250 0.250 0.002

F46 ⨂ F102 11.401 0.344 0.344 − 0.008

F39 ⨂ F102 11.378 0.316 0.316 − 0.031

F20 ⨂ F102 11.370 0.141 0.141 − 0.037

F102 ⨂ xM14 11.361 0.090 0.090 − 0.045

F100 ⨂ F102 11.359 0.051 0.051 − 0.047

F97 ⨂ M6 11.355 0.169 0.169 0.024

F101 ⨂ F102 11.350 0.172 0.172 − 0.057

F44 ⨂ F102 11.342 0.200 0.200 − 0.066

F98 ⨂ F102 11.338 0.143 0.143 − 0.070

F99 ⨂ F102 11.337 0.221 0.221 − 0.072

F115 ⨂ M6 11.321 0.137 0.137 − 0.010

F61 ⨂ F97 11.320 0.315 0.315 0.277

F102 ⨂ F115 11.311 0.090 0.090 − 0.096

F102 ⨂ M1 11.295 0.150 0.150 − 0.113

F102 ⨂ M8 11.290 0.162 0.162 − 0.119
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in Table 7. Particularly, F102, the parental line with the highest GCA (Table 7), involved 17 of the 20 selected 
superior hybrids (Table 6).

In summary, the BPH values were consistently positive for the top hybrids in both the pumpkin and maize 
datasets, implying that there exists a strong and useful heterosis in the two crops. The valuable result can also be 
found in  literature15,29. However, only a few of the top hybrids had a positive but too small BPH value in the case 
of wheat, indicating that the heterosis existing in this dataset may not be adequate for practical utility. A wheat 
hybrid has a small positive or negative BPH value because one of its parents is  inferior30.

The correlation between phenotypic values and GEBVs. Scatter plots of all available phenotypic 
values (119, 276, and 2556 individuals in the pumpkin, maize, and wheat datasets, respectively) and their GEBVs 
in each dataset are displayed in Figs. 1, 2 and 3. The respective Pearson’s correlation coefficients are 0.9691, 
0.6786, and 0.9445. From the figures, most of the selected superior hybrids appeared in the upper right-hand 
corners, meaning that the selected hybrids with higher GEBVs also have higher actual phenotypic values. This is 
a valuable result because phenotypic selection is usually costly and time-consuming for selective breeding. The 
great consistency exists between the results of genomic selection and phenotypic selection, supporting that the 
proposed GS-based approach can be recommended for practical applications.

Table 7.  The top 10 potential parental lines with the largest GCAs for grain yield (GYD) within a wheat 
population. GCAi is the general combining ability for the parental line Pi.

Pi GCAi

F102 0.311

M6 0.272

F100 0.213

M9 0.188

M14 0.176

F20 0.133

F97 0.127

F3 0.126

F115 0.125

F84 0.122

Figure 1.  The scatter plot for all available phenotypic values (i.e., 119 individuals) and their GEBVs in the 
pumpkin dataset. The colored points represent the two hybrids out of the 25 selected superior hybrids. Note that 
the remaining 23 selected hybrids didn’t appear in the plot, because their phenotypic values were not available. 
Pearson’s correlation for these 119 points was calculated as r = 0.9691.
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The results of the comparison study. The top 25 superior hybrids identified by the two-stage  approach15, 
together with those identified by our proposed approach are displayed in Table S1 of the Supplementary Materi-
als. The corresponding identified 10 potential parental lines are displayed in Table S2. Both sets of the results are 
highly consistent with each other. From Table S1, 18 hybrids were in common among the 25 hybrids selected 
by each approach, and the top six hybrids with the highest GEBVs were the same, even though the order was 
slightly different. Table S2 indicates seven potential parental lines in common among the 10 selected by each 
approach. The variance components for additive, dominance, random error effects, and genomic heritability 

Figure 2.  The scatter plot for all available phenotypic values (i.e., 276 individuals) and their GEBVs in the 
maize dataset. The triangle points represent the top 15 superior hybrid combinations with the highest GEBVs. 
Pearson’s correlation for these 276 points was calculated as r = 0.6786.

Figure 3.  The scatter plot for all available phenotypic values (i.e., 2556 individuals) and their GEBVs in the 
wheat dataset. The colored points represent the top 20 superior hybrids with the highest GEBVs. Pearson’s 
correlation for these 2556 points was calculated as r = 0.9445.
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estimated are 0.195, 0.119, 0.066, and 0.826, respectively, from the two-stage approach. The corresponding esti-
mates by our approach are 0.306, 0.159, 0.111 and 0.807. Even though the two corresponding estimates are dif-
ferent from each other, the two estimates of the genomic heritability are fairly close.

Overall, the results of the identified top parental lines and hybrid combinations between the Bayesian RKHS 
method in BGLR and our BGS algorithm were highly consistent with each other. Pearson’s correlations between 
GEBVs and phenotypic values for the datasets are displayed in Table 8. From which, our proposed algorithm led 
to higher Pearson’s correlations in the pumpkin and three maize datasets, but almost equal in the wheat dataset. 
Additionally, the estimates for variance components and genomic heritability by using the Bayesian RKHS 
method are displayed in Table 9. In comparison with those obtained from our BGS algorithm (Table 3), BGLR 
resulted in relatively low genomic heritability.

The results of the simulation study and the cross‑validation analysis. Side-by-side box-plots for 
the estimates of the variance components over the 3000 repetitions in the simulation study are displayed in 
Fig. 4. From the figure, the two Bayesian methods of BGS algorithm and the Bayesian RKHS method generally 
led to larger bias but smaller dispersion than the REML method in the estimation. The performance of the meth-
ods might be dependent on different dataset-variance-component combinations. For example, BGS algorithm 
tended to overestimate σ 2

A , but the Bayesian RKHS method was likely to underestimate it in the pumpkin data-
set. Moreover, BGS algorithm had slightly better performance in σ̂ 2

e  , but worse in σ̂ 2
D than the Bayesian RKHS 

method in the dataset.
The mean and the standard deviation over the 50 resulting values in the cross-validation analysis are displayed 

in Table 10. From the table, the three methods had quite close performance in the three datasets. BGS algorithm, 
the REML method, and the Bayesian RKHS method outperformed the others in the maize, wheat, and pumpkin 
datasets, respectively. However, the margins were very small. According to the above results, the REML method 
in sommer and the Bayesian RKHS method in BGLR were also imported in EHPGS as options for the GEBV 
prediction and variance component estimation.

Conclusion
In this study, a software package called EHPGS was generated for identifying potential parental lines and superior 
hybrid combinations from a breeding population, which is composed of all possible hybrids produced by a half 
diallel mating design. A training population with known phenotype and genotype data is required to build the 
GBLUP model, and then a set of parental lines with known genotype data is also required to perform GEBV 
prediction for its derived hybrid combinations. Any dataset with such training population and parental line 
set can fit the package. For an input dataset, EHPGS generates GEBVs, SCAs, GCAs, MPHs, and BPHs for all 
potential candidates to achieve the task.

Table 8.  Pearson’s correlations between GEBVs and phenotypic values for the datasets obtained from Bayesian 
RKHS method in BGLR and our proposed BGS algorithm. 1 Maize-A: the combined data from the two 
locations; Maize-B: the data from Columbia, MO; Maize-C: the data from Clayton, NC.

Methods

Datasets

Pumpkin Maize-A1 Maize-B1 Maize-C1 Wheat

BGLR 0.9461 0.6167 0.6580 0.6039 0.9439

Our algorithm 0.9691 0.6786 0.7560 0.6546 0.9445

Table 9.  The estimates for the variance components and genomic heritability in fruit weight (FWT) for a 
pumpkin dataset and in yield (YLD) for maize, and wheat datasets by using Bayesian RKSH method in BGLR.

Dataset σ̂
2

A σ̂
2

D σ̂
2
e h2

Pumpkin 0.156 0.144 0.132 0.694

Maize 0.042 0.284 1.253 0.207

Wheat 0.029 0.014 0.003 0.935
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Figure 4.  Side-by-side box-plots for the estimates of variance components over the 3000 simulated datasets by 
using the three different methods. The known values of the variance components in the simulation study are 
indicated as a red dashed line.

Table 10.  Means and standard deviations (in parentheses) over the 50 resulting Pearson’s correlation 
coefficients in the cross-validation analysis.

Datasets

Methods

BGS Sommer BGLR

Pumpkin
0.7627 0.7522 0.7705

(0.1403) (0.1443) (0.1367)

Maize
0.0996 0.0975 0.0977

(0.1963) (0.2015) (0.1963)

Wheat
0.9267 0.9329 0.9266

(0.0204) (0.0186) (0.0205)
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Data availability
All phenotype and genotype datasets that were analyzed in this study can be downloaded from Figshare (https:// 
doi. org/ 10. 6084/ m9. figsh are. 22359 883. v2).
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