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On the reaction–diffusion type 
modelling of the self‑propelled 
object motion
Masaharu Nagayama 1,7*, Harunori Monobe 2,7, Koya Sakakibara 3,4,7, Ken‑Ichi Nakamura 5, 
Yasuaki Kobayashi 1 & Hiroyuki Kitahata 6

In this study, we propose a mathematical model of self‑propelled objects based on the Allen–Cahn 
type phase‑field equation. We combine it with the equation for the concentration of surfactant used 
in previous studies to construct a model that can handle self‑propelled object motion with shape 
change. A distinctive feature of our mathematical model is that it can represent both deformable self‑
propelled objects, such as droplets, and solid objects, such as camphor disks, by controlling a single 
parameter. Furthermore, we demonstrate that, by taking the singular limit, this phase‑field based 
model can be reduced to a free boundary model, which is equivalent to the L2‑gradient flow model of 
self‑propelled objects derived by the variational principle from the interfacial energy, which gives a 
physical interpretation to the phase‑field model.

A self-propelled system is composed of a particle or droplet that exhibits self-propelled motion by consuming the 
free energy under non-equilibrium conditions. Such a particle or droplet can move by the internal mechanism; 
some can move by deforming themselves, and others move by changing the characters in the neighbouring field. 
Motions of living organisms, such as birds, insects, bacteria, and  cells1–4 and those in non-living materials, such 
as camphor disks, swimming droplets, running droplets, and Janus  particles5–9, are regarded as the motion in 
self-propelled systems. In recent years, various types of cell motility have been analysed through mathematical 
models, including keratocyte  motility10, cell population  motility11–13, and cell  division14. Mathematical models for 
the motility of non-living materials are also investigated by constructing the mathematical model, for example, 
camphor  particles15,16, pentanol  droplets17, running oil  droplets18, and blebbing oil  droplets19. In this study, we 
focus on the spatio-temporal behaviours in self-propelled systems, such as the motion of camphor disks and 
pentanol droplets, where the mechanism for the self-propelled motion is believed to be primarily governed by 
surface tension gradient. Such surface-tension-driven systems are classified into two cases; the systems without 
shape deformation, like camphor disks, and those with shape deformation, like pentanol droplets. Formula-
tions of two-dimensional motion models for the former case have already been made, and some comparisons of 
experimental results with those of mathematical models and mathematical analyses have been  performed20,21.

On the other hand, as for mathematical modelling for the self-propelled system with shape deformation, 
the mathematical modelling approach has not yet been satisfactorily performed. A mathematical model based 
on the membrane motion model has been proposed for the droplet motion; however, it is not easy to handle 
as a model of droplet dynamics due to its substantial computational  cost22. The other approach for the droplet 
motion is to adopt the lubrication approximation. Thiele and coauthors reported the two-dimensional model 
for the self-propelled  droplet23, but no systematic study has not been demonstrated. Therefore, we aimed to 
construct a mathematical model suitable for numerical computation at a low cost that can be connected to the 
natural model from the physics viewpoint. For the purpose above, we adopted the Allen—Cahn  equation24 to 
describe the droplet shape. By combining it with the equation for surfactant concentration used in previous 
studies, we constructed a mathematical model that can handle self-propelled object motion with shape change. 
The formulation of this mathematical model is a modelling method called the phase-field method, which has 
been used for crystal growth models in supercooled  liquids25 and crystal interface motion  models26. In recent 
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years, there have been  models10,13,14 to represent cell motility in living systems using the Allen–Cahn and the 
Cahn–Hilliard27 equations. They are also used in many other fields of materials  science28. Although the phase-
field model has been widely used and has the advantage that the cost for numerical computation is low, the 
model also has a disadvantage in that the correspondence between the actual physical quantity and the order 
parameter ϕ remains unclear, which is because the order parameter is introduced artificially to connect the 
regions with different phases smoothly. Therefore, in this paper, we first construct the reaction–diffusion model 
for a self-propelled droplet using the volume-preserving Allen–Cahn type phase-field equation. Then, we derive 
the singular-limit model from the reaction–diffusion system model and confirm that the singular-limit model 
matches the self-propelled object motion model derived as the L2-gradient flow based on the variational principle. 
From these results, we can demonstrate that the reaction–diffusion system model is an ε-approximation of the 
L2-gradient flow model, which supports the physical meaning of the constructed mathematical model based on 
the Allen–Cahn type phase-field equation.

This study proposes the following mathematical model for a self-propelled object using the volume-preserving 
Allen–Cahn equation:

where

and

Here, ϕ(x, t) represents the position and shape of the self-propelled droplet by defining 1/2 ≤ ϕ(x, t) ≤ 1 as 
the inside of the droplet and 0 ≤ ϕ(x, t) < 1/2 as the water surface. u(x, t) represents the surface density of sur-
factant molecules on the water surface. du , k1 , k2 , and k3 are the diffusion coefficient, dissolution rate, sublimation 
rate, and supply rate of surfactant molecules, respectively; s0 is the density of self-propelled surfactant molecules 
inside the droplet; τ , σ , and ε are positive constants such that 0 < ε ≪ 1 . � is a bounded region in R2 . The first 
equation for the time evolution of ϕ represents the time evolution of the droplet shape. Since this equation is 
obtained based on the Allen–Cahn equation, the profile ϕ should have the regions with ϕ ≃ 0 and ϕ ≃ 1 and 
the smoothly connecting boundary region, which correspond to the inside of the droplet, water surface and the 
periphery of the droplet, respectively. Function a in Eq. (2) represents the driving force by the surface tension 
at the object’s periphery and also keeps the object’s volume almost constant.

The equation for a is constructed so that greater γ (u) and the smaller volume decrease a, which drives the 
droplet periphery outward. As for the time-evolution equation for u, the first term of the righthand side shows the 
diffusion of the surfactant molecules at the water surface. Since the surface tension gradient induces the Maran-
goni  convection29, the transport of the surfactant molecules may be partly caused by the convection. However, 
this transport can be incorporated into the effective diffusion coefficient, which describes the overall surfactant 
molecule  transformation30. The second term corresponds to the decrease in concentration by dissolution to the 
aqueous bulk phase and sublimation to the gas phase. We assume that the dissolution and sublimation occur 
proportionally to the surface concentration u. The last term shows the supply of surfactant molecules from the 
object. Here we assume that the supply is proportional to ϕ since the supply only occurs in the region where 
the object covers. Such a quasi-conservative reaction–diffusion system was first proposed by Krischer et al.31. 
Previous results for the volume-preserving Allen–Cahn equation proved the existence and uniqueness of the 
classical solution and the boundedness of the  solution32. Moreover, the mean curvature flow is derived using the 
singular  limit33. Furthermore, the model (1) mentioned above, except the second equation, is also considered in 
terms of the geometric measure  theory34,35, which shows that the singular limit becomes the volume-preserving 
mean curvature flow.

First, we present a mathematical model for a self-propelled object using the volume-preserving Allen–Cahn 
type phase-field equation and demonstrate by numerical simulations that the model can describe the motion of 
self-propelled objects with varying deformability. Then, we present a free boundary problem in which a closed 
curve represents the self-propelled object by performing a singular perturbation expansion. Numerical computa-
tions for this model show how the self-propelled motion can be reproduced. We also confirm numerically that 
the parameter σ can control the interface change. Although free boundary problems obtained from the singular 
limit have been reported for reaction–diffusion systems with two  variables36–38, ones with integral terms, such 
as Eq. (1), have not been known until now. We then define the interfacial energy of the water surface, the length 
energy of the self-propelled object, and the area-preserving energy. Based on the variational principle, we derive 
an L2-gradient flow model representing the self-propelled object as a closed curve, showing that this mathemati-
cal model is consistent with the free boundary problem. We observe that the mathematical model using the 
volume-preserving Allen–Cahn equation approximates the L2-gradient flow model, which corresponds to the 
free energy form. Finally, we summarise this study and discuss future work.
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Results
Construction of reaction–diffusion model for the motion of a self‑propelled object. In this sec-
tion, we propose a phase-field type reaction–diffusion model that describes the motion of a self-propelled object. 
Here, the dimensionless model is shown, whereas the non-dimensionalisation from the dimensional model is 
shown in “Methods”. In our model, we set the order parameter ϕ(x, t) , which defines 1/2 ≤ ϕ(x, t) ≤ 1 as the 
self-propelled object and 0 ≤ ϕ(x, t) < 1/2 as the water surface. u(x, t) is the concentration of surfactant mol-
ecules supplied by the self-propelled object. Then, we obtain the following non-dimensionalised mathematical 
model from (1)–(2) (see “Methods”):

where

The initial values for the mathematical model (3) are defined as follows:

where ∂� represents the boundary of � , ϕ0 is a function with compact support, for example, given as

Numerical computation by the reaction–diffusion model. Numerical computations are performed 
on the reaction–diffusion model (3)–(4) under the initial condition (5) to investigate the properties of the math-
ematical model. Since the width of the interface of ϕ is O(εσ ) , ε and σ are given so that εσ = 0.025.

First, consider the case σ = 0.05 (i.e., ε = 0.5 ) with τ and the integral S0 of the initial function as free param-
eters. When S0 = 1 , a disk-shaped standing spot appears stably, as shown in Fig. 1a for large τ . As τ gradually 
decreases, the disk-shaped standing spot becomes unstable, and a dumbbell-shaped standing spot appears, as 
shown in Fig. 1b. As τ is further decreased, a banana-shaped travelling spot solution appears (Fig. 1c). Then, 
as τ is decreased, the velocity increases, and the banana-shaped travelling spot deforms into a rice-ball-shaped 
travelling spot (Fig. 1d). When S0 = 0.5 , as τ gradually decreases, a travelling spot appears, which is almost disk-
shaped, from the disk-shaped standing spot (Fig. 1e). The above result shows that a travelling spot bifurcates 
from the disk-shaped standing spot supercritically.

As τ is further decreased, a faster rice-ball-shaped travelling spot appears. Next, we consider the case σ = 1 
(i.e., ε = 0.025 ). For S0 = 1 , a disk-shaped standing spot appears for large τ , but as τ is gradually decreased, the 
disk-shaped standing spot becomes unstable, and a travelling spot close to the disk appears (Fig. 1f). Further-
more, even when S0 = 2 , although the travelling velocity is high, the deformation is slightly elliptical, but the 
convexity is maintained (Fig. 1g). To confirm that the disk shape is maintained for larger values of σ , we set σ = 5 
(i.e., ε = 0.005 ), and indeed, a travelling spot close to a disk appears for small values of τ . The results show that an 
almost disk-shaped travelling spot emerges even at small τ . Furthermore, these spot solutions are found to asymp-
tote to a constant velocity from a suitable compact support function ϕ0(x) , as shown in Supplemental Fig. 1a–g.
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Figure 1.  The typical profile of ϕ for reaction–diffusion system (3) where parameters are 
k = 10.0, u1 = 0.05,α = 1000.0 and m = 2 except σ , τ and S0 : (a) disk-shaped standing spot 
( σ = 0.05, τ = 0.05, S0 = 1.0 ), (b) dumbbell-shaped standing spot ( σ = 0.05, τ = 0.005, S0 = 1.0 ), 
(c) banana-shaped travelling spot ( σ = 0.05, τ = 0.0008, S0 = 1.0 ), (d) rice-ball-shaped travelling spot 
( σ = 0.05, τ = 0.0001, S0 = 1.0 ), (e) almost disk-shaped travelling spot ( σ = 0.05, τ = 0.003, S0 = 0.5 ), (f) 
almost disk-shaped travelling spot ( σ = 1.0, τ = 0.01, S0 = 1.0 ), (g) almost disk-shaped travelling spot with 
large velocity ( σ = 1.0, τ = 0.0025, S0 = 2.0 ) (see supplement movies).
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The banana-shaped travelling spot, as shown in Fig. 1c, is similar to a pentanol droplet exhibiting the trans-
lational motion (Fig. 1(c-1) in the  Reference17, Fig. 1 in the Reference 39); the elliptic travelling spot, as shown 
in Fig. 1d, appears in the translational motion of a relatively small pentanol droplet (Fig. 2a in the  Reference22); 
and the travelling spot close to a disk, as shown in Fig. 1f, appears in the translational motion of an ethyl salicy-
late droplet (Fig. 1 in the  Reference40). Moreover, the travelling spot near the disk shape with high velocity, as 
shown in Fig. 1g, approximates the non-deformable self-propelled objects such as solid camphor disks. These 
results suggest that the mathematical model (3)–(4) can describe a wide range of motions, from deformable 
self-propelled objects such as droplets to non-deformable self-propelled objects such as solid camphor disks, 
using σ as a parameter.

Reduction to the singular‑limit model. In this section, we clarify that the shape of the spot pattern in 
(3) can be controlled by using only the parameter σ . To this end, we derive a singular limit model as ε tends to 0 
in (3) and perform numerical simulations for the singular limit model.

The first equation of  (3) is equivalent to the “Allen–Cahn equation”, provided that a(S[ϕ](t), u, ε) ≡ 1/2 . It 
is well-known that, as ε tends to 0 under this setting, the motion of the level set at ϕ(x, t) = 1/2 is close to that 
of the mean curvature flow. This section investigates how the solution of (3) and the level set at ϕ(x, t) = 1/2 
behave as ε tends to 0. Let Ŵ(t) be a Jordan curve depending on the time t in R2 , that is,

and �in(t) be a bounded domain with a smooth boundary Ŵ(t) . Then, the singular limit of (3) leads to the fol-
lowing free boundary problem, composed of the interface equation and the reaction–diffusion equation:

where S0 = |�in(0)| and

The derivation of (6) is shown in “Methods”.

Numerical computation by the singular limit model. In this section, we perform simulations of the 
singular limit Eq. (6) and show that the parameter σ controls the shape of travelling spots that appear in (6).

To begin with, let σ = 0.05 . We here regard τ and S0 defined by the initial function as free parameters. When 
S0 = 1 , if τ is sufficiently large, the disk-shaped stationary solution, which is stable, appears (Fig. 2a). As τ gradu-
ally decreases, as in the reaction–diffusion model, a dumbbell-shaped standing spot solution first appears (see 
Fig. 2b), followed by a banana-shaped travelling spot (see Fig. 2c). As τ is further reduced, a rice-ball-shaped 
travelling spot eventually appears (see Fig. 2d). On the other hand, as S0 = 0.5 , the situation is slightly different. 
When τ decreases gradually, the travelling spot appears as well as S0 = 1 , but the banana-shaped one does not 
appear. Only travelling spots, whose shapes are almost disk-shaped, are observed (Fig. 2e). Next, let σ = 1.0 . 
Under the condition of S0 = 1 , as τ decreases gradually, the almost disk-shaped travelling spot appears (Fig. 2f). 
As S0 = 2 , the shape of the spot changes from a disk to an ellipse and preserves the convexity (Fig. 2g). Similar 
to the model (3)–(4), the singular limit equation (6) also asymptotes to a constant velocity and a constant shape 
spot from suitable initial values, as shown in Supplemental Figs.  2a–g and  3I,II.

Ŵ(t) := {x ∈ � | ϕ(x, t) = 1/2},

(6)
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, x ∈ Ŵ(t), t > 0,
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(a) (b) (c) (d) (e) (f) (g)

Figure 2.  The profile of typical solutions for (6) where parameters are k = 10.0, u1 = 0.05,α = 1000.0 
and m = 2 except σ , τ , and S0 : (a) radial symmetric standing spot ( σ = 0.05 , τ = 0.05, S0 = 1.0 ), (b) 
dumbbell-shaped standing spot ( σ = 0.05 , τ = 0.01, S0 = 1.0 ), (c) banana-shaped travelling spot ( σ = 0.05 , 
τ = 0.001, S0 = 1.0 ), (d) rice-ball-shaped travelling spot ( σ = 0.05 , τ = 0.0001, S0 = 1.0 ), (e) near-circular 
travelling spot(σ = 0.05 , τ = 0.0025, S0 = 0.5 ), (f) near-circular travelling spot ( σ = 1.0 , τ = 0.01 , S0 = 1.0 ), 
(g) near-circular travelling spot ( σ = 1.0 , τ = 0.0025 , S0 = 2.0 ) (see supplementary movies).
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Formulation of self‑propelled motion model by L2‑gradient approach. In this section, we con-
struct a gradient flow model of a self-propelled motion to give a physical meaning to our proposed model (3). 
Let L(∂�in) , E(�in) and S(�in) be the surface energy of water surface, the perimeter energy of self-propelled 
particles and the energy of area-preserving, respectively, which are given by

where s = s(x, t) stands for the arc-length of x ∈ ∂�in , ∂�in = ∂�in(t) , �in = �in(t) and

Define the total energy H(�̄in) by

Since we obtain from (19) (see “Methods”) that

assuming that the energy of ∂�in(t) decreases in time, we conclude that

Combining the interface motion (10) with the reaction–diffusion model for surfactants and choosing

we obtain the following L2-gradient flow model:

which is the same as (6). The detailed calculation is shown in “Methods”. This result shows that our proposed 
model (3) is an ε-approximate model of the gradient flow derived from the energy variation. The equation of 
motion of the interface is derived from the variational principle, where time evolution occurs in the direction 
of decreasing total energy. However, the variational principle is not applied to the concentration field. Note, 
therefore, the energy of the entire system is not conserved. Furthermore, the system is not stationary at the 
energy minimum.

Conclusion
In this study, we have demonstrated that a phase-field based reaction–diffusion model of self-propelled motion 
can be considered as an approximation of an energy-based gradient flow model. We have shown that a free 
boundary model (6) can be derived as a singular limit from the reaction–diffusion model (3) and that this derived 
model is exactly the same as the model (11) derived from the variational principle applied to the interfacial energy 
of the self-propelled object. This result gives a phase-field based model, typically regarded as a phenomenologi-
cal model, a physical interpretation tied to the interfacial energy. Furthermore, we have demonstrated that, by 
adjusting a single control parameter σ , our reaction–diffusion model yields both deformed and near-circular 
traveling spots, which means that our model can represent both deformable droplet motion and solid camphor 
disk motion. Thus, our work offers a more comprehensive and theoretically grounded framework for the mod-
eling of self-propelled objects.

In our model, the bifurcation from a standing to travelling spot occurs when the parameter τ is decreased. 
Intuitively, if a self-propelled object has a circular shape, the surface tension should be balanced due to the sym-
metric diffusion of surfactant from the object. However, when the object moves slightly in a certain direction, 
the concentration field behind it increases, and the surface tension behind it decreases, causing an imbalance of 
forces. When the imbalance overwhelms the effect of diffusion attempting to restore symmetry, it continues to 
move (see the Supplementary movies). For deformable objects such as droplets, the motion can also break the 
symmetry of the shape; for solid objects, like camphor particles, only the concentration field breaks the sym-
metry. The supplementary movies shows that, even if the self-propelled object maintains a symmetrical shape, 
the motion continues as the concentration field profile becomes asymmetrical. This illustrates how our model 
can exhibit both deformed and circular travelling spots.

Our current model cannot handle arbitrarily shaped solid objects such as an elliptic-shaped camphor particle, 
which requires that the steady state of the phase-field model be controlled in a desired way. Whether it is possible 
to represent self-propelled object motions that maintain elliptical or other shapes within our framework would 
be an interesting future work. We would then like to compare the results of the previous  analysis20,21 of elliptical 
camphor motion with the current model.
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Moreover, the stable dumbbell-shaped standing spot bifurcated from the stable disk-shaped standing spot has 
been found by numerical calculation in the self-propelled motion of reaction–diffusion systems. Figure 1b shows 
that the stable dumbbell-shaped standing spot has been reported for the reaction–diffusion equation with the 
spatially inhomogeneous nonlinear  term41. However, only the unstable dumbbell-shaped standing spot has been 
reported for spatially homogeneous reaction–diffusion  systems42,43. In the future, we will analyse the existence 
and stability of stationary solutions to the reaction–diffusion type self-propelled object motion model (3)–(4) 
and the free boundary model (6) and investigate the dynamics of the mathematical model in detail by analysing 
the bifurcation structure to the travelling spot. In the case of splitting phenomena such as observed in droplets, 
the volume-preserving reaction–diffusion model (3)–(4) can be used to confirm the splitting of self-propelled 
objects numerically. However, this model does not conserve the volume of individual self-propelled objects. To 
describe the motion of multiple self-propelled objects after splitting, it is necessary to extend the mathematical 
model to handle the phenomenon of splitting, for example, by preparing a volume-preserving model for the 
number of self-propelled objects as a simple extension.

Methods
Non‑dimensionalisation of the reaction–diffusion model with dimension. We perform the fol-
lowing non-dimensionalisation on the reaction–diffusion model (1):

Then, the model Eqs. (1) and (2) become

and

respectively, where

We obtain the following by re-writing the non-dimensionalized mathematical model with the original 
variables:

where

Method for the numerical calculation by the reaction–diffusion model. The region � is fixed as 
� = (−Lx , Lx)× (−Ly , Ly) , Lx = 5 , Ly = 2 , and the periodic boundary condition is imposed. The parameters α 
and u1 are set to α = 1000 , u1 = 0.005 for all settings. Numerical computations of the reaction–diffusion model 
(3)–(4) were performed using the alternating direction implicit  method44.

Formal derivation of the singular‑limit model. In what follows, we demonstrate the interface equation 
by the formal argument.

t ′ = k3t, y =

√

k3

du
x, U(y, t ′) =

u(x, t)

s0
, φ(y, t′) = ϕ(x, t), �′ =

{

y | y =
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}
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(
∫

�′
φ(y, t′)dy −

∫

�′
φ(y, 0)dy

)

,

γ (U) =
1

1+ (U/u′1)
m

+ Ŵ0

τ ′ = k3τ , σ ′ =

√

k3

du
σ , α′ =

du

k3

α

|�|
, k′ =

k1 + k2

k3
, u′1 =

u1

s0
, Ŵ0 =

γ0

γ1
.











ε2τ
∂ϕ

∂t
= ε2σ 2△ϕ + ϕ(1− ϕ)(ϕ − a(S[ϕ](t), u, ε)), x ∈ �, t > 0,

∂u

∂t
= △u− ku+ ϕ, x ∈ �, t > 0,

a(S[ϕ](t), u, ε) =
1

2
+ ε(−γ (u)+ S[ϕ](t))),

S[ϕ](t) = Sα[ϕ](t) = α

(
∫

�

ϕ(x, t)dx −
∫

�

ϕ(x, 0)dx

)

,

γ (u) =
1

1+ (u/u1)m
+ γ0.
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Outer expansion. Assume that ϕ and u have the following expansions away from the interface Ŵ(t) :

Substituting the expansion (12) into (3) and collecting the term ε0 , we know that ϕ0 satisfies 
ϕ0(1− ϕ0)(ϕ0 − 1/2) = 0 , and hence ϕ0 = 1 in �in(t) and ϕ0 = 0 in � \�in(t) . Similarly, u0 satisfies

Inner expansion. We consider the formal expansion near Ŵ(t) . Let p be an arc length parameter of Ŵ(t) (coun-
ter-clockwise) and q be a distance parameter along the outward normal direction at the point x0(p) ∈ Ŵ(t) . Any 
point x in the neighborhood of Ŵ(t) is represented by x = x(p, q) = x0(p)+ qν(p) , where ν(p) is the outer nor-
mal unit vector at x0(p) . From this, two inverse functions p = P(x, t) and q = Q(x, t) for x ∈ Ŵ(t) are defined. 
Denote � and U by

Substituting these two functions into (3), we have

Here △p stands for Laplace–Beltrami operator. We collect the ε1 term and obtain the relation

where f (�) = �(1−�)(�− 1/2) , κ is the mean-curvature on Ŵ(t) , V is the normal velocity of Ŵ(t) . Assume 
that � and U have the following expansions near the interface Ŵ(t) :

Substituting (15) into (14), we know that �0 and �1 satisfy

where S[ϕ0](t) = α(
∫

�
ϕ0(x, t) dx −

∫

�
ϕ0(x, 0) dx ). Meanwhile, by repeating the same process for U, we obtain 

that

By the matched conditions of the inner and outer solutions, U and � need to satisfy some boundary con-
ditions. Then it holds U0(p, q, t) ≡ u0(x(p, 0), t) , and then U0 is independent of q. Moreover, since the func-
tion �0 satisfies (16) and the matched conditions, it holds that limq→−∞ �0 = 0 , limq→+∞ �0 = 1 and 
limq→±∞ U0 = limq→±0 u

0(x(p, q), t) and hence (17) is rewritten by

Differentiating both sides of (16) in q, we have σ 2(�0
q)qq + f ′(�0)�0

q = 0 . Set L = σ 2d2/dq2 + f ′(�0) , and 
then L is a self-adjoint operator (see Lemma 2.2 in the  reference36). Hence

and the following interface equation is obtained :

Combining (13) and (18), we obtain the free boundary problem (6).

Method for the numerical computation by the singular‑limit equation. The computational area is 
a rectangular area � = (−Lx , Lx)× (−Ly , Ly) , the boundary condition is periodic and the parameters Lx , Ly ,α 
and u0 are the same as in Fig. 1. The boundaries are approximated by polygonal curves in the numerical compu-
tations of the interface model (6). See the supplementary information for these details.

(12)ϕ = ϕ0 + εϕ1 + O(ε2), u = u0 + εu1 + O(ε2).

(13)∂u0

∂t
= △u0 − ku0 + ϕ0, x ∈ � \ Ŵ(t), t > 0.

�(p, q, t) := �(P(x, y, t),Q(x, y, t)/ε, t) = ϕ(x, t),

U(p, q, t) := U(P(x, y, t),Q(x, y, t)/ε, t) = u(x, t)

ε2τ

(

�pPt +�q
Qt

ε
+�t

)

= ε2σ 2

(

�pp|∇P|2 +�p△P +
1

ε2
�qq +

1

ε
�q△pQ

)

+�(1−�)(�− a(S[ϕ](t),U , ε)).

(14)σ 2�qq + f (�)+ ε(σ 2κ�q + τV�q +�(1−�)(γ (U)− S[ϕ](t)))+ O(ε2) = 0,

(15)� = �0 + ε�1 + O(ε2), U = U0 + εU1 + O(ε2).

(16)σ 2�0
qq + f (�0) = 0,

(17)(σ 2κ + τV)�0
q + σ 2�1

qq + f ′(�0)�1 +�0(1−�0)(γ (U0)− S[ϕ0](t)) = 0,

ε−2duU
0
qq + ε−1QtU

0
q + O(1) = 0

σ 2�1
qq + f ′(�0)�1 = (−(σ 2κ + τV)+

√
2σ(γ (U0)− S[ϕ0](t)))�0

q.

0 = (L�0
q,�

1) = (�0
q, L�

1) = (−(σ 2κ + τV)+
√
2σ(γ (U0)− S[ϕ0](t)))��0

q�
2
L2(R2)

(18)τV = −σ 2κ +
√
2σ(γ (U0)− S[ϕ0](t)).
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Details in the formulation of self‑propelled motion model by L2 gradient approach. In what 
follows, we construct the gradient flow model (11) of a self-propelled motion. Recall that the definition of 
L(∂�in),E(�in) , S(�in) and H(�̄in) are given by (8) and (9). Assume that a small perturbation of ∂�in is given by

where s is the arc length of ∂�in , ε is a small positive constant, p(s) is the distance function and N(s) is the normal 
unit vector. Each first variation of (8) is represented by

respectively, where κ is the curvature of ∂�in . For more details, see the supplementary information. Here we 
remark that, in general, δH(�̄in) satisfies

Using p(x) instead of u(x), we have

It follows from (19) that

Assume that the energy of ∂�in(t) decreases in time, and then

Since 
∂

∂t
p(s, t) is the normal velocity of ∂�in(t) , we conclude that

Combining the interface motion (20) with the dynamics model for surfactants, we obtain the following self-
propelled motion model:

where F(x,�in(t)) is given by (7). By choosing

(21) is the same as (6). For the computation of the first variations of the energies L(∂�in) , E(�in) , and S(�in) , 
see the supplementary information.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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