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Integrated multi‑omics analysis 
reveals the molecular interplay 
between circadian clocks 
and cancer pathogenesis
Andy Pérez‑Villa 1,2,3,11, Gabriela Echeverría‑Garcés 3,4,11, María José Ramos‑Medina 5, 
Lavanya Prathap 6, Mayra Martínez‑López 1, David Ramírez‑Sánchez 1, 
Jennyfer M. García‑Cárdenas 3,7,8, Isaac Armendáriz‑Castillo 2,3,7,9, Santiago Guerrero 3,7, 
Clara Paz 10 & Andrés López‑Cortés 1*

Circadian rhythms (CRs) are fundamental biological processes that significantly impact human 
well‑being. Disruption of these rhythms can trigger insufficient neurocognitive development, 
insomnia, mental disorders, cardiovascular diseases, metabolic dysfunctions, and cancer. The 
field of chronobiology has increased our understanding of how rhythm disturbances contribute 
to cancer pathogenesis, and how circadian timing influences the efficacy of cancer treatments. As 
the circadian clock steadily gains recognition as an emerging factor in tumorigenesis, a thorough 
and comprehensive multi‑omics analysis of CR genes/proteins has never been performed. To shed 
light on this, we performed, for the first time, an integrated data analysis encompassing genomic/
transcriptomic alterations across 32 cancer types (n = 10,918 tumors) taken from the PanCancer 
Atlas, unfavorable prognostic protein analysis, protein–protein interactomics, and shortest distance 
score pathways to cancer hallmark phenotypes. This data mining strategy allowed us to unravel 31 
essential CR‑related proteins involved in the signaling crossroad between circadian rhythms and 
cancer. In the context of drugging the clock, we identified pharmacogenomic clinical annotations and 
drugs currently in late phase clinical trials that could be considered as potential cancer therapeutic 
strategies. These findings highlight the diverse roles of CR‑related genes/proteins in the realm of 
cancer research and therapy.

Circadian rhythms (CRs) are near-24-h oscillations that regulate a broad range of physiological and behavioral 
processes, including sleep–wake cycles, cell cycle gating, mitochondrial function, DNA damage repair, cellular 
redox, hypoxia, autophagy, apoptosis, and immune  function1–3. These rhythms are guided by central and periph-
eral biological clocks, which are influenced by external cues known as zeitgebers (German for “time givers’’), such 
as light, temperature, and feeding  schedule4. Light signals, in particular, are received by specialized melanopsin-
producing photoreceptive retinal ganglion cells (ipRGCs) in the eyes and conveyed to the central pacemaker, the 
suprachiasmatic nucleus (SCN), in the anterior  hypothalamus5. The SCN relays timing information to various 
brain regions, enabling the orchestration of peripheral clocks located in nearly all body  cells6–8 (Fig. 1A). While 
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Figure 1.  The circadian rhythms and circadian clock. (A) The circadian timing system synchronizes central and peripheral clocks 
across the human body to adapt our physiology to environmental changes. Light is received by ipRGCs in the eyes, which sends 
electrical signals to the SCN through the retinohypothalamic tract. The peripheral nervous system and humoral signals convey 
information from the SCN to orchestrate peripheral clocks. Feeding schedule and exercise can also activate central and peripheral 
clocks. Finally, circadian rhythms regulate hormones, thermogenesis, immunity, metabolism, reproduction, fat storage, and stem cell 
development. (B) Neurotransmitters released by ipRGCs. Glutamate and PACAP cause membrane depolarization in the postsynaptic 
SCN neurons. Changes in cAMP and  Ca2+ levels induce phosphorylation of the CREB protein, and expression of canonical clock 
components (i.e., PER1 and PER2), thereby resetting SCN cellular oscillators. GABA, an inhibitory neurotransmitter, decreases the 
sensitivity of non-image-forming behaviors at low light levels. Lastly, SCN neurons control peripheral clocks throughout the body via 
neuronal and hormonal signals. (C) The human molecular clock is composed of canonical clock components, clock-controlled genes, 
and clock-controlled pathways. The clock is operated through a network of transcription-translation feedback loops (positive, negative, 
auxiliary, and metabolic) that oscillate with a near-24-h cycle (see Introduction). ipRGC  intrinsically photosensitive retinal ganglion 
cells, SCN suprachiasmatic nucleus, PACAP pituitary adenylate cyclase-activating polypeptide, GABA γ-aminobutyric acid, RRE 
RORA or NR1D1 response elements, CCC  canonical clock components, NAM nicotinamide, NMN nicotinamide mononucleotide, 
NAD+ nicotinamide adenine dinucleotide.
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these peripheral clocks can be influenced by the SCN through neurotransmitters, endocrine factors, and bodily 
 fluids9 (Fig. 1B), they can also function independently, adjusting to non-light zeitgebers. Consequently, there 
is a feedback mechanism between SCN and peripheral clocks, ensuring synchronized CRs across the  body10.

Circadian rhythms consist of three major groups of genes/proteins: (a) the canonical clock components 
(CCCs), which directly and crucially contribute to the generation and maintenance of circadian  rhythms11; (b) 
the clock-controlled genes/proteins (CCGs/CCPs), which act as regulatory nodes in specific cell types and have 
their expression influenced by the circadian  clock12; and (c) the genes/proteins involved in mediating the neural 
mechanisms of circadian rhythmicity and its entrainment (NMCRE), which function as nodes in neural and 
physiological processes that regulate CRs and synchronize them with external  cues13.

The human molecular clock is comprised of CCCs, including ARNTL, ARNTL2, CLOCK, CRY1, CRY2, 
CSNK1D, CSNK1E, NPAS2, NR1D1, NR1D2, PER1, PER2, PER3, RORA, RORB, RORC, and TIMELESS10. This 
molecular clock operates at a single-cell level through transcription-translation feedback loops that oscillate 
on a near-24-h cycle. The positive loop is initiated by the interaction of CLOCK or NPAS2 with ARNTL in the 
nucleus. The resulting heterodimers bind to E-boxes located in the promoter regions of CCCs to regulate their 
 transcription14. As PER and CRY proteins reach a certain cytoplasmic concentration, they are transported to 
the nucleus to interact with the ARNTL/CLOCK complex, inhibiting their own transcription, thereby creating 
a negative feedback  loop14. An auxiliary loop is involved in the transcription of ARNTL by activating or inhibit-
ing the RORA or NR1D1 response elements (RREs),  respectively2. Additionally, the ARNTL/CLOCK complex 
controls the expression of NAMPT, a key enzyme in the mitochondrial metabolic loop to inhibit the CLOCK-
driven transcription (Fig. 1C).

Disturbances in CRs, induced by factors such as widespread use of electric light at night, sleep deprivation, 
night shift work, chronic jet lag, or nocturnal eating habits, are closely associated with impaired neurocogni-
tive development, sleep and mood disorders, insomnia, mental disorders, cardiovascular diseases, metabolic 
diseases, and  cancer5,15–18. Particularly, alterations in CRs due to genetic, environmental or pathological risk 
factors can significantly alter the expression and function of tumor suppressors, oncogenes, DNA repair, apop-
totic, and immune-related genes in both host and tumor tissues, potentially favoring the onset and progression 
of  cancer3,19. Such chrono-disruptions can lead to uncontrolled proliferation, metastatic spread, inflammation, 
escaping apoptosis, immune evasion, enhanced angiogenesis, and anti-cancer drug  resistance3. Therefore, main-
taining a well-regulated circadian rhythm could be a crucial strategy in cancer  prevention20,21.

Recently, Sulli et al. proposed three distinct categories for chronotherapeutic approaches: (a) training the 
clock to enhance a robust circadian rhythm in feeding-fasting, sleep–wake, or light–dark cycles; (b) clocking the 
drugs, which involves optimizing the timing of drug administration to maximize efficacy and minimize adverse 
side effects; and (c) drugging the clock, which employs agents targeting the circadian  clock5. Nonetheless, the 
discovery of therapeutic targets and effective drugs involved in the CRs of cancer remains limited. To address 
this gap, we performed, for the first time, an integrated multi-omics data analysis, encompassing the assessment 
of genomic and transcriptomic alterations of CR-related genes across 32 cancer types sourced from the Pan-
Cancer Atlas (PCA) project of The Cancer Genome Atlas (TCGA)  consortium22. We also identified CR-related 
genes associated with unfavorable prognosis based on the Human Pathology  Atlas23, designed a protein–protein 
interactome network, and defined the shortest pathways to cancer hallmark phenotypes. Collectively, these 
approaches led to the discovery of potential therapeutic targets, pharmacogenomic clinical annotations, and 
drugs currently in late stage clinical trials. These findings should be considered to enhance the effectiveness of 
cancer chronotherapy.

Results
OncoPrint of genomic and transcriptomic alterations according to the TCGA PanCancer 
Atlas. After obtaining sets of CCCs (n = 17), CCGs (n = 59), genes involved in mediating the NMCRE 
(n = 130), and cancer driver genes (n = 873) (Supplementary Tables  1 and 2), we identified 140,939 genomic 
and transcriptomic alteration events in the entire set of CR-related genes (n = 206) belonging to 10,918 indi-
viduals across 32 different TCGA PanCancer types. Figure 2A and Supplementary Tables 3 to 35 detailed the 
OncoPrint of alterations, including mRNA upregulation, mRNA downregulation, copy number variant (CNV) 
deep deletion, CNV amplification, fusion gene, and driver mutations, involving 1084 (9.9%) individuals with 
breast invasive carcinoma (BRCA), 594 (5.4%) with colorectal carcinoma (CRC), 585 (5.4%) with ovarian serous 
cystadenocarcinoma (OV), 585 (5.4%) with glioblastoma multiforme (GBM), 566 (5.2%) with lung adenocar-
cinoma (LUAD), 529 (4.8%) with uterine corpus endometrial carcinoma (UCEC), 523 (4.8%) with head and 
neck squamous cell carcinoma (HNSC), 514 (4.7%) with brain lower grade glioma (LGG), 512 (4.7%) with 
kidney renal clear cell carcinoma (KIRC), 499 (4.6%) with thyroid carcinoma (THCA), 494 (4.5%) with pros-
tate adenocarcinoma (PRAD), 487 (4.5%) with lung squamous cell carcinoma (LUSC), 442 (4.0%) with skin 
cutaneous melanoma (SKCM), 440 (4.0%) with stomach adenocarcinoma (STAD), 411 (3.8%) with bladder 
urothelial carcinoma (BLCA), 372 (3.4%) with liver hepatocellular carcinoma (LIHC), 297 (2.7%) with cervical 
squamous cell carcinoma and endocervical adenocarcinoma (CESC), 283 (2.6%) with kidney renal papillary cell 
carcinoma (KIRP), 255 (2.3%) with sarcoma (SARC), 184 (1.7%) with pancreatic adenocarcinoma (PAAD), 182 
(1.7%) with esophageal carcinoma (ESCA), 178 (1.6%) with pheochromocytoma and paraganglioma (PCPG), 
165 (1.5%) with acute myeloid leukemia (LAML), 149 (1.4%) with testicular germ cell tumors (TGCT), 123 
(1.1%) with thymoma (THYM), 92 (0.8%) with adrenocortical carcinoma (ACC), 87 (0.8%) with mesothelioma 
(MESO), 80 (0.7%) with uveal melanoma (UVM), 65 (0.6%) with kidney chromophobe (KICH), 57 (0.55) with 
uterine carcinosarcoma (UCS), 48 (0.4%) with lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), and 
36 (0.3%) with cholangiocarcinoma (CHOL).
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Figure 2.  OncoPrint of genomic and transcriptomic alterations across 32 TCGA PanCancer types. (A) Ranking of the most 
altered CR-related genes (n = 206) considering the mean f of alteration events (cutoff = 0.063) and the CR-cancer score > 0.9. The 
Mann–Whitney U test showed significant difference of genomic alterations between genes upper the mean f and lower the mean f 
(P < 0.001). The OncoPrint was performed using the data from the cBioPortal platform (http:// www. cbiop ortal. org/)63,64. (B) Mean 
f per alteration type and significant Bonferroni correction (P < 0.001) of mRNA downregulation, mRNA upregulation and CNV 
amplification in comparison with other alterations. (C) Ranking of the 50% (n = 16) most altered TCGA PanCancer types according 
to the mean f of alterations. (D) Ranking of the top ten TCGA PanCancer types with highest mean f of genomic alterations in CCCs. 
(E) Ranking of the top ten TCGA PanCancer types with highest mean f of genomic alterations in CCGs. (F) Ranking of the top 
ten TCGA PanCancer types with highest mean f of genomic alterations in genes mediating NMCRE. CR circadian rhythm, CCCs 
canonical clock components, CCGs clock-controlled genes, NMCRE neural mechanisms of circadian rhythmicity and its entrainment, 
CNV copy number variants, TCGA  The Cancer Genome Atlas, mRNA messenger RNA, BRCA  breast invasive carcinoma, LGG brain 
lower grade glioma, PRAD prostate adenocarcinoma, LUSC lung squamous cell carcinoma, SKCM skin cutaneous melanoma, STAD 
stomach adenocarcinoma, BLCA bladder urothelial carcinoma, SARC  sarcoma, PAAD pancreatic adenocarcinoma, ESCA esophageal 
carcinoma, ACC  adrenocortical carcinoma, MESO mesothelioma, UVM uveal melanoma, KICH kidney chromophobe, UCS uterine 
carcinosarcoma, DLBC lymphoid neoplasm diffuse large B-cell lymphoma, CHOL cholangiocarcinoma.

http://www.cbioportal.org/
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After normalizing the frequency (f) of alteration events, which involved dividing the number of alteration 
events per gene by the number of individuals in each cancer cohort, the overall analysis revealed that 50 (24.3%) 
CR-related genes were significantly altered (Mann–Whitney U test P < 0.001) with alteration f higher than the 
average (cutoff > 0.063). Among them, 4 (8%) were CCCs, 15 (30%) were CCGs, and 31(62%) were genes involved 
in mediating the NMCRE. The CR-related genes with both the highest f of alteration events and the highest 
CR-cancer scores (cutoff > 0.9) were DRD3, TP53, PTEN, NPS, GHRH, OPN5, ZPBP2, SOX14, AANAT, CSF2, 
GHRHR, NLGN1, FBXL6, HCRTR2, FBXW7, and KLF10.

The most common alteration type, with a mean f of 0.028, was mRNA downregulation, followed by mRNA 
upregulation (f = 0.019), CNV amplification (f = 0.009), CNV deep deletion (f = 0.003), putative driver mutations 
(f = 0.0026), and fusion genes (f = 0.0003). We performed the Bonferroni correction as a multiple comparison 
test to obtain significant alterations (P < 0.001) across the TCGA PanCancer types. We found that mRNA down-
regulation, mRNA upregulation, and CNV amplification were significantly altered (P < 0.001) across genomic 
and transcriptomic alterations (Fig. 2B).

Figure 2C shows the TCGA PanCancer types with the highest mean alteration frequencies into CR-related 
genes. The top three cancer types with the highest mean f of genomic and transcriptomic alteration events 
were CHOL (f = 0.089), DLBC (f = 0.089), and UCS (f = 0.087) (Supplementary Table 36). Moreover, the top 
three TCGA PanCancer types with the highest f of genomic alterations in CCCs were ESCA (f = 0.072), SARC 
(f = 0.068), and BRCA (f = 0.064) (Fig. 2D); in CCGs were UCS (f = 0.111), SARC (f = 0.086), and BLCA (f = 0.086) 
(Fig. 2E); and, in genes mediating NMCRE were CHOL (f = 0.101), UVM (f = 0.096), and KICH (f = 0.088) 
(Fig. 2F).

Circadian rhythm protein–protein interactome network. The CR protein–protein interactome net-
work (CR-PPi) was generated to better understand the connectivity between CRs and cancer through high-
confidence interactions (cutoff > 0.9). Figure 3 shows the CR-PPi network encompassed by 412 (100%) nodes 
and 3795 high-confidence edges. Of these nodes, 312 (76%) were cancer driver proteins with a mean of degree 
centrality of 19.4, 13 (10%) were CCCs with a mean of 17.2, 37 (29%) were CCPs with a mean of 16.6, and 76 
(37%) were proteins involved in mediating the NMCRE with a mean of 18.0. Lastly, the CR-related proteins with 
both the highest degree centrality and the highest CR-cancer scores (cutoff > 0.9) were EP300, TP53, HDAC1, 
MAPK8, and BTRC (Supplementary Table 37).

A pathology atlas of the human cancer transcriptome. After exploring the Human Pathology Atlas 
created by the Human Protein Atlas program, we conducted a Kaplan–Meier analysis to examine the correlation 
between mRNA expression levels of CCCs, CCGs, and genes involved in mediating the NMCRE with patient 
survival. This analysis aimed to determine the prognostic significance of each CR protein-coding gene across 17 
TCGA PanCancer types, encompassing nearly 8000 patients. The findings highlight the efficacy of large-scale 
system biology endeavors that leverage publicly available resources. In this context, we identified 83 CR-related 
genes that exhibited unfavorable prognostic significance (significant log rank P-value < 0.001) in 16 TCGA can-
cer types. Among these genes, 8 (10%) were CCCs, 32 (39%) were CCGs, and 52 (63%) were involved in the 
NMCRE. Lastly, the most significant CR-related genes with a CR-cancer score > 0.9 were TOP2A, CDK1, ADA, 
SFPQ, EZH2, IL6, NMU, FBXL6, HDAC2, ASS1, PML, PTGDS, TARDBP, SLC25A19, and SUV39H1 (Fig. 4A 
and Supplementary Table 38).

Shortest pathways from circadian rhythm proteins to cancer hallmark phenotypes. We uti-
lized CancerGeneNet software to analyze a set of 206 CR-related proteins and observed that 117 (57%) of them 
exhibited distance scores indicating their involvement in the shortest pathways to cancer hallmark  phenotypes24. 
Among these proteins, 16 (14%) were CCCs, 37 (32%) were CCPs, and 64 (55%) were proteins involved in 
mediating NMCRE. In Fig. 4B, we presented box plots illustrating the CR-related proteins with shortest paths 
to various cancer hallmark phenotypes, with the top three being cell proliferation (mean distance score = 1.45; 
number of proteins = 104), resisting cell death (1.73; 52), and metastasis (1.92; 107). Through the Bonferroni cor-
rection test, we observed that CR-related proteins had significantly shorter paths (P < 0.001) among these cancer 
hallmark phenotypes. Additionally, Fig. 4C highlights the 42 CR-related proteins with both the shortest paths to 
cancer hallmark phenotypes and the highest CR-cancer scores (cutoff > 0.9). Among them, CREB1 was highly 
connected to cell proliferation, EP300 to inflammation, SIRT1 to resisting cell death, MAPK9 to metastasis, 
LEPR to angiogenesis, DYRK1A to cell differentiation, MTOR to deregulating cellular energetics, MAPK8 to 
immortality, and CDK1 to genome instability (Supplementary Table 39).

Multi‑omics data integration and functional enrichment analysis. Figure 5A illustrates a heatmap 
of CR-cancer scores per multi-omics approach to prioritize the 31 essential CR-related proteins significantly 
involved in cancer (cutoff > 0.9) (Supplementary Table 40). Among them, 2 (7%) were canonical clock compo-
nents (CSNK1D and CSNK1E), 11 (35%) were clock-controlled proteins (CDK1, TP53, PPARG, PTEN, ATG7, 
CREB1, PPP1CC, IL6, FBXL6, NAMPT, and PPP1CB), and 18 (58%) were proteins involved in mediating neural 
mechanisms of circadian rhythmicity and its entrainment (EZH2, HDAC2, HDAC3, GSK3B, PRKDC, FBXW7, 
PML, HDAC1, EP300, MAPK8, HNRNPU, DRD3, FBXL12, NCOR1, TOP2A, SIAH2, TARDBP, and NCOA2).

Subsequently, we conducted a functional enrichment analysis of the 31 essential CR-related proteins signifi-
cantly involved in cancer by using the g:Profiler  software25. The Manhattan plot helped us to identify 571 gene 
ontology (GO) biological processes, 70 Reactome signaling pathways, and 19 WikiPathways. Interestingly, this 
enrichment analysis displayed a strong correlation with several cancer hallmark phenotypes and cancer signaling 
pathways. The most significant biological annotations, with Benjamini–Hochberg correction and false discovery 
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rate (FDR) q < 0.001, included programmed cell death, phosphorylation, apoptotic signaling pathway, cell dif-
ferentiation, cell proliferation, Notch signaling pathway, energy metabolism, Wnt signaling pathway, CKAP4 
signaling pathway, and TGF-β signaling pathway (Fig. 5B and Supplementary Table 41).

Identification of essential circadian rhythm‑related genes highly altered in a metastatic 
cohort. Memorial Sloan Kettering–Metastatic Events and Tropism (MSK–MET) represents an integrated 
PanCancer cohort comprising tumor genomic and clinical outcome data from 25,775 patients, highlighting pat-
terns of metastatic dissemination across 50 tumor  types26. Interestingly, 10 of our 31 essential CR-related genes 

Figure 3.  Circadian rhythm protein–protein interactome network. Network made up of 13 CCCs (sky blue 
nodes; mean degree centrality = 17.2), 37 (29%) CCPs (red nodes; mean degree centrality = 16.6), and 76 (37%) 
proteins involved in the NMCRE (green nodes; mean degree centrality = 18.0) with at least one high-confidence 
interaction (cutoff > 0.9) with cancer driver proteins (pink node; mean degree centrality = 19.4). The Mann–
Whitney U test showed a correlation of degree centrality between cancer driver nodes and CR-related nodes 
(P > 0.05). The CR-related proteins with both the highest degree centrality and the CR-cancer scores > 0.9 were 
EP300, TP53, HDAC1, MAPK8, and BTRC. Lastly, the CR-PPi network was designed and visualized through 
the Cytoscape software v.3.10 (https:// cytos cape. org/)72. CR circadian rhythm, PPi protein–protein interaction, 
CCCs canonical clock components, CCPs clock-controlled proteins, NMCRE neural mechanisms of circadian 
rhythmicity and its entrainment.

https://cytoscape.org/
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(PTEN, TP53, EP300, NCOR1, GSK3B, FBXW7, PPARG , EZH2, CSNK1E and TOP2A) exhibited genomic altera-
tions in the metastatic  cohort27. Subsequently, we carried out an overall survival analysis contrasting patients 
with genomic alterations in these 10 essential CR-related genes (n = 15,194) against those without alterations 
(n = 10,465). Consequently, the group with alterations demonstrated a median overall survival (95% coefficient 
intervals) of 31.64 (30.46–33.18) months, while the group without alterations had a median overall survival of 
55.72 (53.49–58.61) months. The log rank test revealed a statistically significant difference (P < 0.001) in overall 
survival months when comparing altered and unaltered patients (Fig. 5C).

Pharmacogenomic clinical annotations of circadian rhythm genes in cancer. Figure 6A,B dis-
play the panoramic landscape of cancer pharmacogenomic strategies where CR-related genes were involved. 
Figure 6A presents the results of the boostDM analysis aimed to identify oncogenic variants into the 31 essential 
CR-related genes strongly associated with cancer. Following the analysis of 27,893 single nucleotide variants and 
insertion/deletion variants, we pinpointed 765 oncogenic variants (Supplementary Table 42). Among these, 42 
(5.5%) were known drivers carried by TP53 (91%), PTEN (7%), and FBXW7 (2%), meanwhile, 723 (94.5%) were 
predicted drivers carried by NCOR1 (41%), EP300 (28%), TP53 (11%), EZH2 (6%), FBXW7 (6%), HDAC3 (5%), 
and PTEN (3%) (Supplementary Table 43).

After identifying the oncogenic variants in the essential CR-related genes strongly involved in cancer, we then 
conducted an in silico drug prescription analysis. The aim of this analysis was to pinpoint suitable drugs targeting 
clinically actionable markers, using the Cancer Biomarker  database28, which is an expanded version of a previ-
ous collection of genomic biomarkers related to anti-cancer drug response. Figure 6B depicts a Sankey plot of 
putative biomarkers involved in cancer treatments, indicating responsive effects. Patients with EZH2 mutations 
(A692V, Y646C, Y646F, Y646H, Y646N, Y646S, and A682G) show responsiveness to tazemetostat. Oncogenic 
FBXW7 mutations are receptive to steroids and mTOR inhibitors. The PML-RARA  fusion responds to several 
treatments including tretinoin, a combination of tretinoin and arsenic trioxide, D-allose, and a combination of 
D-allose and arsenic. PTEN oncogenic mutations and PTEN deletions respond to everolimus. PTEN expression 
responds with sensitivity to trastuzumab, and a combination of gefitinib with erlotinib. Patients with TOP2A 
amplification respond to anthracyclines. Oncogenic TP53 mutations, including R175H and R249, are receptive 
to alemtuzumab and doxorubicin. TOP2A expression is also receptive to doxorubicin. Lastly, patients with 
wildtype TP53 respond to Unii-Q8MI0X869M, and a combination of oxaliplatin, capecitabine, and cetuximab 
(Supplementary Table 44).

Drugs involved in late phase clinical trials. Figure 6C provides an update on the phase III and IV clini-
cal trials where the essential CR-related proteins were involved according to the Open Targets  Platform29. Of the 
106 clinical trial events, 87% were in phase III and 13% in phase IV. Figure 6C also presents a Sankey plot that 
portrays 23 drugs with 8 mechanisms of action under investigation, targeting 10 essential CR-related proteins 
across 21 cancer types (Supplementary Table 45). Interestingly, only 10 (32%) of the essential CR-related proteins 
are currently being investigated in late phase clinical trials. This leaves 21 (68%) essential CR-related proteins 
that warrant further research to evaluate their potential for drug development.

Discussion
The circadian clock, our near-24-h intrinsic biological timer, plays a pivotal role in coordinating time-dependent 
cellular processes and systemic  physiology1–3. The growing knowledge of chronobiology has increased our under-
standing of how rhythm disruptions can trigger a range of health issues, from inadequate neurocognitive develop-
ment, insomnia, and mental disorders, to cardiovascular diseases, metabolic dysfunctions, and  cancer5,15,16. Many 
aspects of cancer biology, including its development and progression, can be understood through the chrono-
disruption of essential CR-related proteins and signaling pathways. These disruptions can trigger uncontrolled 
proliferation, metastasis, inflammation, inhibition of apoptosis, immune evasion, angiogenesis, and resistance 
of anti-cancer  drugs3. Within this context, the innovative strategy of drugging the clock—specifically targeting 
the circadian clock to treat cancer—opens promising avenues for cancer treatment. However, our understand-
ing of the therapeutic targets and effective drugs involved in the circadian rhythms of cancer remains limited. 
To shed light on this, we conducted a comprehensive multi-omics data analysis prioritizing CR-related genes/
proteins strongly associated with cancer pathogenesis and potential therapeutic strategies with responsive effects.

Our comprehensive and integrative analysis of CR-cancer scores across various multi-omics approaches ena-
bled us to prioritize 31 essential CR-related genes/proteins with significant association to cancer. This assembled 
list provides a promising groundwork for potential therapeutic targets and highlights the profound role of the 
circadian rhythm in cancer pathogenesis. Among the prioritized entities, CSNK1D and CSNK1E emerged as 
key players, serving as canonical clock components directly involved in the generation and regulation of cir-
cadian rhythms and period  length30. Their roles extend to various processes, including cell proliferation, DNA 
damage response, and cell  migration31. Additionally, CDK1, TP53, PPARG, PTEN, ATG7, CREB1, PPP1CC, 
IL6, FBXL6, NAMPT, and PPP1CB constitute clock-controlled proteins. These proteins are downstream enti-
ties whose expression is driven by the rhythmic activity of the CCCs. The existence of such downstream control 
underscores the circadian clock’s influence over cellular processes and responses, highlighting the importance 
of timing in cellular regulation and the potential repercussions of its disruption. For instance, CDK1 plays a 
crucial role in cell division and cell cycle control. The regulation of CDK1 by the circadian clock influences cell 
cycle progression and cell proliferation  rates32. TP53 regulates the expression of PER2 by blocking the ARNTL/
CLOCK heterodimer and initiates cell cycle arrest or apoptosis in response to DNA  damage33. Finally, we iden-
tified EZH2, HDAC2, HDAC3, GSK3B, PRKDC, FBXW7, PML, HDAC1, EP300, MAPK8, HNRNPU, DRD3, 
FBXL12, NCOR1, TOP2A, SIAH2, TARDBP, and NCOA2 as proteins involved in mediating neural mechanisms 
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of circadian rhythmicity and its entrainment to environmental cues. These proteins aid in synchronizing our 
internal biological clocks with the external environment, underlining the intricate interplay between our bodies 
and our surroundings. For instance, PRKDC plays a significant role in DNA repair and influences the length 
of circadian  rhythms34. FBXW7 regulates the degradation of NR1D1 and has associations with lipid/glucose 
 homeostasis35. HNRNPU is crucial for expressing neuropeptides vital for SCN  communication36, and its absence 
results in disrupted metabolic  rhythms37. Collectively, these findings emphasize the importance of circadian 
rhythm regulation in various aspects of health and disease. They represent a substantial advancement in our 
understanding of how disruptions to the circadian rhythm can contribute to cancer development and progression.

Subsequently, our functional enrichment analysis highlighted the pivotal roles these 31 essential CR-related 
proteins play across various cancer-related biological processes and pathways. These proteins, for example, have 
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a key role in programmed cell death, an essential process for maintaining cellular homeostasis. This process 
eliminates cells that may pose a threat due to DNA damage or uncontrolled  proliferation38. Phosphorylation, a 
significant post-translational modification controlling protein function, was also identified. Any disruptions in 
this mechanism could result in abnormal protein  function39. Moreover, these proteins play a significant role in 
cell differentiation and proliferation, both of which are fundamental for growth and development. Any disruption 
in these mechanisms could contribute to  tumorigenesis40. Energy metabolism, another critical aspect of cellular 
function, was also highlighted. Given that alterations in energy metabolism are a recognized hallmark of cancer, 
understanding the role of these proteins could offer valuable insights into possible therapeutic  strategies41. These 
essential CR-related proteins are also implicated in signaling pathways such as the apoptotic signaling pathway, 
a crucial self-destruction mechanism that cancer cells often  evade38. Furthermore, their influence extends to the 
Notch, Wnt, and CKAP4 signaling pathways, crucial pathways involved in cancer development and progression 
due to their role in cell proliferation, differentiation, and  survival42–44. These findings illustrate the diverse roles 
of these 31 essential CR-related proteins in numerous cancer-related biological processes and pathways. A com-
prehensive understanding of their functions and interactions will be critical in developing novel and effective 
strategies for cancer prevention, diagnosis, and treatment.

Interestingly, metastasis, another cancer hallmark phenotype, is strongly associated with disruptions in the 
circadian  rhythm45. In our survival analysis of 25,775 patients with metastasis, we discovered that those with 
genomic alterations in 10 essential CR-related genes (PTEN, TP53, EP300, NCOR1, GSK3B, FBXW7, PPARG 
, EZH2, CSNK1E, and TOP2A) experienced a significantly shorter overall survival (31.64 months), compared 
to those without such alterations (55.72 months). Previous studies have also suggested a correlation between 
disruptions in circadian rhythm and patient  survival26. This may be due to increased inflammation caused by 
cancer when rhythmic systems are  disrupted46–48.

The prior identification of essential CR-related proteins and signaling pathways, which are closely associated 
with cancer pathogenesis, has enabled us to analyze the comprehensive landscape of pharmacogenomic clinical 
annotations and late-stage clinical trials to enhance cancer treatment efficacy. Regarding pharmacogenomic clini-
cal annotations, the boostDM machine learning-based  method49 identified 765 known and predicted oncogenic 
variants in 7 CR-related genes, also identified as clinically actionable targets for anti-cancer drugs. Furthermore, 
our in silico drug prescription analysis identified 21 pharmacogenomic clinical annotations with responsive 
effects, as shown in Fig. 6B. For instance, tazemetostat is recommended for patients with specific oncogenic 
mutations in EZH2. Steroids and mTOR inhibitors are beneficial for those with oncogenic mutations in FBXW7. 
For patients with a PML-RARA  fusion, treatment options include tretinoin alone, tretinoin in combination with 
arsenic trioxide, D-allose alone, or D-allose with arsenic. Everolimus is suggested for those with PTEN oncogenic 
mutations and deletions. Patients with PTEN expression may be treated with trastuzumab or a combination of 
gefitinib and erlotinib. Anthracyclines are used for treating TOP2A amplification. Alemtuzumab is suitable for 
patients with TP53 oncogenic mutations, whereas doxorubicin is recommended for those with specific TP53 
oncogenic mutations and TOP2A expression. Lastly, Unii-Q8MI0X869M or a combination of oxaliplatin, capecit-
abine, and cetuximab is beneficial for patients with TP53  wildtype28,50.

In our review of clinical trials focusing on essential CR-related proteins, we found that 23 drugs are currently 
in phases III and IV. These drugs target 10 therapeutic entities and are being tested across 21 different cancer 
types. Our study revealed that topoisomerase inhibitors have shown a responsive effect on the TOP2A protein, 
while a GSK3 inhibitor has a similar effect on GSK3B. CDK1 responds to a CDK inhibitor, and CSNK1E to a 
PI3K delta inhibitor. Additionally, a methyltransferase inhibitor has been found effective on EZH2, and HDAC 
inhibitors have shown responses on HDAC1, HDAC2, and HDAC3. A PPAR receptor agonist has an impact 
on PPARG, while a dopamine receptor antagonist works on DRD3. However, out of the 31 essential CR-related 
proteins examined in our study, only 10 (32%) are currently targeted by drugs in these clinical trials. Thus, we pro-
pose that the remaining 21 CR-related proteins offer potential therapeutic targets for future cancer clinical trials.

Figure 4.  Circadian rhythm-related genes/proteins with unfavorable prognosis in different cancer types and 
distance score of shortest pathways to cancer hallmark phenotypes. (A) The Human Pathology Atlas details the 
CR-related genes with unfavorable prognosis and log rank P-value < 0.001 across 19 cancer types. Additionally, 
15 CR-related genes had the highest CR-cancer scores (> 0.9). All data was taken from The Human Protein Atlas 
platform (https:// www. prote inatl as. org/)23. (B) Box plots showing the mean distance scores of shortest paths 
per cancer hallmark phenotype, and the Bonferroni correction as multiple comparison test (P < 0.001) to show 
significant differences across cancer phenotypes. The shortest paths to cancer hallmark phenotype analysis 
reveals that 16 (14%) CCCs, 37 (32%) CCPs, and 64 (55%) proteins involved in the NMCRE have the shortest 
distance scores to cancer phenotypes. (C) CR-related proteins with both the shortest distance scores to cancer 
hallmark phenotypes and the highest CR-cancer scores (> 0.9). Lastly, the shortest paths to cancer hallmark 
phenotypes were analyzed by using data from CancerGeneNet (https:// signor. uniro ma2. it/ Cance rGene Net/)24. 
CR circadian rhythm, CCCs canonical clock components, CCPs clock-controlled proteins, NMCRE neural 
mechanisms of circadian rhythmicity and its entrainment, THCA thyroid carcinoma, GBM glioblastoma 
multiforme, HNSC head and neck squamous cell carcinoma, LUSC lung squamous cell carcinoma, LUAD lung 
adenocarcinoma, BRCA  breast invasive carcinoma, UCEC uterine corpus endometrial carcinoma, OV ovarian 
serous cystadenocarcinoma, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, KIRP 
kidney renal papillary cell carcinoma, KICH kidney chromophobe, KIRC kidney renal clear cell carcinoma, 
LIHC liver hepatocellular carcinoma, PAAD pancreatic adenocarcinoma, SKCM skin cutaneous melanoma, 
PRAD prostate adenocarcinoma, BLCA bladder urothelial carcinoma, STAD stomach adenocarcinoma, CRC  
colorectal carcinoma.

◂

https://www.proteinatlas.org/
https://signor.uniroma2.it/CancerGeneNet/
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In conclusion, our study elucidates an innovative therapeutic landscape oriented around the groundbreaking 
concept of drugging the clock. This approach, which targets the circadian clock for cancer treatment, underscores 
the vast potential of integrating circadian biology into oncology. This integration, enriched by pharmacogenomic 
approaches, patient-specific clinical data, and ethnicity considerations, not only enhances the precision, per-
sonalization, and effectiveness of cancer  treatments51–54, but also mitigates side effects. Nonetheless, as this is an 
emerging field, further extensive research and rigorous clinical trials are imperative to validate the safety and 
efficacy of these interventions.

Methods
Gene/protein set. A set of 206 human genes/proteins associated with the “circadian rhythm” term was 
obtained from the Gene Ontology database (GO:0007623) (http:// www. geneo ntolo gy. org)55,56, and the David 
Bioinformatics Resource (https:// david. ncifc rf. gov/)57. Subsequently, we manually curated and classified these 
CR-related genes/proteins in three categories: (a) CCCs, (b) CCGs/CCPs, and (c) genes/proteins involved in 
mediating the NMCRE. This classification was based on various gene ontology annotations. On the other hand, 
to determine which CR-related genes/proteins were already recognized as cancer drivers, we retrieved 874 driver 
genes/proteins from the Integrative OncoGenomics (intOGen) pipeline (https:// www. intog en. org)58. Addition-
ally, we utilized The Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) (https:// 

Figure 5.  Integrated multi-omics data analysis and functional enrichment analysis. (A) Heatmap of CR-cancer 
scores per multi-omics approach to prioritize the 31 essential CR-related proteins significantly involved 
in cancer (cutoff > 0.9). (B) The functional enrichment analysis displays the most significant annotations 
(Benjamini–Hochberg FDR < 0.01) related to the GO biological processes (http:// geneo ntolo gy. org/)55, the 
Reactome signaling pathways (https:// react ome. org/)83, and the WikiPathways (https:// www. wikip athwa ys. 
org/)84 on cancer. The results of this enrichment were visualized using a Manhattan plot and were obtained 
through the g:Profiler software version e101_eg48_p14_baf17f0 (https:// biit. cs. ut. ee/ gprofi ler/ gost)25. (C) 
Overall survival analysis comparing metastatic patients with genomic alterations in 10 essential CR-related 
genes (n = 15,194) versus unaltered patients (n = 10,465). Unaltered patients had a median month average 
(55.72) significantly higher than altered patients (31.64) showing a log rank test P < 0.001. CR circadian rhythm, 
GO gene ontology, WP WikiPathways, BP biological processes, FDR false discovery rate, MSK-MET Memorial 
Sloan Kettering–Metastatic Events and Tropism, CI confidence intervals.

http://www.geneontology.org
https://david.ncifcrf.gov/
https://www.intogen.org
https://cancer.sanger.ac.uk/
http://geneontology.org/
https://reactome.org/
https://www.wikipathways.org/
https://www.wikipathways.org/
https://biit.cs.ut.ee/gprofiler/gost
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Figure 6.  Pharmacogenomic clinical annotations and clinical trials. (A) Identification of known and predicted 
oncogenic variants (n = 765) through the boostDM machine learning-based  method49. (B) Sankey plot of in 
silico drug prescription based on pharmacogenomic clinical annotations. (C) Overview of phase III and IV 
clinical trials. Sankey plot showing therapeutic targets, drugs, mechanisms of action, and cancer types involved 
in late phase clinical trials. Data of clinical trials and mechanisms of action were taken from the Open Targets 
Platform (https:// platf orm. opent argets. org/)29, and the Drug Repurposing Hub (https:// clue. io/ repur posing)89. 
Lastly, Sankey plots were designed using the SankeyMATIC software (https:// sanke ymatic. com/ and https:// 
github. com/ nowth is/ sanke ymatic) CR circadian rhythm.

https://platform.opentargets.org/
https://clue.io/repurposing
https://sankeymatic.com/
https://github.com/nowthis/sankeymatic
https://github.com/nowthis/sankeymatic
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cancer. sanger. ac. uk/), which is an expert-curated repository of the genes/proteins known to drive cancer and is 
commonly employed in oncology  research59.

CR‑cancer score. The CR-cancer score is a strategy for prioritizing the most relevant genes/proteins in each 
of the multi-omics approaches analyzed. This score involved assigning a rank from 1 to 0 to each gene/protein 
based on the ranking obtained from the results of each analysis. In the OncoPrint of the TCGA PanCancer 
Atlas, the CR-related genes were ranked based on the frequency of genomic and transcriptomic alterations. 
Genes with higher frequencies of alterations received a higher CR-cancer score. In the CR-PPi network, the CR-
related proteins were ranked based on degree centrality. Proteins more connected to cancer driver proteins had 
higher degree centrality and therefore a higher CR-cancer score. In the unfavorable prognostic gene analysis, the 
genes with greater significance received a higher CR-cancer score. In the shortest pathways to cancer hallmark 
phenotype analysis, the CR-related proteins with lower distance scores to cancer phenotypes received a higher 
CR-cancer score. For the first time, the CR-cancer scores from each multi-omics approach were integrated to 
identify the most significantly associated essential CR-related genes/proteins with cancer pathogenesis. This 
prioritization strategy allowed the visualization of the top 10% (cutoff > 0.9) of genes/proteins in each of the 
multi-omics approaches.

OncoPrint of genomic and transcriptomic alterations according to the TCGA PanCan‑
cer Atlas. After identifying the sets of CCCs, CCGs, and genes involved in mediating the NMCRE, we 
retrieved their genomic and transcriptomic alteration events in the PanCancer Atlas which belongs to TCGA 
 consortium60–62. The genomic and transcriptomic alterations (mRNA upregulation, mRNA downregulation, 
CNV deep deletion, CNV amplification, fusion gene, inframe mutation, truncating mutation, and missense 
mutation) were analyzed in 10,918 individuals from 32 TCGA PanCancer types: GBM, UCS, UCEC, THCA, 
THYM, TGCT, SARC, PCPG, SKCM, PRAD, MESO, PAAD, OV, LUSC, LUAD, LIHC, KIRP, KICH, KIRC, 
HNSC, UVM, STAD, ESCA, CESC, LGG, BRCA, CRC, BLCA, CHOL, ACC, DLBC, and LAML. According to 
the Genomics Data Commons of the National Cancer Institute (https:// portal. gdc. cancer. gov/) and the cBio-
Portal (http:// www. cbiop ortal. org/)63,64, the mRNA upregulation and mRNA downregulation alterations were 
analyzed through RNA sequencing V2 RSEM where the expression Z-scores of tumor samples were compared 
to the expression distribution of all log-transformed mRNA expression of adjacent normal samples in each 
 cohort65. The CNV amplifications and CNV deep deletions were identified using GISTIC2.066; and the inframe, 
truncating, and missense driver mutations were identified through whole exome sequencing. Lastly, an “event” 
refers to the presence of at least one pathogenic alteration in a patient’s gene, and the sum of these events allows 
us to calculate the frequencies of genomic and transcriptomic alterations.

To design the OncoPrint, which encompasses the most significantly altered CR-related genes we: (a) calculated 
the number of alteration events per gene and per TCGA PanCancer type; (b) normalized the f of alteration events 
dividing the number of alterations per gene by the number of individuals per each cancer cohort; (c) calculated 
the mean f per gene and per alteration type considering all PanCancer types; (d) identified the most altered 
genes taking into account as a cutoff the mean f of all genes; and (e) validated the most significant altered genes 
comparing the alteration frequency events between the group of genes with the highest alteration frequencies 
(cutoff > mean f) versus the group of genes with the lowest alteration frequencies (cutoff < mean f) by using the 
Mann–Whitney U test (P < 0.001). We also applied the Bonferroni correction test (P < 0.001) to perform a multi-
ple comparison between (g) the whole TCGA PanCancer alterations, and (h) the TCGA PanCancer  Atlas62,67–70. 
Lastly, we calculated the CR-cancer score to prioritize the top 10% (cutoff > 0.9) of genes with the most genomic 
and transcriptomic alterations across the TCGA PanCancer Atlas.

Circadian rhythm protein–protein interactome network. The CR-PPi was performed to enhance 
our understanding of the connectivity between CCCs, CCPs, proteins involved in mediating the NMCRE, and 
cancer driver proteins. This analysis utilized the human proteome data from the Cytoscape StringApp, consider-
ing only the highest confidence interactions (cutoff > 0.9) based on experimental  evidence71–73. To determine the 
degree centrality, which indicates the number of edges connected to each node in a  network74–77, we employed 
the CytoNCA  app78. The nodes and edges were then organized using the organic layout, and the CR-PPi network 
was visualized through the Cytoscape software v.3.1071,72. The analysis included all CR-related proteins with at 
least one high-confidence interaction in the human proteome. For the inclusion of cancer driver proteins in the 
CR-PPi network, we sourced the data from the intOGen pipeline and the COSMIC-CGC  database58,59. Lastly, we 
compared the average degree centrality among CCCs, CCPs, proteins involved in mediating the NMCRE, and 
cancer driver proteins; and we calculated the CR-cancer score to prioritize the top 10% (cutoff > 0.9) of proteins 
with the highest degree centrality in the CR-PPi network.

A pathology atlas of the human cancer transcriptome. The Human Pathology Atlas, created as part 
of the Human Protein Atlas program (https:// www. prote inatl as. org/ human prote ome/ patho logy), has been used 
to explore the prognostic role of each CR protein-coding gene across 17 TCGA PanCancer types in nearly 8000 
patients. The Human Pathology Atlas uses transcriptomics and antibody-based profiling to provide a standalone 
resource for precision medicine in  cancer23. Immunohistochemistry (IHC) is the gold standard methodology 
for in situ protein expression analysis in tissue samples. The combination of IHC and tissue microarray (TMA) 
technology allows simultaneous analysis of hundreds of tissue samples with an unprecedented degree of experi-
mental  standardization79.

Staining profiles for proteins in human tumor tissue based on immunohistochemistry using TMA and log-
rank P-value for Kaplan–Meier analysis of correlation between mRNA expression level and patient survival were 

https://cancer.sanger.ac.uk/
https://portal.gdc.cancer.gov/
http://www.cbioportal.org/
https://www.proteinatlas.org/humanproteome/pathology
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produced. Patient samples were classified into two expression groups and the correlation between expression 
level and patient survival was examined. The prognosis of each group of patients was examined by Kaplan–Meier 
survival estimators, and the survival outcomes of the two groups were compared by log-rank tests. CCCs, CCGs, 
and genes involved in NMCRE with log rank P-values less than 0.001 in maximally separated Kaplan–Meier 
analysis were defined as unfavorable prognostic  genes80. Lastly, we calculated the CR-cancer score to prioritize 
the top 10% (cutoff > 0.9) of the most significant unfavorable prognostic genes.

Shortest pathways from circadian rhythm proteins to cancer hallmark phenotypes. Cancer-
GeneNet, available at (https:// signor. uniro ma2. it/ Cance rGene Net/), is a curated bioinformatics resource pro-
vided by  SIGNOR81. This resource utilizes experimental annotations to infer potential causal pathways linking 
proteins to various cancer hallmark  phenotypes24. Iannuccelli et al., programmatically implemented the calcu-
lation of shortest distance scores or paths from specific proteins to cancer phenotypes using the shortest path 
function from the igraph R package. Thus, our objective was to investigate the signaling crossroad between CR-
related proteins and  cancer45.

In this context, we computed the shortest paths for positive or negative regulations of CR-related proteins 
associated with angiogenesis, immortality, inflammation, metastasis, proliferation, cell death, differentiation, 
DNA repair, and glycolysis. Subsequently, we conducted a multiple comparison test using the Bonferroni cor-
rection (P < 0.001, 95% confidence interval) to compare the distance scores of CR-related proteins across dif-
ferent cancer phenotypes. Finally, we calculated the CR-cancer score to prioritize the top 10% (cutoff > 0.9) of 
the CCCs, CCPs, and proteins mediating NMCRE with the shortest paths to each cancer hallmark phenotype.

Multi‑omics data integration and functional enrichment analysis. The functional enrichment 
analysis gives scientists curated signatures and interpretation of protein sets from omics-scale  experiments25,82. 
Therefore, we performed the functional enrichment analysis to the essential CR-related proteins most signifi-
cantly associated with cancer identified through the integration of CR-cancer scores (cutoff > 0.9) per multi-
omics approach. The enrichment was analyzed using g:Profiler version e101_eg48_p14_baf17f0 (https:// biit. cs. 
ut. ee/ gprofi ler/ gost)25 to obtain significant annotations (Benjamini–Hochberg FDR q < 0.001) related to GO bio-
logical processes (http:// geneo ntolo gy. org/)55, the Reactome signaling pathways (https:// react ome. org/)83, and 
WikiPathways (https:// www. wikip athwa ys. org/)84. The functional enrichment analysis was visualized through a 
Manhattan plot, and significant terms related to cancer hallmark phenotypes were manually curated.

Pharmacogenomic clinical annotations of circadian rhythm genes in cancer. We set out to fur-
ther evaluate the panoramic landscape of cancer pharmacogenomic strategies where the essential CR-related 
genes were involved. Accordingly, we identified known and predicted oncogenic variants highly associated with 
cancer. Following this, we performed an in silico drug prescription analysis to reveal several clinically actionable 
genes directly targeted by anti-cancer  drugs27.

The identification of oncogenic variants was a two-step process. Initially, we extracted 27,893 single nucleo-
tide variants and insertion/deletion variants belonging to the CR-related genes that are significantly involved in 
cancer. These were retrieved from the Genome Aggregation database (gnomAD v3.1.2) (https:// gnomad. broad 
insti tute. org/), using GRCh38 as the human genome  reference85,86. Then, we performed boostDM, a machine 
learning-based methodology integrated into the Cancer Genome Interpreter (CGI) platform (https:// www. cance 
rgeno meint erpre ter. org/ home), to conduct an in silico saturation mutagenesis of cancer genes. This process 
allowed us to assess the oncogenic potential of the previously mentioned mutations in human  tissues49,50. Lastly, 
boostDM categorizes mutations as known drivers or predicted drivers.

Furthermore, the in silico drug prescription integrated into the CGI includes putative biomarkers of drug 
responses found in the tumor, organized according to various levels of clinical relevance. The CGI utilizes two 
key resources to define the association between oncogenic variants and drug responses: the Cancer Biomarker 
database and the Cancer Bioactivities  database28,50. Finally, we carried out an in silico analysis to determine the 
druggability of driver variants located within CR-related genes. This allowed us to identify the most effective 
precision oncology  treatments87.

Drugs involved in late phase clinical trials. Regarding the identification of potential therapeutic targets 
and drugs in late phase clinical trials for cancer, we analyzed data from The Open Targets Platform (https:// 
www. targe tvali dation. org). This platform provides comprehensive data integration, allowing for access to and 
visualization of potential drug targets associated with cancer. It showcases all drugs in clinical trials linked to 
the essential CR-related proteins significantly involved in  cancer29,88. Furthermore, the Broad Institute’s Drug 
Repurposing Hub (https:// clue. io/ repur posing) is a curated collection of drugs approved by the Food and Drug 
Administration (FDA), along with drugs in clinical trials and preclinical tool  compounds89. This bioinformatics 
tool facilitated our identification of the mechanisms of action of drugs used in cancer  treatment89.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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