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Adaptive group testing strategy 
for infectious diseases using social 
contact graph partitions
Jingyi Zhang * & Lenwood S. Heath 

Mass testing is essential for identifying infected individuals during an epidemic and allowing healthy 
individuals to return to normal social activities. However, testing capacity is often insufficient to 
meet global health needs, especially during newly emerging epidemics. Dorfman’s method, a classic 
group testing technique, helps reduce the number of tests required by pooling the samples of multiple 
individuals into a single sample for analysis. Dorfman’s method does not consider the time dynamics 
or limits on testing capacity involved in infection detection, and it assumes that individuals are 
infected independently, ignoring community correlations. To address these limitations, we present 
an adaptive group testing (AGT) strategy based on graph partitioning, which divides a physical 
contact network into subgraphs (groups of individuals) and assigns testing priorities based on the 
social contact characteristics of each subgraph. Our AGT aims to maximize the number of infected 
individuals detected and minimize the number of tests required. After each testing round (perhaps 
on a daily basis), the testing priority is increased for each neighboring group of known infected 
individuals. We also present an enhanced infectious disease transmission model that simulates the 
dynamic spread of a pathogen and evaluate our AGT strategy using the simulation results. When 
applied to 13 social contact networks, AGT demonstrates significant performance improvements 
compared to Dorfman’s method and its variations. Our AGT strategy requires fewer tests overall, 
reduces disease spread, and retains robustness under changes in group size, testing capacity, and 
other parameters. Testing plays a crucial role in containing and mitigating pandemics by identifying 
infected individuals and helping to prevent further transmission in families and communities. 
By identifying infected individuals and helping to prevent further transmission in families and 
communities, our AGT strategy can have significant implications for public health, providing guidance 
for policymakers trying to balance economic activity with the need to manage the spread of infection.

During the coronavirus (COVID-19) pandemic, governments worldwide reacted by imposing lockdowns, many 
companies switched to remote work, and schools provided education online. These policies incur considerable 
economic costs. Therefore, finding a proper way to lift lockdowns and bring people back to normal life is critical. 
Indeed, lockdown policies are complex political, health, social, and economic issues. A significant risk exists that, 
once the pandemic slows down or appears to be under control and lockdown measures are lifted, new waves of 
COVID-19 will appear.

This suggests that, during an epidemic, it is crucial to test individuals efficiently and effectively to control the 
epidemic and reduce the consequences. Testing is important for early diagnosis and treatment, prevention and 
control of the epidemic, and resumption of work and production. Especially, mass testing, also known as large-
scale testing, enables rapid detection of infections and helps break chains of transmission in the community. 
Reliable mass testing can detect infected individuals early, including asymptomatic individuals, so that early 
isolation and treatment measures can be taken to avoid secondary transmission and reduce the risk of develop-
ing severe symptoms later. It will also allow those who test negative to return to work without risking another 
wave of contagion. Mass testing was adopted during the prevention and control of the COVID-19 outbreak in 
Beijing’s Xinfadi Market and in Dalian, Liaoning Province, and successfully reduced the number of severe  cases1. 
Countries including Slovenia, Georgia, the United Kingdom, Germany, and France also launched mass testing or 
community-scale pilot mass testing to monitor the infection prevalence and to control the COVID-19  outbreak2.

Nevertheless, to make mass testing effective, it is important to have efficient testing strategies and methods, 
a reasonable turnaround time, skilled testing personnel, and a reliable supply of testing materials. For COVID-
19 testing, the gold standard is Real-Time Polymerase Chain Reaction (RT-PCR)3, which involves a chemical 
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reaction that produces fluorescent light if viral DNA is present in a sample. RT-PCR has two steps, first taking 
samples from individuals, then amplifying parts of the virus DNA known as markers through a PCR machine. 
The first step is straightforward but requires trained healthcare professionals to administer. The second is a 
bottleneck, limiting the testing capacities, as the chemical lab work requires time and reagents. Scaling up the 
capacity of RT-PCR testing for the SARS-CoV-2 virus responsible for the COVID-19 requires time and money. 
However, to contain an epidemic, mass screening is more effective the earlier it is done. In the current practice, 
daily  testing4–7 is considered to be an efficient way to monitor the spread of infection and quickly identify any 
new cases. This requires a testing capacity that can handle the daily volume of samples and provide results in 
a timely manner. Moreover, a surge in testing demand may overwhelm the workforce and create a shortage of 
testing consumables. And the surge may increase the testing turnaround time. The rapid turnaround of tests 
is crucial to ensure the efficiency and effectiveness of case isolation and timely treatment. When susceptible 
individuals are waiting for testing or the results of testing, undetected infectious individuals may spread the 
virus, leading to secondary transmission and making the testing even less effective. Each of these will limit the 
rollout of mass testing.

Therefore, to improve testing efficiency, experts have recommended group testing. By pooling samples from 
a group of individuals in one tube and testing all of them at once, this method can decrease the total number of 
tests required and the testing turnaround time. Harvard economist Robert  Dorfman8 first proposed group testing 
in the 1940s to detect how many World War II soldiers were carrying syphilis. Often it has also been employed 
to screen how many people in asymptomatic populations carried, for example, chlamydia and gonorrhea bacte-
ria. The Red Cross also uses group testing to screen blood donors for hepatitis B and HIV. However, Dorfman’s 
method still has some drawbacks. One is the lack of a uniform standard for the upper limit of the number of 
samples in a single group, which can result in the dilution of the pathogen and false negative test results. Addi-
tionally, group testing requires a two-round testing process. If the first round of testing identifies those groups 
that have at least one positive, the second round then tests each individual separately to confirm their infection 
status. If the turnaround time for each round of testing is long, such as with RT-PCR, it can significantly extend 
the overall testing time and defeat the goal of mass testing.

Traditional group testing methods such as Dorfman’s usually assign individuals to the group at  random4,8–18. 
Yet, this ignores the potential correlation of infection risk among individuals. Diseases such as COVID-19 can 
spread from person to person through droplets, primarily among close contacts. Individuals who share similar 
social activities in their daily lives may be at similar risk of developing the disease. Infected individuals are also 
more likely to spread the disease to those with whom they are socially connected. Group testing research has 
not explored such functionality with social contact networks. Consequently, there is an opportunity to develop 
an efficient group testing method that can effectively reduce the overall number of tests required to screen the 
entire population and reduce the number of new infections caused by a secondary transmission during the 
testing period.

To address the challenges above, we propose an adaptive group testing (AGT) strategy, based on a social 
contact network, with fixed, limited testing capacity at each time instance, where complete testing of the entire 
population is not possible for economic or logistic reasons. The strategy consists of: (1) a near balanced graph 
partition of the social contact network according to the testing capacity and (2) an adaptive testing order assign-
ment mechanism based on point prevalence (as defined in “Adaptive group testing strategy” Section) and disease 
transmission trajectory. In addition, we present an agent-based compartment model to capture the spreading 
characteristics of SARS-CoV-2, incorporating heterogeneous infectiousness. We use this model to simulate the 
disease transmission process on social networks and use the simulation results to validate the effectiveness of 
our group testing strategy. Also, some small real world networks are studied.

Prior literature
One classic group testing method is the Dorfman two-stage group testing  method8. The collected independent 
samples are first organized into groups. A portion of each sample is then extracted and combined into a single 
tube to create a group sample for testing. Instead of testing each individual sample, a direct test is performed on 
the group sample. A negative test result for the group sample indicates the absence of infection in all individuals 
within the group, whereas a positive test result indicates that at least one individual in the group is infected and 
that all individuals must be tested to identify infected individuals. Dorfman’s method is the first non-overlapped 
method, where individuals being tested are not repeated or duplicated across different groups, as opposed to an 
overlapping  method9,10,17,18 where the same individuals are tested multiple times in different groups. The work 
 in19 performed Monte Carlo simulation analyzes with varying prevalence and group sizes, suggesting routine 
group testing would substantially reduce the number of tests required to screen a population. Studies showed 
that adequate use of group testing strategies could contain the spread of a  disease20,21 and save between 85 and 
95% of testing resources depending on the precise  situation16.

Most group testing methods employ RT-PCR to perform the testing. However, the cost of a single test is high, 
and the testing process requires several hours. Especially, due to the two-stage design, performing the second 
round of testing requires the results of the first round, which leads to a longer turnaround time. To further reduce 
the cost and speed up the testing, many new testing technologies are introduced to facilitate group testing. Vari-
ous COVID-19 testing technologies differ significantly in specificity, sensitivity, turnaround time, costs, and the 
types of samples the tests use. More and more antigen and antibody tests, such as the IgG-IgM-coated antibody 
detection and the rapid lateral flow coronavirus (COVID-19) tests, have been approved by the FDA and are being 
 deployed22,23. Although the total number of tests increases, rapid testing is not limited by the testing capacity, 
allowing more people to test and obtain real-time feedback simultaneously. Moreover, these new testing methods 
make the cost of a single test lower and are more  economical7. However, due to low sensitivity, false negatives 
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can allow more secondary transmission and may not effectively contain the spread of the  virus6. While RT-PCR 
is the current gold standard testing method, individual RT-PCR testing is still required after these rapid screens 
to confirm the diagnosis. As a result, the healthcare system is under even greater strain.

In the context of the pandemic, a number of variations of group  testing9,10,13–18 have been proposed, building 
on Dorfman’s method. Combinatorial group testing methods place the samples into overlapping pools, such 
that every single sample appears in a unique combination of  pools10,13,15,17. If all the samples in the unique set of 
pools return a positive result, the infected individual can be identified without requiring an additional round of 
testing, reducing the overall tests needed. However, these combinatorial group testing strategies generally assume 
that a complete screen of the entire population is possible. While the supply and the resources may be limited in 
the early stages of an emerging disease outbreak or in less developed areas, the testing capacity is not sufficient 
to test all of a population at once. Undetected infected individuals may infect susceptible individuals who have 
already obtained negative results. Therefore, group testing methods without considering the order and testing 
capacity can lead to more secondary transmissions, further weakening their effectiveness.

To meet the requirement of the testing capacity, a number of  researchers5,11,12 introduced adaptive group 
testing methods. Based on the results of the previous week’s testing results, such models can determine the 
current optimal group size or the optimal number of group tests by estimating the community prevalence. Yet, 
these methods assume that disease transmission in the population is homogeneous, namely, infected individuals 
can infect any susceptible individuals. Said another way, the probability of infection is the same for close family 
members and strangers with no social contact. As a result, simulation results differ from reality.

While many Dorfman-based methods assume that groups are chosen at random, recent studies have identi-
fied the importance of grouping family members or other close contacts  together24–26. However, as people tend 
to maintain a much more complex contact network in the real world, effective grouping cannot be done solely 
on a social characteristic. Recent  research4,7 has introduced a multilayer contact network for disease transmis-
sion  simulation27 and incorporates the individual’s health history questionnaire and demographic information 
to estimate the risk level of each individual by introducing a regression model to assign testing subgroups. The 
more information available, the more efficient the testing strategy can be. Nevertheless, these models fail to 
address the dynamics during the testing time frame. Therefore, designing effective testing groups over time 
remains a challenge.

Problem statement
Two general computational problems are involved in our strategy: social contact network partitioning and test-
ing group priority adjustment.

Social contact network partition. We are given an undirected and unweighted social contact network 
G = (V ,E) , where individuals constitute the set of vertices V, the set of edges E records the social contacts 
between individuals in pairs, and the population size is |V | = N . We assume that individuals in the same sub-
graph have similar social contact patterns and, therefore, share related infection correlations. The maximum 
number of individuals allowed to pool together for testing using the given testing method (think RT-PCR) is k. 
In practice, k for PCR testing can range from five to ten samples per  pool18 up to several hundred samples per 
 pool13, depending on the specific testing protocol and the prevalence of the disease.

Dividing individuals into more homogeneous groups based on their social interactions can help identify sub-
groups that are more likely to have been exposed to a shared transmission event. For example, individuals who 
are part of the same subgraph are more likely to have common contacts and be exposed to the same infectious 
agent. With the help of proper network partition, group testing can be conducted more efficiently, allowing for 
greater identification of infected individuals and limiting the spread of infectious diseases. The Network Parti-
tion problem is to partition V into subsets V1,V2, . . . ,Vm such that each Vi has ≤ k elements, each Vi induces a 
subgraph Gi = (Vi ,Ei) , and the sum 

∑m
i=1 |Ei| is maximized.

Testing group priority adjustment. As discussed in the “Prior Literature” Section, limited supplies and 
resources make it difficult to test the entire population for an emerging disease outbreak, yet it is critical to iden-
tify infected individuals to control the spread of the disease. Undetected infected individuals can continue to 
spread the disease to susceptible individuals, even after receiving negative test results. To address this challenge, 
testing strategies that take into account the dynamic changing infection status of each individual over time can 
be valuable. The second computational problem, Priority Adjustment, seeks to determine who to test at each 
time t.

For the testing scenario, we assume we have a partition of V as described in  “Social Contact Network Par-
tition” Section. For each subgraph Gi = (Vi ,Ei) , we consider the set Vi of individuals as a potential group for 
testing at time t. And due to the limited testing capacity, not every potential testing group can be tested at each 
time point. Instead, a subset of the potential testing groups is considered for testing at each time. For a testing 
group Vi , the group test pools the samples from Vi and records the testing result as Xi,t.

In the two-stage testing design (as shown in Fig. 2), based on Dorfman’s  method8, Xi,t refers to the number of 
individuals who test positive in the second round of testing at time t, given that the first-round testing result is 
positive. In the absence of a positive first-round test result, Xi,t is 0. Thus, the total number of infected individuals 
Y detected over the course of T testing periods is given by:

Y =

T
∑

t=0

m
∑

i=0

Xi,t
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Given that the test capacity is insufficient to test all groups at once, we assign a testing order to each testing group 
based on the previous day’s test results, the point prevalence, and the topological connectivity of each group. A 
higher priority will be given to groups with positive test results from neighbors (as shown in Fig. 2).

Let the maximum number of tests per day be B, Qi,t denotes the number of tests performed on testing group 
Gi at time t, where

We will only test the top zt groups, where zt is the maximum number of groups can be tested given the testing 
capacity B. Then at any discrete time t, we have a restriction that 

∑zt
i=0 Qi,t � B for some constant bound B.

Therefore, we consider the testing group priority adjustment at each time step t as follows: given an undirected 
and unweighted social contact network G, group test result Xi,t−1 , and testing capacity B, the problem is to find 
possible zt groups that satisfy 

∑m
i=0 Qi,t � B and maximize 

∑m
i=0 Xi,t.

The notations and parameters used in this work are summarized in Table 1 for clarity and convenience.

Data sets
In this study, 13 contact networks with diverse degree distributions are considered inputs for our strategy. All 
networks are unweighted and undirected.

We generate six random graphs to illustrate the social contact network using the following generation mod-
els in a wide range of parameter settings. Table 2 summarises generated networks along with their generation 
model, the number of nodes N, the average degree 〈k〉 , and the diameter d. All networks are set to have 1,000 
individuals, and the expected average degree is set to �k� = 6 . However, the network diameter d varies from 5 
to 11 due to the nature of different generation models. We consider these synthetic networks are equivalent but 
with different network structures.

Moreover, we use seven data sets collected by the SocioPatterns collaboration from various real social con-
texts: a workplace, with data collected in two different years (InVS13, InVS15)28, a hospital (LH10)29, a pri-
mary school (LyonSchool)30, a scientific conference (SFHH)31, a high school (Thiers13)32, and a village in rural 
Malawi(Malawi)33. Table 3 lists the seven real social contact networks as well as the data collated location, year, 
the number of participants N, the total duration of the data collection T, the average degree 〈k〉 and the diameter d.

Qi,t =

{

1, Xi,t = 0
1+ |Vi|, Xi,t � 1

Figure 1.  A demonstration of social contact network partition.

Figure 2.  (A) The two-stage testing design that is adapted from Dorfman’s  method8. (B) Adjusting the testing 
order according to previous testing results, the point prevalence, and the topological connectivity of each group.
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Methods
To maximize the underlying group correlations, we start this work by partitioning the social contact network into 
a number of near-balanced subgraphs to form testing groups as shown in Fig. 1. Our proposed testing strategy 
then takes the partition result as the input and puts groups prioritized by the strategy into the 2-stage testing. 
We also introduced an enhanced infectious disease transmission model to simulate the virus’s dynamic spread 
on the given contact network and to evaluate the performance of the testing strategy.

Graph partition. We select k as the upper bound on the number of vertices in each subgraph and define MG 
as the partition score function to calculate the maximum number of edges in the combined subgraph without 
exceeding size k. The purpose of the MG(Gi ,Gj , k) partition score function is to assess the quality of merging 
two subgraphs, Gi and Gj , while taking into account the upper limit on the number of vertices, denoted by k. If 
the total number of vertices (individuals) in the union of Gi and Gj does not exceed the size limit, the function 
returns the total number of edges in the union. This quantifies the potential connections within the combined 
subgraphs. However, if the total number of vertices in the union of Gi and Gj exceeds the size limit, the function 
returns -1, indicating that merging these two subgraphs is not feasible within the given size constraint. Specifi-
cally, MG is defined as follows:

We use Algorithm Max-Intra-Group-Edges-Partition(G, k) in Fig. 3 to decompose the graph into subgraphs. The 
algorithm follows a greedy approach that starts with singleton groups and merges smaller groups by maximizing 
MG . By maximizing the intra-group edges, we find that individuals within each subgraph Gi = (Vi ,Ei) share 
correlated infection probabilities induced by the social contact network. Once the group partition is performed, 
the composition of the groups remains constant throughout all future testing steps.

Adaptive group testing strategy. In our idealized testing scenario, the tests are perfect, and test results 
are available immediately. As the disease spreads within the social contact network G, we apply the testing strat-
egy, where a limited number of tests are performed to detect a number of infections in our settings. Since the 
purpose of detection varies at different stages of the disease outbreak, we introduce two strategy modes: Tracing 
mode and Screening mode.

• Tracing mode:

– At a low prevalence time, we focus more on containing the secondary infections and reducing the 
regional outbreak size. Early detection of infected individuals is beneficial in achieving these goals.

– In Tracing mode, higher test priority is given to the neighbors of the infected individual, as they are 
more likely to have been in contact and may be at higher risk of infection.

• Screening mode:

– When prevalence is high, whole population screening will quickly help identify the most infected indi-
viduals.

– In Screening mode, priority is given to breadth-first testing, which aims to cover a wide range of indi-
viduals to efficiently identify the most infections.

The mode switch is determined by the point prevalence, ρt , which represents the ratio of infected individuals 
tested to the total number of individuals tested at current time t. It is defined as

MG(Gi ,Gj , k) =

{

| Ei ∪ Ej | +
∑

u∈Vi ,v∈Vj
| (u, v) | | Vi ∪ Vj |≤ k;

−1 otherwise.

Figure 3.  Algorithm for dividing the vertices of the given undirected graph into k sets while maximizing the 
number of edges within each set.
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where Xi,t represents the number of individuals who test positive in group i at time t, and Qi,t represents the 
number of tests performed on testing group Gi at time t.

We use Algorithm Testing-Priority-Adjustment(ρt−1,β , previous_results) in Fig. 4 to adjust the testing prior-
ity of groups adaptively based on the point prevalence ρt−1 and the threshold β . The value of previous_results 
encompasses the historical data of the testing outcomes from time step t0 to t − 1 , including the number of tests 
and the corresponding test results. This process ensures that the appropriate mode (Tracing or Screening) is 
selected and the groups are prioritized accordingly. At each time step, the function takes the point prevalence, 
ρt−1 , calculated from the previous time step, and compares it with a predefined threshold. The threshold repre-
sents the value at which the mode switch occurs. The algorithm then returns the sorted groups, reflecting the 
adjusted testing priority based on the chosen mode.

Our objective is to maximize the total number of infected individuals Y detected by our testing strategy, as 
well as minimizing the total number of tests Qi,t , as outlined in “Testing Group Priority Adjustment” Section.

We describe the overall AGT (Fig. 5) as follows: 

1. Partition the social contact network into m subgraphs to form testing groups.
2. Perform group testing within the constraint of the maximum number of tests.
3. Estimate the current point prevalence using the test results to determine the strategy mode (Tracing or 

Screening).
4. Adjust the testing priority of the corresponding groups based on the point prevalence ρt−1.
5. Repeat steps 2–4 iteratively until the given testing time period ends.

Agent based infectious disease transmission model. As the traditional SEIR differential equation 
model is a population-scale model, it considers how many individuals flow from one state to another. To take 
spatial and human behavior into account, here we employ an agent-based model (ABM). ABM can simulate 
many individual agents in the population. Individuals can be heterogeneous and have multiple attributes. Each 
individual can interact with others along the contact network and is updated in random order.

We describe the infectious disease transmission process using an enhanced agent-based SEIR model, with 
heterogeneous infectious probabilities to incorporate the characteristics of SARS-CoV-2 infection, as shown in 
Fig. 6. In particular, each individual has a random infectious probability drawn from a pre-defined exponential 
distribution X ∼ Exp(�) . The expected infectious probability is given by 1

�
 . Detailed information about the 

model is as follows.

ρt =

zt
∑

i=0

Xi,t

Qi,t
,

Figure 4.  Algorithm for adjusting the testing priority of groups adaptively based on the point prevalence and 
previous test results.

Figure 5.  The adaptive testing strategy, given as a processing cycle over time.
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At any discrete time t between 0 and T, each individual Vi ∈ V  can be in one of the following states: S (Sus-
ceptible), E (Exposed), I (Infectious), R (Removed). Given a contact network G, new infections only occur during 
social contact between infected and susceptible individuals if they have an edge in G. An individual i moves from 
S to E with probability �j if one of i’s neighbors j ∈I. The infected individual’s infection probability �j is a random 
number drawn from an exponential distribution. After a set incubation period, the Exposed individual becomes 
infectious and will move to the Infected state. Each infected individual draws a random recovery period from a 
normal distribution with mean µ and standard derivation σ . After the recovery period, the infected agent moves 
to the R (Removed) state. Individuals that have already moved into R will not be reinfected.

Table 4 lists all simulation parameters.
To start the simulation, all individuals are initially in the susceptible state. We then introduce the external 

infection as the start by randomly selecting N0 individuals from the population to become infected at time step 0.

Evaluation. We evaluate our proposed strategy and baselines with our enhanced SEIR model on both syn-
thetic and real social contact networks.

There are three baseline strategies:

• Strategy 1 Individual testing (IT) randomly draws B individuals from the population without exceeding the 
testing capacity, and tests individually.

• Strategy 2 Random Group testing (RGT) applies randomly selected groups as described in the original Dorf-
man’s  method8. The group size is k and the number of tests performed at each time step is ⌊ B

k+1⌋.• Strategy 3 Graph partition based group testing with random testing order (G-RGT) is a simplified version of 
our testing strategy. It only focuses on the underlying information collected from the social contact network. 
This strategy first divides the social contact network into m groups, then randomly selects ⌊ B

k+1⌋ to perform 
the two-stage testing.

We run the simulation for 75 time steps on the real contact networks and 150 on the synthetic contact networks, 
where each time step corresponds to a day. The group size is 10 and the testing capacity is 150 for synthetic 
networks, though we include a study varying the group size and the testing capacity. The threshold β for switch-
ing the strategy mode is 0.02. As the total population of the real contact network varies, we tentatively set 15% 
population as the testing capacity. Note that the present analysis assumes perfect testing and complete quarantine 
compliance, with the latter represented by a quarantine rate of 100%. Upon quarantine, the edges associated 
with the infected individuals will be removed from the graph, thus interrupting any further transmission of the 
infectious agent. These assumptions are made for the purpose of exploring the optimal performance that can be 
achieved under idealized conditions. We compare these testing strategies in terms of the total number of tests, 
the maximum outbreak size, the maximum number of secondary transmissions, and the number of uninfected 
individuals by the end of the simulation period. We report the average of results over 100 simulations.

Results
We simulate AGT on six synthetic contact networks and seven real networks and compare it with three baseline 
strategies (IT, RGT and G-RGT). Also, we explore the testing performance of AGT at different population scales, 
group sizes, and testing capacities.

Table 5 and Fig. 7 show the performance of testing strategies on synthetic contact networks with population 
1000. IT achieves the poorest results in the total number of tests. In contrast to individual testing, all three group 
testing strategies achieve significant reductions in the number of tests and lead to savings of up to 90.56%. As the 
groups in RGT are randomly pooled from the whole population, it provides the most comprehensive coverage. 

Figure 6.  (A) Agent based Infectious disease transmission model. (B) The exponential distribution for 
modeling the infectious heterogeneity. (C) Distinct periods of the enhanced SEIR model.
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Even though RGT is able to reduce the overall number of tests compared to individual testing, the difference in 
the resulting secondary transmission and outbreaks is not significant. The performance of the G-RGT (strategy 
3) yields the worst among group testing strategies. Although G-RGT detects the highest number of positive 
infections, the corresponding outbreak size and the total number of tests are also significantly higher than other 
strategies. Surprisingly, IT gives the smallest maximum outbreak size and fewer secondary transmissions on the 
SW network. Other than that, AGT consistently outperforms other testing strategies. Since the network structure 
is heterogeneous, our AGT can save about 87.90–90.56% of tests compared to the individual testing method. 
AGT successfully reduces the maximum outbreak size by about 3.99–46.66% as compared to other strategies 
(except for the SW model), which helps reduce the burden on the public healthcare system during outbreaks. 
Moreover, with the help of the tracing mode in AGT, the number of secondary transmissions is lowered by 
approximately 1.97–27.49%.

Figure 8 shows simulation results for the number of infected (left) and uninfected (right) individuals per 
day on the Chung-Lu (CL) network with all four testing strategies. Results for the remaining network genera-
tion models follow a similar pattern and are omitted here. As can be seen in the left plot, AGT successfully both 
lowers and postpones the outbreak peak, with no significant spike throughout the simulation. Due to the timely 
detection of infected individuals, no large regional outbreaks result from secondary transmission. Thus, as 
shown on the right, our AGT protects a greater number of susceptible individuals. In contrast, G-RGT displays 
strong instability. There are multiple repeated rallies in the early period of the outbreak. It only gradually declines 
after reaching the peak of the outbreak. IT and RGT performed roughly similarly, but RGT is more volatile and 
declines more slowly after reaching the outbreak peak. Thus, in the right part we can see that RGT leads to fewer 
uninfected individuals than IT.

We also conducted experiments to compare the performance of AGT with baseline strategies under varying 
transmission settings. Taking the CL network as an example, Fig. 9 presents the simulation results, showcasing 
the comparison of AGT with the baseline strategies. The results demonstrate the superiority of AGT across dif-
ferent transmission settings. AGT consistently outperformed the baselines by achieving a higher percentage of 
uninfected individuals and requiring a lower total number of tests. This highlights the effectiveness of AGT in 
containing the disease transmission while optimizing testing resources. The advantages of AGT become even 

Figure 7.  Simulation results of our strategies and baselines using six network generation models. The total 
population is 1000. AGT outperforms all competing strategies in protecting more susceptible individuals, 
reducing outbreak size, and reducing secondary transmissions.

Figure 8.  Simulation results of our strategies and baselines on the Chung-Lu network model (CL). The total 
population is 1000. The left figure reports the number of infected individuals per day. The right figure shows 
the number of uninfected individuals per day. The shaded region around each line is the corresponding 95% 
confidence interval. AGT steadily reduces the number of infections, decreases the outbreak size, and protects 
more susceptible individuals.
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more significant as the disease transmission capability increases, providing protection to a greater number of 
people. Although IT achieved a slightly lower outbreak size at very high transmission setting ( � = 4), it consumed 
576.25% more resources compared to AGT. Moreover, AGT exhibited stable performance in controlling second-
ary transmissions, ensuring effective containment of the spread of disease. Notably, the outbreak size could be 
effectively controlled to the initial outbreak size (5) within a specific range of transmission settings ( � range of 
6–14). These findings underscore the significant advantages of AGT over other baseline strategies, emphasizing its 
potential of adaptability in diverse transmission scenarios, ensuring robust and efficient containment measures.

Furthermore, we simulate various testing capacities ranging from 5 to 25% of the whole population to inves-
tigate how testing capacity affects strategy performance. Figure 10 shows the simulation results of AGT on six 
synthetic networks at different test capacities. In general, the greater the testing capacity, the greater the number 
of susceptible individuals that will be protected from infection, the smaller the outbreak size, and the fewer 
the number of secondary transmissions. The spread of the disease is not effectively contained on any network 
model when the testing capacity is 5% of the whole population since the limited testing resources are insufficient. 
Especially on the BA model, the outbreak size reached 15.13% of the total population. When the testing capacity 

Figure 9.  Effectiveness of AGT and baselines on the CL network with varying transmission settings. AGT 
demonstrates a higher percentage of uninfected individuals and a lower total number of tests, indicating its 
effectiveness in minimizing infections while optimizing testing resources. The performance in controlling 
secondary infections remains stable, and the maximum outbreak size can be effectively controlled to the 
initial outbreak size (5) within a � range of 6–14. Additionally, AGT exhibits superior performance at higher 
transmission rates, achieving better control of outbreaks with lower resource consumption.

Figure 10.  Testing performance for varying testing capacities on different network models. The larger test 
capacity provides better performance in all measurements. The differences are not significant after it exceeds 
15%.
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rises to 10%, it only performs well on the SW model but still does not effectively protect susceptible individuals 
on other network models. There are no significant differences on each evaluation measurement after the test 
capacity reached more than 20%: approximately 95.89–97.96% of susceptible individuals are protected from 
infection, the outbreak size is about 5–5.74 (slightly larger than the initial outbreak size N0 ), and secondary 
transmissions ranged from 5.30 to 11.99.

Additionally, we compared the performance of AGT with different group sizes, as shown in the Fig. 11. As the 
group size increases, the strategy’s performance does not keep improving. The optimal group size varies slightly 
across network models instead. When the group size is 20, AGT performs better on some network generation 
models, such as CL, ER, and SBM, which allowed maximum protection of the susceptible population but required 
fewer tests. On the SW and Waxman network models, a group size of 15 resulted in the lowest number of infec-
tions and the smallest outbreak size.

We also investigate how the population scale affects the performance of the testing strategy. We simulate four 
population scales ranging from 500 to 2000, and set the initial outbreak size as 1% of each population and the 
test capacity as 15% of the corresponding population. All the other parameters remain unchanged. As can be 
seen in Fig. 13, the performance of IT gradually becomes more deficient as the total population climbs, while 
the performance of group testing strategies gradually improves. Our proposed strategy consistently protects 
the most susceptible individuals from infection when the population scale increases, regardless of the network 
structure. Moreover, AGT is always optimal in terms of saving testing resources and reducing secondary redi-
rection throughout all simulations. It saves 87.00–90.96% of testing resources compared to IT and achieves a 
7.49–20.19% reduction compared to RGT.

Since we noticed that the total population of each real data sets is limited, but the average degree is relatively 
high, the spread of the disease may be greater than the ones we simulated on the synthetic network. Here we 
further develop a variation (AGT_var) of our proposed strategy, which gives higher priority to the “Tracing 
mode” when the estimated prevalence is high. Table 6 and Fig. 12 show the performance of testing strategies 
on seven real contact networks. Generally, group testing strategies (Strategy 2, 3, 4 and its variation) perform 
better than IT (Strategy 1). Group testing strategies can save 76.08–88.41% of testing resources, but the differ-
ence among different group testing strategies is insignificant. It is worth noting that our original strategy is not 
effective in reducing the outbreak size on high-density real networks. The variant for high-density networks 
significantly reduces the outbreak size only on the SFHH network and does not differ much from the random 
method on other data sets.

Discussion
Our study shows that group testing is typically more efficient than individual testing. AGT saves testing resources 
up to 90.96% across simulated scenarios with limited testing capacity. AGT effectively identifies the infected 
person early in the spread of the infection. This demonstrates that timely and effective public health interventions 
are critical in the early stage of an infectious disease outbreak. It can lessen pressure on the public health system 
by reducing the size of the outbreak and delaying the arrival of the peak to give more time for a series of public 
health emergency responses. However, these results are obtained under several assumptions, such as the disease 
transmission model, the underlying social contact network, and perfect testing. In real-world scenarios, perfect 
testing is unlikely to be achieved and quarantine compliance may vary. There are considerable uncertainties 
around the transmission of SARS-CoV-2, especially regarding age-related factors, the asymptomatic cases, and 
their transmission. We also do not include the possible reintroduction of SARS-CoV-2 in the population from 
externally infected individuals in the simulation. These may result in fewer simulated infections than in the real 
scenario. Nonetheless, our findings contribute to the understanding of the potential effectiveness of adaptive 
group testing strategies in controlling infectious diseases and offer insights that can inform policy and public 
health decision-making.

Figure 11.  Testing performance for different network models based on varying group sizes. The optimal group 
size is not consistent for different network structures. Smaller groups perform better on lowering the outbreak 
size than larger ones, while larger group size can save more testing resources.
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Figure 12.  Simulation results of our strategies and baselines using seven real contact networks. Group testing 
strategies (Strategy 2, 3, 4, and its variation) outperform Individual Testing (IT) (Strategy 1), saving 76.08–
88.41% of testing resources. However, the difference among different group testing strategies is insignificant. 
Notably, the variant designed for high-density networks shows significant reduction only on the SFHH network.

Figure 13.  Simulation results of our strategies and baselines based on varying population scales. The initial 
outbreak size is set at 1% of each population, and the test capacity is set at 15% of the corresponding population. 
Our proposed strategy outperforms the other strategies in terms of reducing the total number of tests and 
outbreak size.
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AGT takes advantage of social contact network partitioning to improve the efficiency of group testing. The 
partitioning process divides the population into subgroups based on social contact interactions, grouping indi-
viduals who have social contacts together within the same subgroup. These subgroups, defined by the social 
contact network, remain consistent throughout subsequent testing rounds, ensuring stability and continuity in 
the testing strategy. This fixed grouping approach enables easier implementation and meaningful comparisons 
of results across multiple testing rounds. It also supports the traceability of infection status within each subgroup 
over time, as individuals within the same subgroup share similar social contacts and interactions. While the fixed 

Table 1.  Nomenclature of notations and parameters.

Notations Description

G Undirected social contact network

Gi ith subgraph of G

V Vertex set of G

E Edge set of G

m Number of subgraphs

MG(Gi ,Gj , k) Partition score function for calculating the maximum number of edges in the combined subgraphs without exceeding size k

S Susceptible agent status

E Exposed agent status

I Infectious agent status

R Removed/recovered agent status

Vi ith testing group

Xi,t Group test result on testing group Vi at time t

Qi,t The number of tests performed on testing group Vi at time t

ρt Point prevalence at time t

β Strategy mode switch threshold

zt Number of group tests at time t

y Number of infected individuals detected by our testing strategy

N Number of total population

k Upper size bound of the testing group

m Number of testing groups

T Testing period

B Testing capacity

Table 2.  Synthetic social contact networks used for the simulation.

Generation model N 〈k〉 d Ref.

Barabási–Albert model (BA) 1000 5.96 5 34

Chung–Lu model 1000 5.82 7 35

Erdos–Renyi model (ER) 1000 5.98 7 36

Stochastic Block model (SBM) 1000 6.00 10 37

Watts–Strogatz Small-world model (SW) 1000 6.01 7 38

Waxman’s model (Waxman) 1000 6.24 11 39

Table 3.  Real social contact networks used for the simulation.

Data Set Location Year N T 〈k〉 d Ref.

InVS13 Fr. Health Obs. 2013 92 2 weeks 13.15 4 28

InVS15 Fr. Health Obs. 2015 232 2 weeks 38.38 5 28

LH10 Hospital 2010 81 3 days 22.02 3 29

LyonSchool Primary school 2009 242 2 days 48.43 3 30

SFHH Conference 2009 403 2 days 47.47 4 31

Thiers13 High school 2013 326 1 week 34.71 4 32

Malawi Village 2021 86 26 days 8.07 5 33
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grouping approach provides valuable insights into infection spread within specific social contact networks, it is 
important to acknowledge that social networks are dynamic and subject to changes. Different optimal group-
ings may emerge at different time instances as social contact patterns evolve. Recognizing the evolving nature of 
social contacts, future research could explore group testing under dynamically changing groupings. This could 
involve incorporating time-series mobility networks or other time-dependent factors to account for the changing 
dynamics of social contacts and its impact on the effectiveness of group testing strategies. Evaluating AGT on 
mixed group sizes in real-world settings and considering factors such as demographic information, geographical 
distribution, and contact patterns would further enhance its effectiveness and optimize testing outcomes. These 
investigations would provide a deeper understanding of how adaptive groupings can enhance testing strategies 
in response to the evolving nature of social contact patterns.

Inadequate testing of exposed individuals may lead to further spread of the infection among susceptible 
individuals due to undetected infected individuals. Our study highlights the importance of considering the 
dynamic changes in virus transmission within the social contact network. While a higher testing capacity can 
result in a faster containment of the spread of the virus, our simulations indicate that a testing capacity of 15% 
of the total population is sufficient to achieve acceptable results. This allows for a more efficient allocation of 
resources, enabling the use of these resources on a larger scale.

Additionally, for every scenario and method, an optimal group size can be determined. However, the group 
size is also constrained by the practical limitations of the testing methodology, such as dilution effects and sensi-
tivity considerations. This can prevent choosing the optimal group size for a low prevalence scenario. When the 
underlying social contact network is unknown, smaller group sizes may work better than larger ones as it may 
reduce the uncertainty associated with identifying the best group size. To determine the optimal group size in 
such cases, it is important to take into account  a range of group sizes in simulations, evaluate the performance 
of the group testing strategy for each group size, and further identify the group size that results in the most 
efficient use of resources.

Table 4.  Parameters of enhanced SEIR model simulation.

Parameter Description Value

N0 Initial outbreak size 5

� Parameter of the infectious distribution X ∼ Exp(�) 6

α Incubation period 7

µ Mean value of the recovery period 7

σ Standard deviation of the recovery period 4

Table 5.  Comparison of testing strategies simulated on six synthetic contact networks with 1000 population. 
Significant values are in [bold].

Strategy BA CL ER SW SBM Waxman

Uninfected

IT 697.96 816.78 851.84 963.87 865.17 876.47

RGT 683.09 786.74 842.12 959.48 833.87 840.38

G-RGT 603.76 685.04 727.41 947.67 741.39 760.88

AGT 773.61 886.63 903.84 973.1 921.43 932.92

Maximum outbreak size

IT 17.65 8.39 7.15 5.2 7.22 6.87

RGT 18.67 8.98 7.35 5.51 7.6 7.42

G-RGT 21.79 11.83 10.31 6.11 9.47 10.17

AGT 14.58 6.31 6.24 5.29 5.77 5.68

Maximum secondary transmission

IT 28.71 9.29 7.71 5.38 7.91 7.69

RGT 28.92 9.46 7.62 5.59 7.74 8.3

G-RGT 32.09 9.77 8.25 5.61 8.2 8.6

AGT 23.27 8.17 7.16 5.48 7.16 7.26

Total tests

IT 20700 20700 20700 20700 20700 20700

RGT 2874.67 2626.04 2457.96 2059.86 2492.2 2468.61

G-RGT 3138.59 2976.14 2864.47 2066.1 2818.68 2714.02

AGT 2504.26 2241.37 2195.71 1953.8 2139.22 2085.01

Found positives

IT 247.69 149.68 121.23 28.89 109.78 100.35

RGT 294.37 196.86 144.82 35.59 152.49 146.33

G-RGT 365.97 288.99 247.65 46.01 235.43 218.4

AGT 195.27 102.45 86.77 23.09 70.89 60.84
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Note that the advantage of AGT in reducing outbreak size is not significant when the total population gradu-
ally increases. This may be because the shortest path between infected individuals becomes longer. Each infected 
individual gains a larger transmittable space when the total population increases. At this point, without any 
testing, the initially infected individuals may be able to infect all neighbors to reach the theoretical upper limit 
number of secondary transmissions. However, no matter which group testing strategy is applied, the initially 
infected individuals can always be detected after testing begins in a few days (time points). Due to the slight 
difference in detection time, it is difficult to have a small regional outbreak caused by an undetected infected 
individual. AGT enables early detection of infected individuals by tracking their infection trajectory, thereby 
containing the spread of the disease more quickly and protecting more susceptible individuals. An earlier end 
to transmission also saves more resources on follow-up testing.

The smaller advantage of AGT over RGT in real social networks compared to synthetic networks may be due 
to the higher density of the real social networks used in this study, allowing for faster and wider virus spread. 
However, it is important to note that in real-world scenarios, the duration of contact plays a crucial role in dis-
ease transmission, emphasizing the significance of contact intensity rather than simply the presence of contact. 
Simulating the disease on high-density networks may result in an overestimation of the spread. Additionally, RGT, 
which adopts a random average sampling approach, can achieve maximum coverage with limited tests, leading 
to higher hit rates, particularly in high-density scenarios. To enhance the effectiveness of AGT in real-world 
high-density networks, it is essential to consider contact duration and explore alternative sampling strategies 
tailored to these specific network characteristics.

In addition to the scenario studied in this research, our group testing strategy also has the potential to be 
applied to other infectious diseases, such as tuberculosis, HIV, and influenza, as the underlying principle of 
early identification of infected individuals and reduction of the burden on the public health system remains 
consistent across different diseases with similar transmission patterns. However, it is essential to note that the 
specific implementation of the strategy may need to be tailored to the characteristics of each disease, such as the 
level of asymptomatic transmission and the sensitivity of the testing method. Besides, the assumptions of the 
transmission model and underlying social contact network may also need to be reevaluated for each specific 
disease. Future research should focus on tailoring and validating the AGT strategy for specific infectious diseases 
to maximize its potential impact in various real-world scenarios.

Moreover, extending the group testing strategy to more extensive and complex social contact networks could 
potentially improve its effectiveness. The performance of AGT is partially dependent on the underlying structure 
of the social contact network. As the size of the social contact network increases, the probability of infected 
individuals being connected to each other through multiple pathways increases, and the underlying correlation 

Table 6.  Comparison of testing strategies simulated on seven real contact networks. Significant values are in 
[bold].

Strategy InVS13 InVS15 LH10 LyonSchool SFHH Thiers13 Malawi

Uninfected

IT 39.18 11.69 23.75 29.87 15.71 16.16 53.9

RGT 77.45 77.7 26.45 57.68 23.39 169.09 57.7

G-RGT 75.09 74.9 29 65.32 22.94 166.31 57.58

AGT 52.87 8.52 18.31 32.54 5.48 10.07 59.92

AGT_var 79.22 79.98 29.28 68.84 23.17 168.25 61.99

Maximum outbreak size

IT 8 23.75 7.46 28.65 45 31.2 5.15

RGT 5 5 5.14 5 30.7 5 5

G-RGT 5 5 5.19 5.07 31.97 5 5

AGT 7.1 37.02 22.62 53.7 124.97 53.9 5.25

AGT_var 5 5.06 5.75 6.5 27.41 5.14 5.01

Maximum secondary transmission

IT 16.15 35.53 20.18 46.43 53.14 37.39 8.75

RGT 12.1 31.92 19.21 43.13 53.95 33.21 8.44

G-RGT 13.69 31.75 18.43 42.67 52.07 32.97 8.59

AGT 13.74 33.46 20.61 44.41 54.66 37.01 7.71

AGT_var 12.96 32.17 18.43 41.28 52.7 32.56 7.21

Total tests

IT 2098 3722 1574 4795 4602 5772 1453

RGT 445.66 455.94 324.68 558.11 880.43 669.1 306.67

G-RGT 446.54 456.75 320.77 556.28 875.95 670.01 305.89

AGT 479.07 515.19 304.38 561.86 579.94 775.54 306.89

AGT_var 452.95 481.57 328.78 599.89 1100.63 710.53 303.91

Found positives

IT 63.59 156.63 54.39 191.12 311.73 238.19 24.49

RGT 45.41 143.46 65.18 226.9 367.51 174.03 26.16

G-RGT 47.99 146.34 62.37 219.62 367.59 176.89 26.3

AGT 61.61 145.03 36.61 154.34 166.03 220.84 21.95

AGT_var 43.82 140.87 62 215.26 366.9 174.56 21.88
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within each testing group also grows, which could make it easier to identify infected individuals through AGT. 
A deeper understanding of the impact of graph structure on the effectiveness of testing methods is crucial. To 
shed light on this, we conducted several simulations on different synthetic network models, aiming to explain 
the performance of AGT under various network structures. These simulations provide insights into the behavior 
of AGT when only partial information of the real underlying contact network is available, further emphasizing 
the need for future studies to explore the effectiveness of AGT in real-world scenarios with incomplete graph 
structure information. In addition, it is important to note that as the size of the social contact network increases, 
the complexity of the network also increases, which may make it more challenging to identify the optimal group 
size and testing strategy, as well as to collect and analyze the data on such large social contact networks. Further 
research is necessary to evaluate the generalizability of the group testing strategy in more extensive social contact 
networks and to determine the specific parameters that need to be adjusted to optimize its performance, taking 
into account the challenges of scaling up the method.

Implementing AGT in real-world settings can be challenging due to various factors. One key challenge is the 
cost associated with group testing, including expenses for testing kits, personnel, and infrastructure. Additionally, 
the coordination of large-scale testing efforts, ensuring timely delivery of test results, and managing the logistics 
of testing individuals within each group require collaboration between healthcare organizations, government 
agencies, and community stakeholders. However, these challenges can be addressed through strategic resource 
allocation, adopting cost-effective testing approaches, and efficient logistical planning. Technological advance-
ments, such as automation and high-throughput testing methods, can streamline testing processes and reduce 
costs. Public awareness campaigns can also play a role in encouraging participation and facilitating the smooth 
implementation of AGT strategies in real-world settings.

Conclusion
The standard two-stage pooling approach usually pools individuals randomly. As the sample correlation increases, 
the efficiency of pooling without prior information drops rapidly. In this work, we propose an adaptive group 
testing strategy based on the social contact network with fixed, limited testing capacity at each time instance. 
Individuals sharing similar social contacts with neighbors are pooled together using our graph-partition based 
strategy. To facilitate the simulation, we develop an enhanced compartment model that captures the SARS-
CoV-2 spreading characteristics in the COVID-19 pandemic based on the classic SEIR model. We evaluate AGT 
with other group testing methods and individual testing methods using simulated epidemics on both real and 
synthetic social contact networks. The results of this study show that our adaptive group testing strategy can 
save up to 88.41% tests on the real contact networks and 90.56% on synthetic networks. This can help reduce 
the time and resources needed to test many people. Moreover, our approach helps lower the outbreak size up 
to 84.31% and postpones the arrival of the peak, which will assist in relieving the pressure on public health 
resources during the outbreak.

Data availability
All the Python scripts that were used in this research are available in the GitHub repository at https://
github.com/EveZhang19/CompEpi_AGT .
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