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Integrated single‑cell and bulk 
RNA sequencing analysis identifies 
a prognostic signature related 
to ferroptosis dependence 
in colorectal cancer
Xiaochen Xu 1,4, Xinwen Zhang 3,4, Qiumei Lin 2, Yuling Qin 2, Yihao Liu 3 & Weizhong Tang 1*

Ferroptosis is an iron‑dependent form of cell death induced by lipid oxidation with an essential role 
in diseases, including cancer. Since prognostic value of ferroptosis‑dependent related genes (FDRGs) 
in colorectal cancer (CRC) remains unclear, we explored the significance of FDRGs in CRC through 
comprehensive single‑cell analysis. We downloaded the GSE161277 dataset for single‑cell analyses 
and calculated the ferroptosis‑dependent gene score (FerrScore) for each cell type. According to each 
cell type‑specific median FerrScore, we categorized the cells into low‑ and high‑ferroptosis groups. 
By analyzing differentially‑expressed genes across the two groups, we identified FDRGs. We further 
screened these prognosis‑related genes used to develop a prognostic signature and calculated its 
correlation with immune infiltration. We also compared immune checkpoint gene efficacy among 
different risk groups, and qRT‑PCR was performed in colorectal normal and cancer cell lines to explore 
whether the signature genes could be used as clinical prognostic indicators. In total, 523 FDRGs were 
identified. A prognostic signature including five signature genes was constructed, and patients were 
divided into two risk groups. The high‑risk group had poor survival rates and displayed high levels of 
immune infiltration. Our newly developed ferroptosis‑based prognostic signature possessed a high 
predictive ability for CRC.

Of the most common cancer types, colorectal cancer (CRC) accounts for 9.4% of all cancer deaths  worldwide1. 
Currently, surgery and chemotherapy have significantly improved the survival rates of CRC  patients2. However, 
owing to a lack of efficient clinical treatment and prognostic biomarkers, the overall prognosis of CRC is poor. 
Moreover, because of tumor heterogeneity, the clinical and histopathological features of tumors cannot currently 
be used to accurately predict the course of CRC. Therefore, it is critical to identify new prognostic factors and 
treatment targets for CRC.

Over the past few years, tumor heterogeneity has been shown to be a significant challenge in the treatment 
and prognosis of cancer. Recently, single-cell RNA sequencing (scRNA-seq) has attracted considerable atten-
tion. It allows for the genome-wide analysis of individual cells and makes it possible to understand cellular 
 heterogeneity3,4. Li et al.5 compared the intra-tumor cell heterogeneity between carcinoma and normal tissues 
in CRC using scRNA-seq. Poonpanichakul et al.6 used a droplet-based scRNA-seq method to profile intra-tumor 
cell heterogeneity in CRC ascites. However, few studies have been conducted on the cellular heterogeneity of 
CRC during its evolution from adenoma to carcinoma. In this study, we analyzed the cellular heterogeneity of 
adenomas and carcinomas by single-cell analysis, and used this information to develop an effective treatment 
strategy for CRC.

Ferroptosis, an iron-dependent cell death process, is characterized by lipid peroxidation. It is morphologically 
and mechanistically distinct from the other types of cell  death7. Increasing evidence suggests that ferroptosis 
plays a role in various  cancers8. Lu et al.9 found that downregulation of KLF2 inhibits ferroptosis by reducing 
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the transcriptional repression of GPX4 and promoting the invasive activity of renal cell carcinoma. Moreover, 
because iron metabolism and homeostasis are associated with tumor immunity, they also play a significant role 
in  immunity10. Wang et al.11 demonstrated that the activation of  CD8+ T cells could increase ferroptosis and 
the efficacy of immunotherapy. However, the mechanisms underlying ferroptosis in CRC, and the role that 
ferroptosis-dependent related genes (FDRGs) of CRC remain unclear. Therefore, it is necessary to understand 
the pathophysiology and underlying mechanisms of FDRGs in CRC.

In this study, we calculated ferroptosis-dependent gene scores (FerrScores) for different CRC cell types and 
used them to define FDRGs. We also constructed a prognostic signature for CRC. Our findings may provide a 
novel therapeutic strategy for CRC.

Methods
Data collection. To compare the cell heterogeneity in colorectal adenoma and carcinoma tissues, we down-
loaded the GSE161277 CRC sequence library from the Gene Expression Omnibus database (GEO) (http:// 
www. ncbi. nlm. nih. gov/ geo/) and selected four colorectal adenoma and four colorectal carcinoma samples 
(GSM4904234, GSM4904235, GSM4904236, GSM4904238, GSM4904239, GSM4904242, GSM4904243, and 
GSM4904245) for single-cell  analysis12. We also downloaded the RNA-Seq data and relevant clinical information 
on CRC from the official website of The Cancer Genome Atlas (TCGA) (https:// portal. gdc. cancer. gov/). Fur-
thermore, we obtained the validation dataset GSE17538 from the GEO database. A list of ferroptosis-dependent 
genes was compiled using the FerrDb website (http:// www. zhoun an. org/ ferrdb/ curre nt/).

Processing of sc‑RNAseq data. We used the “Seurat” R package (version 4.1.1) and integrated down-
stream analysis of single-cell transcriptome profiles. The data were quality controlled. Cells with fewer than 300 
features and genes expressed in fewer than three cells were excluded. In addition, the proportion of mitochon-
dria was limited to less than 20%. We then normalized the data using the LogNormalization method. We also 
screened the 2000 highly variable genes with the “FindVariableFeatures” function. Uniform manifold approxi-
mation and projection (UMAP) was used for data visualization in 2  dimensions13. Subsequently, the “Find-
Neighbors” function was used for cell clustering analysis. Furthermore, we used the FindAllMarkers function 
to define genes in each cluster. Finally, the “SingleR” package was employed for cell-type annotation. We also 
validated the annotation via cell markers from a previous  study14.

We loaded 259 ferroptosis-dependent genes and calculated FerrSore in each cell using the AddModuleScore 
function. We also compared the FerrScore between adenoma and carcinoma samples. According to each cell 
type-specific median FerrScore, we divided these cells into low-ferroptosis and high-ferroptosis cell groups. We 
also used the FindMarker function to screen out the differentially-expressed genes (DEGs) of the two groups 
(adjusted p < 0.05, |log twofold change) |> 0.5). We defined these genes as FDRGs.

We explored the cell ratios of the adenoma and carcinoma samples of the low and high-ferroptosis cell 
groups. We also performed gene set variation analysis (GSVA) to analyze the enrichments of different cell types 
in adenoma and carcinoma samples based on the “GSVA” R  package15.

Processing of TCGA data. We used the Perl programming language to extract RNA-Seq data from the 
database. The expression data of the FDRGs were then extracted based on the TCGA data. Patients with short 
survival times (less than 30 days) or those who died were excluded from the clinical data.

FDRG prognostic signature construction and validation. Patients were randomly divided into 
training and test cohorts in a 1:1 ratio (Table 1). For the training cohort, we performed univariate Cox regres-
sion analysis to identify genes associated with prognosis. In order to minimize the potential of overfitting, we 
employed Least Absolute Shrinkage and Selection Operator (LASSO) Cox proportional hazards regression to 
evaluate prognostic  genes16. Subsequently, a stepwise multivariate Cox regression analysis was conducted using 
the genes identified through LASSO Cox regression. This analysis aimed to ascertain the prognostic significance 
of specific gene signatures. Finally, a risk model was constructed by combining the mRNA expression of the 
genes with their respective risk coefficients in a linear fashion.

The median risk score was used to categorize all patients into high- and low-risk categories. Risk scores 
were calculated by multiplying gene expression levels by the coefficients of the signature genes. Kaplan–Meier 
survival curves were plotted using the “survival” R package. A receiver operating characteristic (ROC) curve for 
the signature was calculated and displayed using the R package “time-ROC”. In addition, we performed univari-
ate and multivariate Cox proportional hazards analyses in the TCGA cohort to determine the predictive value 
of the riskscore when combined with clinical variables such as age, gender, and stage. We further assessed the 
association between the riskscore and patient survival outcomes. we also examined the differential expression 
levels of genes within the signature between the different risk groups. Finally, we conducted nomogram with 
Risk scores and clinicopathological features to determine the efficacy of Overall Survival (OS) rates at 1-, 2-, 
and 3-year in CRC patients.

Analysis of functional enrichment. To determine the biological functions of the signature, we analyzed 
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data using the ClusterProfiler 
R  package17. Enrichment was defined as a p-value of < 0.05.

Correlation between immunity infiltration and signatures. Single-sample gene set enrichment 
analysis (ssGSEA) was used to detect the level of immune cell infiltration in correlation with the signature. 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://www.zhounan.org/ferrdb/current/
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Immune cell infiltration scores for the low- and high-risk groups were calculated using the “GSVA” R package. 
Moreover, we compared the immune function between different risk groups.

Based on the TCGA dataset, we calculated immune scores, stromal scores, and ESTIMATE scores using 
the “estimated” R  package18. Moreover, we compared the risks in the different groups. Finally, the expression of 
checkpoint  genes19–22 in the two risk groups was compared.

CRC cell line culture and quantitative real‑time polymerase chain reaction (qRT‑PCR). Human 
normal intestinal epithelial cells (NCHM460) were obtained from IMMOCELL (Xiamen,China), and human 
colon cancer cell lines (Caco2, HCT15, HCT116, HT29, Lovo, SW480, SW620) were obtained from iCell (Shang-
hai, China). All these cells were cultured in media containing 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin (P/S) at 37 °C in a humidified atmosphere of 5% CO2. The culture media used were DMEM, MEM, 
1640, McCOY’s 5A, McCOY’s 5A, F12K, L15 and L15, which were purchased from Gibco BRL in the USA.

Total cellular and tissue RNA was extracted from tissues or cell lines using Total RNA Extraction Rea-
gent (DP451, Tiangen) according to standard protocols. The obtained RNA was then used for cDNA synthesis 
using cDNA Synthesis Kit (MR05401S, Monad). Gene expression was quantified using SYBR Green Master Mix 
(MQ10301S, Monad) on a Roche LightCycler 480 and expression levels were calculated using the  2−ΔΔCT method.

GAPDH was used as an internal reference for normalization. All primers used for qRT-PCR were synthesized 
by Wuhan Jinkairui Bioengineering Co Ltd (Wuhan, China). The sequences of the primers used are listed in 
Table 2.

Statistical methods. We analyzed the data using R software (version 4.1.3) and compared the differences 
between the groups the Wilcoxon test. Spearman’s correlation coefficient was also calculated; p values of < 0.05 
were considered statistically significant.

Table 1.  Clinical characteristics of CRC patients involved in the study.

Covariates Type Total Test Train p-value

Age
 <  = 65 196 97 99

0.9234
 > 65 242 122 120

Gender
Female 197 106 91

0.1787
Male 241 113 128

Stage

Stage I 78 38 40

0.8611

Stage II 160 78 82

Stage III 119 61 58

Stage IV 66 36 30

unknow 15 6 9

T

T1 13 8 5

0.3971
T2 81 38 43

T3 299 146 153

T4 45 27 18

M

M0 329 162 167

0.4415M1 65 36 29

unknow 44 21 23

N

N0 254 124 130

0.6727
N1 108 54 54

N2 75 41 34

unknow 1 0 1

Table 2.  The sequences of the qRT-PCR primer used in this study.

Gene Forward primer Reverse primer

GAPDH GAG TCA ACG GAT TTG GTC GT GAC AAG CTT CCC GTT CTC AG

TIMP1 AGT TTT GTG GCT CCC TGG AA TCC GTC CAC AAG CAA TGA GT

MANF ATA TCG GGG CCA CAG ATG ATG AAC TCG GAG CTT CTT CAG GTC 

HSPA1A CCT GTT TGA GGG CAT CGA CT TCG TGA ATC TGG GCC TTG TC

RPS17 GTT CGC ACC AAA ACC GTG AA GCT TGT TCG TGT GGA AGT CG

PTMA CCT GCT AAC GGG AAT GCT G CGT CGG TCT TCT GCT TCT TG
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Results
Single‑cell clustering and acquisition of FDRGs. The overall research design is illustrated in Fig. 1. 
A total of 24,732 high-quality cells were obtained from the eight samples after filtering and quality control 
(Supplementary Fig. 1A). There was no significant correlation between the sequencing depth (total number of 
UniqueMolecular Identifiers, nCount) and mitochondrial percentage (Pearson correlation coefficient r = 0.18); 
however, nCount was positively correlated with the number of detected genes (nFeature) (r = 0.92) (Supplemen-
tary Fig. 1B). Subsequently, the top ten highly variable genes out of 2000 were marked in red (Supplementary 
Fig. 1C). Twenty-three cell clusters were identified and visualized in two dimensions (Supplementary Fig. 2A). 
The cell identity of each cluster was annotated to six cell types. These cell types were characterized as epithelial 
cells, monocytes, endothelial cells, B-cells, NK-cells, and T-cells (Fig. 2A).

Bubble plots were used to show the average expression levels of representative marker genes for different cell 
types in the integrated human CRC  data23 (Supplementary Fig. 2B).

The FerrScores of the different cell types are shown in Fig. 2B. Figure 2C shows the FerrScore of each sample. 
We also compared the FerrScore among adenoma and carcinoma samples. The differences in FerrScore between 
adenoma and carcinoma samples were significant. (Fig. 2D, ***p < 0.001). Figure 2E shows a comparison of the 
FerrScore for different cell types in adenoma and carcinoma samples. Among these cell types, there were signifi-
cant differences between adenoma and carcinoma samples, except for endothelial cells (***p < 0.001).

For each cell type, we divided these cells into a low-ferroptosis and a high-ferroptosis cell group based on the 
cell type-specific median FerrScore. Moreover, 523 DEGs were screened in the two groups. We also identified 
the top five genes with log2FC values (Fig. 2F).

Cell ratios of the samples and functional enrichment by GSVA. The cell ratios for each sample are 
shown in Fig. 3A. We also show the ratios of the different cell types in terms of adenomas vs. carcinomas, in 
Fig. 3B. The cell ratios of the low-ferroptosis and high-ferroptosis cell groups are displayed in Fig. 3C. Figure 3D 
shows the results of gene set enrichment in the different cell types between adenoma and carcinoma samples.

Construction of five‑gene prognostic signature. We developed a prognostic signature based on 
FDRGs. Using univariate Cox regression analysis, we identified 21 genes associated with OS in patients 
with CRC (Fig.  4A). Then, LASSO regression analysis was performed on the 21 previously screened genes 
and obtained 14 genes by the optimal λ (Fig.  4B, C). Finally, we constructed a 5-gene (HSPA1A, MANF, 
PTMA, RPS17, and TIMP1) signature based on multifactorial stepwise Cox regression analysis. According 
to the formula, the riskscore = HSPA1A * 0.274668948995861 + MANF * (− 1.21739069354923) + PTMA * 
1.07281342991973 + RPS17 * 0.820155083563555 + TIMP1 * 1.17800493596346 (Table 3). Figure 4D shows the 
expression of signature genes in the cell types between adenoma and carcinoma samples.

Evaluation and validation of prognostic signature. As we validated the prognostic power of the sig-
nature, The Kaplan–Meier curves demonstrated that patients in the low-risk group had a significantly better 
overall survival (OS) compared to those in the high-risk group in both the TCGA and GEO cohorts (Fig. 5A–B). 
In the TCGA cohort, the area under the receiver operating characteristic (ROC) curves (AUCs) for 1-, 2-, and 
3-year overall survival (OS) were 0.706, 0.729, and 0.707 respectively, as shown in Fig. 5C. The corresponding 

Figure 1.  Data collection and analysis in this study.
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AUCs for the 1-, 2-, and 3-year OS in the GEO cohort were 0.646, 0.665, and 0.631 respectively, as presented 
in Fig. 5D. To further assess the predictive power of the risk traits, we conducted a comprehensive analysis that 
involved comparing the risk score distribution, survival time and status, and expression of model genes between 
the high-risk and low-risk groups Fig. 5E–F. After conducting both univariate and multivariate Cox propor-
tional hazards analyses, we found that age and the riskscore were identified as independent prognostic factors, 
according to the results presented in Supplementary Fig. 3.

To investigate whether the signature genes have a prognostic significance, we divided them into high and 
low expression groups based on the optimal cutoff value. Lower expression of these genes displayed better OS, 
including HSPA1A, TIMP1, and RPS17, while PTMA and MANF’s were not significantly associated with OS 
(Fig. 6A–E).

Construction and Validation of nomogram. To evaluate the potential clinical utility of a prognostic 
signature, a nomogram was constructed based on the clinical characteristics (age, gender, stage, T, N and M) 
of the patient (Fig. 7A). The nomogram may aid in determining a patient’s risk with greater precision, which 
can ultimately inform and improve future treatment decisions. The calibration curves showed good consist-
ency between the actual and predicted survival rates (Fig. 7B). To further assess the accuracy of the nomogram, 
prognostic ROC analysis was carried out, which demonstrated superior prognostic performance as compared to 
other clinical shapes and risk scores. The AUC values for 1-, 2-, and 3-year survival were 0.812, 0.813, and 0.825, 
respectively, as shown in Fig. 7C–E. These results indicate that the predictive signature has great potential as a 
biomarker for predicting the prognosis of CRC.

Comparison of our gene signature with other COAD prognostic models. In order to assess the 
superiority of our gene signature over other COAD prognostic models, we conducted a comparison of 10 mod-
els across the entire TCGA  cohort24–33. The 1-year AUC values for all 10 prognostic models were observed, and 
our findings indicated that our model incorporating the 5 gene signatures had significantly superior predictive 
power compared to the other 10 prognostic models (Supplementary Fig. 4).

Functions by KEGG and GO. The results of the KEGG enrichment analysis showed that the high-risk 
group expressed traits mainly related to the regulation of cell adhesion, such as extracellular matrix (ECM) 
receptor interaction and focal adhesion (Fig. 8A). In the low-risk group, a number of metabolic pathways were 
associated, including aldarate, ascorbate, and butanoate metabolism (Fig. 8B). The KEGG enrichment results 
have been presented in Supplementary Table 1.

In the high-risk group, GO enrichment analysis revealed that many immune-related pathways were enriched, 
including adaptive immune responses and B-cell-mediated immunity (Fig. 8C). However, the low-risk group 

Figure 2.  Single-cell RNA sequencing analysis of 24,732 cells from four colorectal adenomas and four 
colorectal carcinoma tissues. (A) Cells were clustered into six types by a UMP dimensionality reduction 
algorithm, and each color represented the annotated phenotype of each cluster. (B) The ferroptosis-dependent 
genes scores (FerrScores) of the six cell types. (C) Comparison of FerrScores for each sample. (D) Comparison 
of FerrScores between adenoma and carcinoma groups. (E) Comparison of FerrScores for different cell types in 
adenoma and carcinoma samples. (F) Top five differential expressed genes (DEGs) with log2FC values. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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was primarily associated with mRNA splicing traits (Fig. 8D). The GO enrichment results have been presented 
in Supplementary Table 2.

Differences in immune infiltration between the two risk groups. To investigated the immune infil-
tration levels of different risk groups, we compiled a list of immune infiltration scores for each sample in the 
TCGA dataset, which is presented in Supplementary Table 3. According to the ssGSEA results, the high-risk 
group showed more immune infiltration and activated immune function (Fig. 9A–B). Compared to the low-risk 
group, the immune, stromal, and ESTIMATE scores of the high-risk group were significantly higher (Fig. 9C). 
In addition, immune checkpoint genes in the high-risk group were significantly upregulated (Fig. 9D). (*p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001).

qRT‑PCR assay in colorectal cell models. As shown in Fig. 6A–E, High expression of HSPA1A, TIMP1, 
and RPS17 were positively associated with poor prognosis in CRC, while PTMA and MANF’s were not signifi-
cantly associated with prognosis. As shown in Fig. 10A–E, the mRNA expression levels of HSPA1A, TIMP1, 
RPS17, PTMA, and MANF in CRC cells were significantly elevated compared with normal intestinal epithelial 
cells. Among them, HSPA1A, TIMP1, and RPS17 were consistent with the clinical prognostic model we con-

Figure 3.  Cell ratios of different samples and GSVA analysis. (A) Cell ratios of each sample. (B) Cell ratios 
of different cell types in adenoma and carcinoma samples. (C) Cell ratios of the high-ferroptosis and low-
ferroptosis cell groups. (D) Results of GSVA of different cell types in adenoma and carcinoma.
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structed, and PTMA and MANF could not be used as prognostic signature genes, which could be related to our 
cell specificity or insufficient sample size (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Discussion
With continuous in-depth research on ferroptosis, extensive experimental research data have shown that fer-
roptosis plays a vital role in tumor development. For instance, the inhibition of STAT3-ferroptosis inhibits tumor 
growth and alleviates chemotherapy resistance in gastric  cancer34 Moreover, studies have suggested that cisplatin 
was an inducer for both ferroptosis and apoptosis in lung cancer  cells35. However, few studies have examined 
ferroptosis in patients with CRC. The possible regulatory genes and markers involved in ferroptosis have not 

Figure 4.  Construction of a prognostic signature. (A) Univariate Cox analysis of the TCGA cohort. (B–C) 
Using least absolute shrinkage and selection operator (LASSO) regression, a signature was constructed based on 
the optimum λ. (D) Bubble plot visualizing the expression of signature genes in cell types between adenoma and 
carcinoma samples.

Table 3.  The genes involved in the signature and their coefficients.

No Gene name Coef

1 T1MP1 1.17800493596346

2 PTMA 1.07281342991973

3 RPS17 0.820155083563555

4 HSPA1A 0.274668948995861

5 MANF − 1.21739069354923
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yet been fully elucidated. Therefore, a comprehensive analysis of FDRGs can contribute to the advancement of 
this field.

In this study, we calculated the FerrScore of different CRC-related cell types and defined low- and high-ferrop-
tosis cell groups based on each cell type-specific median FerrScore. We also identified FDRGs in the two groups. 
Notably, using the TCGA database, we developed an FDRG-based risk signature to predict CRC prognosis. Five 
genes (HSPA1A, MANF, PTMA, RPS17, and TIMP1) were proven to have significant prognostic value. we also 
used qRT-PCR to test our predicted gene model and finally found that HSPA1A, TIMP1, and RPS17 were highly 
expressed in CRC cells and positively correlated with poor prognosis. These genes aid in distinguishing between 
the two risk groups. The high-risk group had a worse prognosis. Our ROC and calibration curves showed that 

Figure 5.  Validation of the prognostic signature. (A–B) Overall Survival (OS) for TCGA cohort and GEO 
cohort. (C–D) ROC curves of signatures in the TCGA cohort and GEO cohort. (E–F) Correlation of risk-scores 
and survival statuses of CRC patients.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12653  | https://doi.org/10.1038/s41598-023-39412-y

www.nature.com/scientificreports/

Figure 6.  OS differences of different expression levels of genes in the signature (A–E). Lower expression of 
these genes displayed better OS, including HSPA1A, TIMP1, and RPS17, while PTMA and MANF’s were not 
significantly associated with OS.

Figure 7.  Nomogram construction. (A) A nomogram was constructed to facilitate prognosis prediction. Age, 
TNM, stage and risk-score variables were factored in the nomogram, and the total points indicated the survival 
probabilities of patients. (B) The calibration curve indicated that the predicted OSs by the nomogram were 
relatively consistent with the actual observed OSs. (C–E) The AUC values for diverse clinical factors, risk scores, 
and nomogram scores were determined via ROC curves at intervals of 1, 2, and 3 years.
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our method accurately predicted 1-, 2-, and 3-year survival in CRC cases. To further investigate the mechanism 
of this method, KEGG and GO enrichment analyses were performed. As shown by KEGG analysis, the high-risk 
group possessed mutational traits mainly related to the regulation of cell adhesion, as demonstrated by ECM-
receptor interactions and focal adhesions. Several studies have demonstrated that ECM-receptor interactions 
contribute to invasion and metastasis in CRC 36–38. Our GO analysis showed that the high-risk group exhibited 
mutational traits mainly related to immune responses and B cell-mediated immunity. Moreover, GSVA showed 
that epithelial cells, monocytes, and endothelial cells were positively correlated with related pathways involved in 
NOTCH signaling, PI3K-AKT-MTOR signaling, and WNT-BETA-CATENIN signaling. Evidence suggests that 
these pathways play essential roles in the development of  cancer39–41. Therefore, we speculated that ferroptosis 
may have contributed to the occurrence and development of CRC through these signaling pathways.

Ferroptosis has been linked to tumor immune infiltration. Wang et al. found that  CD8+ T cells and fatty acids 
orchestrate tumor ferroptosis and immunity via  ACSL442. However, ferroptosis and tumor immune infiltration 
in CRC have not been extensively studied. We conducted ssGSEA to investigate the immune statuses of the 
different groups after enriching many immune-related functions in our GO study. Our results indicated that 
the high-risk group had increased immune cell infiltration and immune function activation. Additionally, the 
high-risk group had high stromal scores, immune scores, and estimated cores. Li et al.43 demonstrated that high 
immune and stromal scores are associated with poor prognosis, which is consistent with our results. Studies 
have shown that immune checkpoint genes are strongly associated with immunotherapy  outcomes44. Our study 
revealed a general increase in the expression of immune checkpoint genes in high-risk populations. Moreover, 
high expression levels of these genes in high-risk patients can cause immune failure, leading to the upregula-
tion of inhibitory checkpoint genes. Consequently, high-risk populations exhibit elevated levels of inhibitory 
checkpoint genes, which hold potential value as targets for immunotherapy.

The majority of genes in this signature contributed positively to the risk score, indicating that they are onco-
genes. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) plays a vital role in carcinogenesis. Shou et al. 

Figure 8.  Gene set enrichment analysis. (A–B) The differentially pathways were significantly enriched in the 
risk groups by Kyoto Encyclopedia of Genes and Genomes (KEGG). (C–D) The differentially pathways were 
significantly enriched in the risk groups by Gene Ontology (GO).
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have shown that TIMP1 overexpression is associated with poor prognosis in renal cell  carcinoma45. In colon 
cancer, TIMP1 induces cell proliferation and invasion through the FAK/Akt signaling  pathway46. The human 
ribosomal protein RPS17 plays an important role in several diseases. The mutations in the ribosomal protein 
S17 (RPS17) gene are closely associated with hereditary bone marrow failure  syndrome47, while it has also been 
shown that RPS17 may affect CRC prognosis by controlling amino acid  metabolism48, which is consistent with 
our study. The heat shock protein family A member 1A (HSPA1A) belongs to the heat shock protein 70 family. 
Studies have shown that HSPA1A decreases survival rates in cancers and is associated with cell proliferation 
and tumor  grade49. Chen et al.50 confirmed that LIM and SH3 protein 1 (LASP1) and HSPA1A are both upregu-
lated in head and neck squamous cell carcinoma, and directly bind to one another. However, few studies have 
explored the roles of these genes in CRC, which is an aspect where our research may provide some insights. 
MANF has been shown to improve colonic injury and negatively regulate macrophage polarization in colitis, 
indicating its potential as a therapeutic target for colonic  inflammation51. Additionally, PTMA has been found 
to promote the malignant phenotype and participate in the progression of CRC, suggesting its involvement in 
cancer  development52.The two studies that have shed light on the role of MANF and PTMA in colorectal cancer 
(CRC) development. Although the expression level of both high and low MANF and PTMA did not have a direct 
association with prognostic outcomes in predictive models, our study identified the high expression of five genes 
in CRC cells. This underscores the crucial and pressing need for additional research to further validate the pre-
dictive model and uncover more genes that could potentially serve as clinically valuable prognostic markers for 
CRC. Understanding the functions and interactions of the various factors involved in CRC development can help 
identify diagnostic and prognostic biomarkers, as well as potential targets for therapeutic intervention. As such, 
continued research and exploration in this field is crucial for developing effective strategies for the prevention, 
diagnosis, and treatment of CRC.

Figure 9.  Immune infiltration differences between risk groups. (A–B) ssGSEA scores of immune cells and 
immune functions in the risk groups. (C) Comparison of StromalScore, ImmuneScore, and ESTIMATEScore 
between high- and low-risk groups. (D) The difference in immune checkpoint gene expression between the risk 
groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Overall, we identified FDRGs and developed a transcriptome-based prognosis prediction method for CRC. 
However, owing to the inherent complexity of tumors, other omics and experimental studies are needed to 
further verify the roles of these biomarkers.

In conclusion: We defined a low ferroptosis and a high ferroptosis cell group based on each cell type-specific 
median FerrScore. We also identified FDRGs from the two groups. The prognostic signature developed from 
these FDRGs demonstrated a high predictive ability for CRC outcomes.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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