scientific reports

OPEN

Prospective epigenome and transcriptome analyses of cord and peripheral blood from preterm infants at risk of bronchopulmonary dysplasia

Hye-Youn Cho^{1,9}, Xuting Wang^{1,5,9}, Michelle R. Campbell¹, Vijayalakshmi Panduri², Silvina Coviello³, Mauricio T. Caballero^{3,4}, Brian D. Bennett⁵, Steven R. Kleeberger¹, Fernando P. Polack^{3,6}, Gaston Ofman^{3,7} & Douglas A. Bell⁸

Bronchopulmonary dysplasia (BPD) is a prevalent chronic lung disease of prematurity with limited treatment options. To uncover biomarkers of BPD risk, this study investigated epigenetic and transcriptomic signatures of prematurity at birth and during the neonatal period at day 14 and 28. Peripheral blood DNAs from preterm infants were applied to methylation arrays and cell-type composition was estimated by deconvolution. Covariate-adjusted robust linear regression elucidated BPD- and prolonged oxygen (≥14 days) exposure-associated CpGs. RNAs from cord and peripheral blood were sequenced, and differentially expressed genes (DEGs) for BPD or oxygen exposure were determined. Estimated neutrophil-lymphocyte ratios in peripheral blood at day 14 in BPD infants were significantly higher than nonBPD infants, suggesting an heightened inflammatory response in developing BPD. BPD-DEGs in cord blood indicated lymphopoiesis inhibition, altered Th1/Th2 responses, DNA damage, and organ degeneration. On day 14, BPD-associated CpGs were highly enriched in neutrophil activation, infection, and CD4+T cell quantity, and BPD-DEGs were involved in DNA damage, cellular senescence, T cell homeostasis, and hyper-cytokinesis. On day 28, BPDassociated CpGs along with BPD-DEGs were enriched for phagocytosis, neurological disorder, and nucleotide metabolism. Oxygen supplementation markedly downregulated mitochondrial biogenesis genes and altered CpGs annotated to developmental genes. Prematurity-altered DNA methylation could cause abnormal lymphopoiesis, cellular assembly and cell cycle progression to increase BPD risk. Similar pathways between epigenome and transcriptome networks suggest coordination of the two in dysregulating leukopoiesis, adaptive immunity, and innate immunity. The results provide molecular insights into biomarkers for early detection and prevention of BPD.

Abbreviations

AGER (or RAGE) AHRR Advanced glycosylation end-product receptor Aryl hydrocarbon receptor repressor

¹Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA. ²Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA. ³Fundación INFANT, Buenos Aires, Argentina. ⁴Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. ⁵Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA. ⁶Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA. ⁷Section of Neonatal-Perinatal Medicine, Center for Pregnancy and Newborn Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. ⁸Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Building 101, MD C3-03, 111 TW Alexander Dr., Research Triangle Park, NC 27709, USA. ⁹These authors contributed equally: Hye-Youn Cho and Xuting Wang. [⊠]email: bell1@ niehs.nih.gov

BPD	Bronchopulmonary dysplasia
BW	Birth weight
CTSH	Cathepsin H
D-BPD	The discovery-bronchopulmonary dysplasia program
DEG	Differentially expressed gene
EWAS	Epigenome-wide association study
FDR	False discovery rate
GA	Gestational age
GEO	Gene expression omnibus
GNLY	Granulysin
GO	Gene ontology
GWAS	Genome-wide association study
GZMA	Granzyme A
IDOL	Identifying optimal DNA methylation libraries
IFN	Interferon
IFITM	Interferon induced transmembrane protein
IL	Interleukin
IPA	Ingenuity pathway analysis
IRB	Institutional review board
LTF	Lactoferrin
MPO	Myeloperoxidase
NCOR2	Nuclear receptor corepressor 2
NICU	Neonatal intensive care unit
NIEHS	National Institute of Environmental Health Sciences
NIH	National Institutes of Health
NK	Natural killer cell
NLR	Neutrophil-lymphocyte ratio
NPIR	Negative regulator of interferon response
NRBC	Nucleated red blood cell
O ₂	Oxygen
PCA	Principal component analysis
PMA	Postmenstrual age
RAR	Retinoic acid receptor
RNA-Seq	RNA sequencing
ROP	Retinopathy of prematurity
ROS	Reactive oxygen species
SPOCK2	SPARC (osteonectin), Cwcv and Kazal like domains proteoglycan
TNFSF8	Tumor necrosis factor superfamily member 8

Bronchopulmonary dysplasia (BPD) is a prominent chronic respiratory disease among survivors of extremely preterm (<28 weeks of gestational age, GA) and very low birth weight (BW, <1500 g) infants^{1,2}. The modern consensus on BPD pathogenesis is largely attributed to the arrested lung development due to premature birth which interrupts the intra-uterine programmed lung development and the subsequent repair of lung injury caused by the supplemental oxygen (O₂) and mechanical ventilation in the neonatal intensive care unit (NICU)². Lack of definitive cure and the persistent lung impairment can lead to long-term pulmonary dysfunction and increased risk for adverse respiratory symptoms (e.g., airway diseases, exercise intolerance) in BPD survivors^{3–6}.

There are limited genetic, epigenetic, or transcriptomic resources for the investigation of BPD etiology and pathogenesis in preterm infants. In previous studies, genome-wide association studies (GWASs) and exome sequencing in various populations with BPD elucidated potential genetic risk factors such as SPOCK2 encoding SPARC (osteonectin), Cwcv and Kazal like domains proteoglycan 2 and CRP encoding C-reactive protein⁷⁻¹² Transcriptomic studies by database search, microarray, and RNA sequencing (RNA-Seq) have reported the differentially expressed genes (DEGs) in blood, lung cell or lung biopsy from BPD cases¹³⁻¹⁷. Most recently single cell RNA-Seq determined monocyte (tracheal aspirate)- or CD8 + T cell-specific BPD-associated genes^{18,19}. Epigenome-wide association studies (EWASs) have identified DNA methylation loci associated with BPD in formalin-fixed lung autopsy/biopsy¹⁵ or with neonatal morbidities including BPD²⁰. Recently, we reported epigenetic markers of BPD risk in cord blood DNAs from a preterm cohort²¹, and they included CpGs annotated with genes including cathepsin H (CTSH, cg24847366) and SPOCK2 (cg17958658)²². The results indicated that cord blood methylome changes involved in lung and tissue development, cell cycle and leukopoiesis, immunemediated inflammation, T and B cell responses, and platelet activation may precede or indicate risk of BPD development²². In that report, we also demonstrated that methylation-based cord blood cell-type composition varied by BW or GA, and that a higher nucleated red blood cell (NRBC) proportion was significantly associated with a lower BW and DNA hypomethylation profile²².

In the current study, we expanded cell-type deconvolution of DNA methylation to postnatal peripheral blood from the same preterm cohort^{21,22}. Methylome analysis during the newborn period determined potential postnatal epigenome markers of BPD development and RNA-Seq demonstrated BPD-associated DEGs in cord and postnatal peripheral blood cells from the premature infants. In addition, influence of prolonged NICU O_2 supplementation on blood cell DNA methylation and gene expression landscape was elucidated in nonBPD

2

infants on postnatal day 14. This investigation of the early life hematologic epigenome and transcriptome provides further insights and biomarkers of BPD pathogenesis.

Results

Demographics of cohort. A total of 109 premature infants were included in the study after applying exclusion criteria. Table 1 and Additional file 1: Table S1 present the neonatal and maternal characteristics and fetal complications of the prematurely born neonates diagnosed with BPD or without (nonBPD). Diagnosis of BPD was made for 15 preterm infants based on the National Institutes of Health consensus definition and O₂ needs at either 36 weeks postmenstrual age or at 28–56 days of postnatal life based on GA²³. BPD development was sexually dimorphic with 25% of males (10/40) and 7.2% of females (5/69) diagnosed among these premature infants. Infants diagnosed with BPD were born at significantly lower mean BW (p=0.002) and GA (p<0.001) and were supplemented with NICU O₂ for a greater number of days (46.5 ± 4.0, p<0.001) compared to nonBPD infants (7.8 ± 1.1). Infections were more common in the neonates who developed BPD (Table 1, p=0.006). The time points (14 days and 28 days of life) used for peripheral blood analysis were chosen preceding symptoms and diagnosis of BPD.

Characteristics	BPD	nonBPD	<i>p</i> value				
Neonate characteristics							
Sample size	15	94					
Birth weight (g)	938.8±71.5	1187.6±25.0	0.002				
Gestational age (weeks)	27.5±0.6	30.2±0.2	< 0.001				
C	Male 10 (67%)	Male 30 (32%)	0.013				
SCX	Female 5 (33%)	Female 64 (68%)					
Cumulative NICU O ₂ (Days)	46.5 ± 4.0	7.8 ± 1.1					
Day	0	31	< 0.001				
1-13 days	0	40					
≥14 days	15	22					
Unknown	0	1					
Delivery room surfactant	1/13 (8%)	4/87 (5%)	0.644				
Infection in NICU	8/14 (57%)	20/93 (22%)	0.006				
Maternal characteristics							
Maternal ancestry			0.863				
European-Latin	12	69					
Criollos	0	14					
European-other	0	5					
Jewish	1	3					
African Caribbean	0	1					
Asian	0	1					
Native American	1	0					
Arab-Middle Eastern	1	0					
Unknown or refused	0	1					
Maternal age (year)	32.2±1.9	34.1 ± 0.7	0.369				
Maternal smoking history ^a	7/15 (47%)	25/94 (27%)	0.116				
Maternal antenatal steroid	15/15 (100%)	83/91 (91%)	0.239				
Maternal pre-eclampsia	3/15 (20%)	26/94 (28%)	0.539				
Gestational diabetes	0/14 (0%)	1/90 (1%)	0.714				
BMI	34.6±3.1	35.6±1.3	1.000				
Education ^b	10/4/0/1	63/20/5/6	0.916				
Alcohol during pregnancy	0/13 (0%)	1/89 (1%)	0.724				
Chorioamnionitis	2/15 (13%)	5/94 (5%)	0.246				
Fetal complications							
Fetal IUGR	5/13 (39%)	38/89 (43%)	0.778				
Fetal oligohydramnios	3/12 (25%)	11/89 (12%)	0.240				

Table 1. Characteristics of the preterm infant cohort used for overall analyses. Samples recruited fromthe Discovery-Bronchopulmonary Dysplasia Program (D-BPD) cohort in Buenos Aires, Argentina²¹.Mean \pm S.E.M. presented. *NICU* neonatal intensive care unit, O_2 oxygen supplement, *IUGR* intrauterine growthrestriction. Detailed cohort characteristics are in Additional file: Table S1. ^aSelf-reported former and/or currentsmoker. ^bHigher/Secondary/Primary/NA.

Methylation-based estimation of blood cell composition. The methylation-based deconvolution model estimated seven cell type percentages in cord and peripheral blood. Of these, six cell types (with the exception of natural killer (NK) cells) were determined to be significantly varied between BPD and nonBPD neonates at one or more time points (Fig. 1A). The percentage of lymphocytes including CD8 + T cells (day 14), CD4 + T cells (cord blood, days 14 and 28), and B cells (days 14 and 28) were significantly decreased in BPD relative to nonBPD (Fig. 1A). In contrast, percentage of myeloid cells including monocytes (day 28) and granulocytes (days 14 and 28) and NRBCs (days 14 and 28) were significantly higher in BPD than in nonBPD (Fig. 1A). The previously reported cord blood cell-type compositions²² based on the Houseman deconvolution algorithm²⁴ were re-evaluated together with postnatal day data using the approach of Koestler et al. (Identifying Optimal DNA methylation Libraries, IDOL)²⁵.

The estimated seven cell-type distribution plotted relative to GA quintiles among all premature infants indicated time- and GA-dependent shifts of cell-type composition during the neonatal period (Fig. 1B). Compared to cord blood, NRBC proportions in peripheral blood from days 14 and 28 were markedly decreased in all GA quintile groups (Fig. 1B). Higher CD4+T cell percentage in higher GA groups were also evident at all times and a similar trend was shown for percentage of CD8+T cells on day 14 and percentage of B cells in cord blood and on day 28 (Fig. 1B). In contrast granulocyte proportions, assumed to be largely neutrophils, were higher in lower GA groups on days 14 and 28 (Fig. 1B).

There were significant inverse correlations between GA and granulocyte percentage on both postnatal days in preterm infants (day 14, $r^2 = 0.0837$, p = 0.0049; day 28, $r^2 = 0.1173$, p = 0.0016) (Fig. 2A). GA was also significantly, but positively, associated with the percentage of the sum of all lymphoid subpopulations (CD4 + T, CD8 + T, B cell, NK) on both postnatal days (day 14 $r^2 = 0.2193$, p = 1.0E-04; day 28, $r^2 = 0.1566$, p = 2.0E-04) (Fig. 2A). An increased percentage of granulocytes and a suppressed percentage of lymphocytes was observed in BPD infants relative to nonBPD infants (Fig. 2A). The neutrophil (granulocyte)-lymphocyte ratio (NLR), reported to be an early predictor of BPD^{26,27}, was significantly higher in BPD compared to nonBPD on all neonatal days (Fig. 2B). Examining NLR, we found significant correlations with NICU O₂ days and GA (Fig. 2C). NLRs were lowered by

Figure 1. DNA methylation-based estimation of blood cell type composition in preterm infants. (**A**) Seven cell-type distributions in preterm infants with bronchopulmonary dysplasia (BPD) development or without (nonBPD) were estimated by DNA methylation profiles of cord blood and peripheral blood on postnatal days 14 and 28. Individual cell type data is in Additional file: Table S1. Mean \pm S.E.M. presented. **p* < 0.05 vs. time-matched nonBPD. (**B**) Blood cell type distribution of all preterm infants by gestational age quintile (Q). *CD4T* CD4 + T cells, *CD8T* CD8 + T cells, *NK* natural killer cells, *Mono* monocytes, *Gran* granulocytes, *NRBC* nucleated red blood cell. n = 107 in cord blood (93 nonBPD, 14 BPD). n = 93 on day 14 (81 nonBPD, 12 BPD). n = 82 on day 28 (71 nonBPD, 11 BPD).

Figure 2. Association between granulocytes, lymphocytes, and gestational age (GA) in preterm neonates diagnosed with bronchopulmonary dysplasia (BPD) or without (nonBPD). (**A**) Significant correlations between GA and peripheral blood granulocyte, or total lymphocyte, depicted by disease status and oxygen (O₂) exposure days in neonatal intensive care unit (NICU). (**B**) Significantly elevated neutrophil (granulocyte)-lymphocyte ratio (NLR) in BPD compared to nonBPD in cord blood and peripheral blood on postnatal days 14 and 28. *, p < 0.05 vs. time-matched nonBPD. Individual data with mean ± S.E.M. presented. n = 107 in cord blood (93 nonBPD, 14 BPD). n = 93 in day 14 (81 nonBPD, 12 BPD). n = 82 in day 28 (71 nonBPD, 11 BPD). (**C**) Higher NLR was also associated with prolonged NICU O₂ days and shorter GA on day 14 and postnatal day 28 (Additional file 2: Fig. S1 A, B).

day 28 (Fig. 2B) while the significant positive correlation to NICU O_2 days persisted (Additional file 2: Fig. S1). Overall we observed that higher NLR was correlated with lower GA, longer O_2 supplementation, and associated with development of BPD.

To further explore differences in cell-type proportions, particularly shifts among lymphocyte subtypes from naïve to memory, we utilized the 12 cell-type model of Salas et al.²⁸. While this model does not include NRBCs and cannot distinguish NRBCs from myeloid lineage cell types, it estimates naïve and memory composition of B cells, CD4 T cells and CD8 T cells. BPD infants showed significant increases in memory B cells at both day 14 and day 28 (p < 0.01, Additional file 2: Table S2), significant decreases in CD4 and CD8 naïve cell types at day 14 (p < 0.05). This model also indicated a highly significant increase in NLR for BPD infants at both day 14 and day 28 (p < 0.01).

Cord blood genes differentially expressed in BPD and comparison with EWAS. RNA-seq was carried out on cord blood RNA, and DESeq2 analysis adjustment for nine covariates (GA, BW, sex, and six cell-type percentages of CD4+T, CD8+T, B cell, granulocyte, monocyte, and NRBC) determined DEGs in BPD infants (471 genes at p < 0.01; 1685 genes at p < 0.05) (Table 2; Additional file 1: Table S3; Additional file 2: Fig. S2A). Pathway analysis indicated that 471 DEGs were predominantly involved in the inhibition of lymphopoiesis, T cell receptor signaling and Th1/Th2 pathways, and adaptive immune response (e.g., CD27, CD79B, ICOS, IL18R1, LCK, STAT4) (Fig. 3A; Table 2; Additional file 1: Table S4), consistent with the decreased T and B cell quantity in BPD infants as depicted in Fig. 1A. The observation of the decreased pyroptosis pathway (e.g., CASP9, GZMA), activated antiviral response and interferon (IFN) signaling (e.g., IFIM3, SOCS1, TLR4) and mitotic cell cycle (e.g., BORA, RAD51, SPC25) (Fig. 3A; Additional file 1: Table S4) coordinately indicated inflammatory cell proliferation against infection, agreeing with the increased NLR found in BPD infants (shown in Fig. 2B). These and other pathways including development and respiratory disorders showed similar enrichment in the cord blood BPD-EWAS CpGs²². Parallel analysis of epigenome and transcriptome pathways in cord blood cells suggests an epigenetic modulation of the T cell autocrine lymphokine $IL-2^{29}$, which could be an upstream event to manage transcriptional changes for T cell clonal expansion and growth, leukocyte activation, and IL-18 stimulation for IFN production and NK cell cytotoxicity (Fig. 3B). The 134 genes in common between BPD-CpGs and BPD-DEGs (e.g., CCL5, HLA-DQA2, IL18RAP, LCK, SELP) may play key roles in granulocyte inflammation and innate and adaptive immune responses (Additional file 1: Table S3; Additional file 2: Fig. S2B). Lung alveolarization- and BPD-associated SPOCK2^{7,30} and AGER encoding receptor for advanced glycosylation end-product (RAGE)^{31,32} were also elucidated in both analyses. Many of the overlapping genes showed reciprocal changes in methylation and gene expression differences indicating epigenetic regulation of their transcription.

BPD-associated CpGs and DEGs in peripheral blood cells on postnatal day 14. Robust linear regression analysis with adjustment for 10 covariates (GA, BW, sex, seven cell-type %) identified 153 BPD-associated CpGs at genome-wide significance level (Bonferroni or BF, p < 6.32E-08) and 2871 CpGs at FDR1% (Fig. 4A). More CpGs (76–82%) were hypomethylated in BPD than in nonBPD infants (Additional file 2: Fig. S3A). The 153 BF BPD-CpGs were annotated to a total of 225 nearby genes (Table 3; Additional file 1: Table S5).

DESeq2 analysis with adjustment for nine covariates (GA, BW, sex, cell-type % of CD4 + T, CD8 + T, B cell, NK, granulocyte, and monocyte) determined DEGs (731 genes at p < 0.01) in peripheral blood RNA of BPD samples on day 14 (Table 4; Additional file 1: Table S6). Hierarchical clustering analysis of 731 DEGs demonstrated more genes (453/731) were overexpressed in BPD than in nonBPD infants (Fig. 4B; Additional file 2: Fig. S3A,B), which suggested potential demethylation-mediated transcriptional activation.

Differentially methylated CpG-annotated genes were mainly enriched in organ and cellular development and morphology signaling (e.g., GNA12, NCOA1, PDGFA, MYH10), telomere length and cellular senescence (e.g., CDK6, TERT, TNKS), neutrophilic inflammation and immune responses (e.g., ADAM8, CD55, IFNA1, ITGAM, MMP8, PIN1) and oxidative stress (e.g., ALDH3B1, GGT1) (Fig. 4C; Additional file 1: Table S7). Transcriptome changes in infants who developed BPD included genes involved in chromosome segregation and DNA repair (e.g., AURKB, BRCA2, CCNA2, H4C13) potentially inhibiting cell cycle progression and directing cells toward apoptosis or DNA damage repair (Fig. 4C; Additional file 1: Table S7). In BPD infants, there may be decreased proliferation of lymphocytes and reduced T cell-mediated immune responses (e.g., CD2, IL15RA, JAK1, TNFSF8). In addition, enrichment in pathways for IFN signaling and cytokine 'storm' (e.g., IFI6, IFITM1, IL1RN, MYD88, LCK), antioxidant response regulated by nuclear factor erythroid 2-related factor 2/glutathione redox (e.g., CHST12, GCLM, GSR, NFE2L2, SOD1), and mitochondrial dysfunction (e.g., ACO1, COX7B, NDUFS4) indicated severe oxidative stress and inflammation in infants who developed BPD. The group of genes that overlapped between epigenome and transcriptome on day 14 (85 genes with FDR 1% epigenome changes, Table S7) showed enrichment in altered T cell development, T cell-mediated immune responses, and inflammation/oxidative stressmediated cellular senescence (Additional file 2: Fig. S3C). These pathway analysis results were consistent with the reduced lymphocyte percentage, increased granulocyte percentage and the increased NLR in BPD infants on day 14 (shown in Fig. 2A,B).

BPD-associated CpGs and DEGs in peripheral blood cells on postnatal day 28. BPD diagnosis was associated with 116 CpGs at BF (2299 CpGs at FDR 1% cut-off) on day 28 (Fig. 5A; Table 3; Additional file 1: Table S8) and DNA hypomethylation (demethylation of ~80% of CpGs) was evident in infants who developed BPD, similarly to the result on day 14 (Additional file 2: Fig. S4A). Pathways of the BPD-CpG-annotated genes were similar to those seen on day 14 and tissue morphology, neuron and body development, and cellular assembly (e.g., *CACNB2, CHD7, FGF8, HOXB6, PAX2*) were noted (Fig. 5B; Additional file 1: Table S9). In addition,

Functions and Pathways	Gene	p	FC	Description
	BCL2	2.80E-03	- 1.90	BCL2 apoptosis regulator
	CCR7	1.68E-02	- 1.83	C–C motif chemokine receptor 7
	CD247	3.43E-02	- 1.54	CD247 molecule
	CD27	5.80E-03	- 1.93	CD27 molecule
	CD28	2.73E-02	- 1.63	CD28 molecule
	CD79B	1.80E-02	- 1.95	CD79b molecule
	HLA-DOA2†	1.82E-02	- 3.03	Major histocompatibility complex, class II, DO alpha 2
	ICOS	9.42E-03	- 1.81	Inducible T cell costimulator
	IGLV2-14	1.24E-02	- 2.25	Immunoglobulin lambda variable 2–14
Immunity	IL18R1*	3.61E-05	- 3.35	Interleukin 18 receptor 1
· ·	IL18RAP [†]	4.08E-03	- 1.97	Interleukin 18 receptor accessory protein
	IL21R	1.80E-02	- 2.34	Interleukin 1 receptor type 2
	LCK^{\dagger}	7.30E-03	- 1.83	LCK proto-oncogene, Src family tyrosine kinase
	PGLYRP2	2.31E-02	8.32	Peptidoglycan recognition protein 2
	RAG2	1.56E-02	8.96	Recombination activating 2
	STAT4	5.13E-03	- 1.88	Signal transducer and activator of transcription 4
	TRBI1-1	1.52E-02	- 4.72	T cell receptor beta joining 1–1
	TRAV16	7 99E-03	- 3 93	T cell receptor alpha variable 16
	ZAP70	1.05E-02	- 1.93	Zeta chain of T cell receptor associated protein kinase 70
	CD83	7.56E-03	1.55	CD83 molecule
	CXCL8	4.02E-02	3.96	C-X-C motif chemokine ligand 8
	GRP3	6.74E_03	- 1.93	Guanylate hinding protein 3
	IEITM3 [†]	1.91E_02	- 1.90	Interferon induced transmembrane protein 3
	ITCA6	3.32E_02	- 1.64	Integrin subunit alpha 6
immune-mediated inflammation, leukocyte migration, interferon signaling	MADKO	3.50E_02	1 /3	Mitogen activated protein kinase 9
	SEL DÍ	3.39E-02	- 2 21	Selectin D
	SOCS1	1.23E_02	- 2.21	Suppressor of cytokine signaling 1
	TI PA	1.25E-02	- 1.80	Toll like recentor 4
	TNIESEO	4.05E 04	- 1.09	TNE superfamily member 9
	ALIDVD	1.99E-04	- 2.14	Aurora kinaca P
	RORAX	1.00E-02	1.05	PODA aurora kinase A activator
	CDC48	2.11E-00	2.21	Call division cycle acception d
	MVI67	3.11E-04	1.62	Marker of proliferation Vi 67
Mitosis, chromosome segregation, DNA repair	DAD51*	1.00E-02	2.00	PADE1 recerchinger
	RADSI ⁺	2.00E-05	3.00	RAD51 recombinase
	TOP24	1.45E-02	2.70	DNA ten sigemented III aleba
	WEE1 [†]	3.70E-03	1.47	WEELC2 checkmoint kingee
	CASPO	2.00E-02	1.41	
Call death mirronteeis	CASF	4.72E 02	1.55	Casdarmin D
Cen death, pyropiosis	GSDMD	4.73E-02	- 1.49	Gasdermin D
	GZMA ⁺	2.20E-03	- 1.8/	A duran and alumentation and anneductomocific meanter
Despiratory disorders	AGER	2.55E-02	1.54	Advanced glycosylation end-product specific receptor
Respiratory disorders	LIPC 1*	1.42E 05	3.33	Lamoolohin automicrobiai peptide
	ANCETO	1.45E-05	- 47.85	
	ANGP12	2.89E-02	5.40	Angiopoletin 2
	GDC2	4.15E-00	1.92	Constraine and a superson of the superson of t
	MMUT*	9.24E-03	- 1.88	Mathylmalonyl CoA mutaco
Growth, angiogenesis		2.00E-05	1.0/	Pannahrain 2
	PCE [†]	3.09E-38	> 1000	rappaysii 2 Placental growth factor
	SDOCK2 [†]	1.90E-02	3.00	Flacental growth lactor SDA DC (optoonoctin) growth and leave like down the method.
	SPOCK2'	2.58E-02	- 1.91	SPARC (osteonectin), cwcv and każał like domains proteoglycan 2
	VEGFA	4.71E-03	2.01	Vascular endothelial growth factor A

Table 2. Differentially expressed cord blood genes in bronchopulmonary dysplasia (BPD). Differentially expressed genes (1685 genes at p < 0.05) between BPD (n = 12) and nonBPD (n = 55) cord blood cells determined by RNA-sequencing. Ingenuity, Reactome, and ToppGene pathway analysis tools determined by enriched ontologies and pathways. *FC* fold difference in BPD vs. nonBPD. Full list of the DEGs and pathways in Additional file: Tables S3 and S4. *Genes significant at false discovery rate 10%. [†]Genes overlapped with those annotated to epigenome-wide association study previously published²².

Figure 3. Bronchopulmonary dysplasia (BPD)-associated cord blood genes, predicted pathways and comparison with cord blood epigenetic changes. (A) A dot plot of highly enriched pathways and gene ontologies (GOs) of differentially expressed cord blood genes (471 genes at p < 0.01) in BPD (n = 12) compared to nonBPD $(n = 55, \ge 1 \text{ day oxygen-exposure in newborn intensive care unit})$ determined by RNA sequencing analysis (RNA-Seq) with adjustment for covariates (6 cell-type %, sex, gestational age, birth weight). Top-ranked pathways of cord blood epigenome-wide association analysis (EWAS) for BPD (386 genes annotated to 275 CpGs) were retrieved from a previous publication²². Circle size and number represent adjusted -Log₁₀ p values of pathways/GOs. Circle color indicates activation z-score trend. Details of pathway analysis are in Additional file: Table S4. (B) Ingenuity pathway analysis (IPA) demonstrates that interleukin 2 (IL-2) may be an essential upstream molecule disturbing epigenomes and transcriptomes involved in blood cell development and activity during BPD pathogenesis. Sirt1 sirtuin 1, TREX1 three prime repair exonuclease 1, IRF2 interferon regulatory factor 2, RNASEH2B ribonuclease H2 subunit B, TNF tumor necrosis factor, ZBTB16 zinc finger and BTB domain containing 16, TCF3 transcription factor 3, NFATC2 nuclear factor of activated T cells 2, STAT4 signal transducer and activator of transcription 4, CREBBP CREB binding protein, NFKB nuclear factor kappa-lightchain-enhancer of activated B cells, PPARG peroxisome proliferator activated receptor gamma, KLRF killer cell lectin like receptor F1, IL18R1 IL-18 receptor 1, ICOS inducible T cell costimulatory, PSMB10 Proteasome 20S Subunit Beta 10, IFNGR1 interferon gamma receptor 1, TLR2 toll-like receptor 2.

.....

BPD-CpG annotated genes observed on day 28 (Fig. 5B) were involved in immune and inflammatory events, including activation of immune and inflammatory cells, phagosome formation, infection, and platelet development (e.g., *FCGR2A*, *GPR55*, *IGKV1-37*, *NFIB*, *TNFSF8*), nucleotide metabolism (e.g., *ADARB2*, *NME6*), cholesterol metabolism (e.g., *CYP27A1*, *MBTBS1*), and oxidative stress (e.g., *ALOX12*, *MAFF*, *NXN*).

BPD-DEGs on day 28 included 312 genes (*p* < 0.05) (Table 4; Additional file 1: Table S10; Additional file 2: Fig. S4B). Enriched pathways of DEGs on day 28 were similar to those on day 14 such as chromosome segregation and DNA damage (e.g., *BLM*, *CHEK1*), activation of phagocytosis and degranulation (e.g., *GNLY*, *MPO*, *LTF*), leukocyte activation and immune response (e.g., *IL23A*, *PIK3R3*, *RAG1*, *TRDC*), neurological disorder (e.g., *ATP6V1A*, *DUSP*), and lipid metabolism (e.g., *ACACA*, *SCD*) (Fig. 5B; Additional file 1: Table S9). The epigenome-transcriptome common 30 genes on day 28 were also enriched in these pathways (Additional file 2: Fig. S4C), indicating the transcriptome changes are parallel with epigenome changes on day 28 in infants who are developing BPD. Overall, this indicated that altered leukocyte activation and antimicrobial response, DNA damage and nucleotide metabolism, lipid metabolism, and angiogenesis and other growth-related events continue on day 28 in premature infants who went on to develop BPD.

NICU O₂ therapy-associated CpGs and DEGs in peripheral blood cells on postnatal day 14. To assess the epigenetic and transcriptomic response to NICU O₂ supplementation in prematurity without regard to disease processes, we examined these endpoints on postnatal day 14 in nonBPD infants exposed to O₂ for \geq 14 days (High-O₂), and compared them to nonBPD infants who were never exposed to O₂ (No-O₂). EWAS (n = 20 for High-O₂, n = 28 for No-O₂) determined 346 differentially methylated loci at FDR 1%, which varied up

to 7.5% methylation difference and were annotated to 529 genes (Table 5; Additional file 1: Table S11; Additional file 2: Fig. S5A). RNA-Seq (n = 18 for High-O₂, n = 15 for No-O₂) determined 513 DEGs at FDR 1% (1480 DEGs at FDR 5%) with the greatest fold changes observed in mitochondria-encoded mitochondrial genes (Table 5; Additional file 1: Table S12). About 61% of DEGs (314/513) were markedly downregulated by O₂ exposure (Fig. 6A). High-O₂ infants had relatively higher NLR (Fig. 6A) and smaller GA and BW compared to No-O₂ infants. In addition, more males (10/15, 67%) required prolonged O₂ treatment than females (8/18, 44%).

Transcriptome differences in the blood of O₂ supplemented neonates strongly pointed to the inhibition of mitochondrial function and morphology including oxidative phosphorylation (e.g., *MT-ATP6*, *MT-CO2*, *MT-ND5*, *MT-CYB*, *LRPPRC*) (Fig. 6B). O₂-dependent DEGs were also involved in neuronal development and mental retardation (e.g. *CREBBP*, *ROCK1*, *CUL3*), growth retardation (e.g. *HHEX*, *MT-ND4*, *NCOA6*, *NCOR2*), lymphopoiesis (e.g. *BCOR*, *GPR183*, *RASGRP4*), neutrophilic inflammation (e.g., *MOSPD2*, *DOK3*, *OSCAR*), and DNA damage and repair (e.g., *BAX*, *BRD4*, *LIG1*) (Additional file 2: Fig. S5B). O₂-altered methylome was predicted to affect cellular organization, neuron and organ development (e.g., *MME*, *NCOR1*, *NGF*, *PDLIM7*, *RPL24*, *TRIO*), and lymphoid organ and lymphocyte differentiation (e.g., *HLA-DQB1*, *RAG1*, *TYK2*) (Additional file 2: Fig. S5B).

Comparison of epigenomic and transcriptomic pathways influenced by O_2 supplementation showed similarities in neuron and tissue development signaling pathways (e.g., TGF- β , NGF, ID-1), cellular assembly, xenobiotic metabolism, cellular senescence, reactive oxygen species production, cell and organ death, and inflammation and infection (Fig. 6C). The pathway activation z-scores of the methylation changes were, in general, inversely related to those of gene expression changes in these functions.

Discussion

This study analyzed DNA methylation and gene expression profiles of cord and venous blood during the 1st month after premature birth and reported on numerous molecular and cellular differences observed in neonates later diagnosed with BPD (summary in Fig. 7). We observed that GA was significantly correlated with decreased proportions of lymphocytes and increased proportions of granulocytes in both cord and peripheral blood. These changes were also reflected in the NLR, particularly in the extremely preterm neonates, including the infants who ultimately developed BPD. NLR is easily assessed by standard blood count methods and the NLR in the first weeks of life could indicate babies at high risk for later developing BPD as has been suggested²⁷. The present findings are consistent with this notion as we observed greater NLR in BPD babies at each of the time points studied.

The NLR is likely to be driven by inflammation, and both systemic and lung inflammation by antenatal infection, chorioamnionitis (e.g., rubella, *Ureaplasma* species), and postnatal sepsis (e.g., *E. coli*, group B streptococcus) have been reported to increase BPD risk³³⁻³⁵. The NLR and the pathway enrichment in: interferon signaling (cord blood and day 14 methylome and transcriptome); neutrophil degranulation (day 14 methylome, day 28 transcriptome), hyper-cytokinemia (day 14 transcriptome); complement system activation (day 14 methylome); and phagocytosis (day 28 methylome and transcriptome), collectively suggested microbial infection, neutrophilic inflammation, and altered innate immune responses in infants who developed BPD. Key genes in the innate immune response that were differentially expressed or methylated included *GNLY* and granzyme (*GZMA*), the antimicrobial peptides from killer lymphocyte granules causing microptosis³⁶. In addition, antimicrobial lactoferrin (*LTF*), neutrophilic myeloperoxidase (*MPO*), anti-streptococcus *AGER* and cathepsin D (*CTSD*), interferon alpha 1 (*IFNA1*), interferon induced transmembrane proteins (*IFITM1*, *IFITM3*), and the negative regulator of interferon response (*NPIR*) are likely to be important players in innate immune modulation of BPD pathogenesis. This is consistent with our observation of a higher frequency of infection in the BPD infants (Table 1), including sepsis and pneumonia (Additional file 1: Table S1), and also with an adaptive immune response as indicated by apparent shifts from naïve to memory among B cells, CD4 T cells and CD8 T cells (Additional file 1: Table S2).

Consistent with the lowered percentages of lymphocytes (CD4 + T, CD8 + T, B cells) in BPD compared to nonBPD infants, EWAS and RNA-seq coordinately suggested suppressed T cell immunity in BPD infants (Fig. 7). Mucosal immune imbalance due to lymphocyte insufficiency may mediate respiratory infection and inflammation, and play a role in lung damage and aberrant development. O2-induced DNA damage and cell cycle arrest during the neonatal period (Figs. 4C; 5B) may also contribute to decreased lymphopoiesis in BPD. Immune cell senescence due to oxidative stress and telomere shortening was also suggested by telomere-related epigenetic (e.g., TERT, TNKS) or transcriptomic (e.g., PINX1, TERF2) changes in BPD cases on day 14. In cord blood, epigenetic inhibition of IL-2 may affect downstream transcriptomics leading to improper lymphocyte differentiation and activation in BPD (Fig. 3B). IL-2 from CD4 + T and CD8 + T cells is a powerful modulator of T cell growth, leukocyte activation, and IL-18 stimulation of IFN production and NK cell cytotoxicity²⁹. Downregulation of immune surface marker genes related to T cell maintenance and T and B cell activation (e.g., CD28, CD27, CD7, CD79B, CD83) in cord and/or peripheral blood further supports skewed B and T cell immunity in preterm infants who developed BPD. In addition, decreased expression of tumor necrosis factor superfamily member 8 (TNFSF8) encoding CD153, one of the 7 BPD-DEGs in common to all timepoints, suggested interruption of T cell-dependent anti-mycobacterial immune response³⁷ and also class switch DNA recombination and immunoglobulin production³⁸ in BPD pathogenesis. T cell inadequacy has been suggested as an immunological clue for BPD prediction. For example, a downregulation of T cell receptor signaling was reported in postnatal blood (5-28 days) from preterm BPD babies^{14,19}. Scheible et al.³⁹ reported that premature infants had a lowered level of CD31+CD4+T cells on discharge and showed increased risk for respiratory complications at 1 year of age compared to full-term babies^{37,38}.

In addition to the immunological biomarkers, we also observed development- and alveolarization-related epigenetic and transcriptomic markers in cord blood of infants who developed BPD^{30,31,40}. Concurrently with BPD epigenome data²², we identified *SPOCK2* and *AGER* among the BPD-DEGs in cord blood. *SPOCK2*, a BPD

◄ Figure 4. Epigenome-wide association study (EWAS) and genome-wide gene expression analysis for bronchopulmonary dysplasia (BPD) development in blood cells from premature infants on postnatal day 14. (A) A Manhattan plot displays BPD-associated CpGs on day 14 by comparison of BPD (n = 12) and nonBPD (n = 53) exposed to ≥ 1 day of oxygen (O_2) in the neonatal intensive care unit (NICU) with adjustment for covariates [seven cell type %, sex, gestational age (GA), birth weight (BW)]. Robust linear regression model elucidated 153 CpGs with Bonferroni correction (p < 6.32E-08, red line) and 2871 CpGs at false discovery rate (FDR) 1% (blue dotted line). (B) Heat map depicts hierarchical clustering of differentially expressed 233 genes in BPD (FDR 10%) with adjustment for six cell type %, sex, GA, and BW determined by RNA sequencing (RNA-Seq, 12 BPD, 33 nonBPD-O₂). Down-regulated and up-regulated genes in BPD relative to nonBPD are in blue and orange, respectively. NICU O2 days, neutrophil-Jymphocyte ratio (NLR), nucleated red blood cell (NRBC) %, GA, and BW (color intensity = scale) as well as sex (red=male, blue=female) are labeled for each sample. Samples by row and genes by column. Heatmap created using Partek Flow (Partek Inc., Chesterfield, MO; https://www.partek.com/partek-flow/). (C) Top-ranked pathways and gene ontologies of BPD-associated genes and BPD CpG-annotated genes demonstrate similar or unique molecular events in transcriptome and epigenome. Circle size and label indicate $-\log_{10} p$ values (EWAS) or $-\log_{10} adjusted p$ values (RNA-Seq). Details of the pathways analysis are in Additional file: Table S7.

susceptibility gene identified from GWAS^{7,30,31}, was reported to be deleterious in BPD development as its overexpression in the lung altered neonatal mouse lung alveolarization and exacerbated hyperoxia-caused alveolar simplification while anti-SPOCK2 antibody treatment in mice improved it^{7,30}. AGER is a type 1 alveolar cell differentiation marker³¹ and prenatal exposure to nicotine in mice arrested alveolarization and upregulated the AGER signaling pathway⁴¹. In addition, *Ager* knock-in mice were generated to study alveolar development and type 1 cell turnover during injury and repair⁴².

A unique aspect of this study was the opportunity to examine the in vivo response of blood cells to O_2 therapy among nonBPD infants. Comparing preterm infants who received at least 14 days of NICU O₂ supplementation with those who never received O₂ therapy, we observed a dramatic downregulation of a large set of mitochondriarelated genes, either mitochondrial DNA-encoded (e.g., MT-ND5, MT-CYB, MT-CO2, MT-ATP6) or nuclear DNA-encoded (e.g., CPT1A, LRPPRC, SLC25A24, UCP2). Relative to those who never received O₂ therapy, this down-regulation also occurred in BPD neonates. These genes are involved in mitochondrial DNA-related diseases such as mitochondrial leukoencephalopathy, mitochondrial myopathy, ventricular preexcitation, optic and retinal disorders, and type I diabetes (Additional file 2: Fig. S5B). Other downregulated genes (e.g., BAX, HTT, IGF1R, OGDH, TGFB1) have also been associated with mitochondrial morphology and permeability. Consistent with our observation, Das et al.⁴³ reported that hyperoxia exposure reduced mitochondrial oxidative phosphorylation complex (I and II) activity in lung epithelial cells. In addition, inhibition of mitochondrial respiration caused arrested alveolarization of neonatal mice⁴⁴, indicating mitochondrial biogenesis is critical in lung maturation. In addition, it has been reported that vascular endothelial mitochondrial function is associated with BPD⁴⁵. We observed mitochondrial gene dysregulation and predicted functional abnormality in blood cells at day 14 of O₂ therapy in both BPD and nonBPD neonates relative to neonates with no O₂ therapy. While down-regulated mitochondrial biogenesis was observed among neonates with O_2 therapy and may be caused by this treatment, it is possible the mitochondrial effects are reflecting the infant's poor blood O2 saturation in the neonatal period, rather than a response to treatment. Overall, mitochondrial dysfunction may be one of the underlying mechanisms driving BPD in susceptible infants. However, while nonBPD neonates are able to respond and recover from this exposure, the neonates who develop BPD continue to need O_2 therapy for many weeks to maintain optimal blood O₂ saturation levels. It suggests that additional susceptibility factors such as genetic influences or prenatal conditions that lead to a deficit in the response to O₂ therapy are likely to be involved⁴⁵.

Optimal O_2 supplementation in the NICU is essential to reduce the risk of respiratory mortality and other morbidities. However, in addition to BPD, preterm babies who require prolonged O_2 treatment often develop neurological disorders, such as cognitive deficits in the absence of apparent brain injury, and are at higher risk of morbidities including retinopathy of prematurity (ROP) and cardiac disorders^{46,47}. Mitochondrial dysfunction due to oxidative stress is associated with adult neurodegenerative disorders⁴⁸ and cardiovascular toxicity⁴⁹, and has been proposed as a mechanism in preterm morbidities⁵⁰. Our observation of O_2 treatment-induced mitochondrial effects in blood cells supports this idea.

Conclusions

The small size of the examined cohort and the low incidence of BPD in this study limited the statistical power for many comparisons and therefore, any conclusions should be interpreted with caution. However, despite these limitations, epigenomic and transcriptomic profiling of blood from preterm infants receiving O_2 supplementation revealed time-dependent immunopathological events in the early weeks of life before they were diagnosed with BPD. Altered methylation and dysregulated transcription presumably have affected neutrophil and lymphocyte proportions, T cell and adaptive immune responses, inflammation and phagocytosis, cellular assembly, and repair of DNA damage in premature neonates. Prolonged O_2 treatment highly suppressed mitochondrial gene expression, which may be driving lung pathology and be implicated in a variety of neuronal and optical disorders of prematurity. These molecular and cellular outcomes such as NLR may be predictors of BPD susceptibility and should be followed up in larger studies of BPD. Similarity of pathways and overlapping genes between two genomic networks suggested interplay between epigenetics and transcriptomics in BPD pathogenesis. These results provided insights into mechanisms of BPD and warrant further investigation into the clinical relevance of blood methylomic and transcriptomic markers of BPD risk.

Postnatal day 14					Postnatal day 28						
CpG	FDR	dMeth	Chr	hg38 position	Associated genes	CpG	FDR	dMeth	Chr	hg38 position	Associated genes
cg05277165	3.71E-09	- 0.077	7	94656502	PEG10 SGCE	cg16039979	9.80E-08	0.044	1	2203919	LOC105378593 FAAP20
cg09655876	2.94E-08	- 0.016	6	161140034	AGPAT4 AGPAT4-IT1	cg19981215	9.80E-08	0.031	11	7222869	RP11-324J3.1 MIR302E
cg00021325	2.94E-08	- 0.050	14	90828068	LINC02321	cg26472973	9.80E-08	- 0.0069	7	158140989	PTPRN2 LOC105375613
cg23664662*	1.63E-07	0.093	2	89298788	IGKV1-37 LOC107985910	cg11072045	6.79E-07	- 0.017	1	28368910	PHACTR4
cg25273767	1.63E-07	- 0.083	4	151032422	LRBA	cg25720930	1.06E-06	- 0.062	19	47728849	EHD2
cg25178519	1.63E-07	- 0.031	12	80706526	LOC105369867 MYF6	cg05185749	2.64E-06	0.089	9	114930479	TNFSF8
cg06544061	4.86E-07	- 0.056	7	2436788	CHST12	cg14002520	4.87E-06	0.034	1	31834669	SPOCD1
cg23205276	6.74E-07	- 0.023	1	14943739	KAZN	cg23664662*	7.12E-06	0.076	2	89298788	IGKV1-37 LOC107985910
cg18268553	1.13E-06	0.017	1	229420410	ACTA1	cg02934888	8.64E-06	- 0.101	3	186458585	LINC02051 LINC02052
cg25391562	1.71E-06	- 0.024	5	90511179	LYSMD3 POLR3G	cg05469706	8.64E-06	- 0.008	7	153411557	LINC01287
cg00825168	1.88E-06	- 0.046	1	201496649	CSRP1	cg16983486	8.64E-06	- 0.038	11	8832697	DENND2B
cg15408512	1.90E-06	0.090	10	133291983	TUBGCP2 ADAM8	cg20363171	1.15E-05	0.025	19	9846868	PIN1 OLFM2
cg05308829	2.86E-06	- 0.036	7	2815991	GNA12	cg24523147	2.36E-05	- 0.121	10	100661310	PAX2
cg20521882	3.11E-06	- 0.029	11	34175322	ABTB2 LOC102723539	cg21546377	3.53E-05	- 0.027	2	41717608	RP11-459K11.1 LOC105374506
cg04718322	3.32E-06	- 0.055	16	31324491	ITGAM ITGAX	cg01508428	3.53E-05	- 0.010	20	31587655	HM13-AS1
cg17568192	3.35E-06	- 0.066	10	96703744	PIK3AP1	cg25830660	3.53E-05	- 0.024	3	197299225	DLG DLG1-AS1
cg04545015	6.26E-06	- 0.015	1	36100425	COL8A2 ADPRS	cg05031301	3.53E-05	- 0.028	6	144675849	UTRN
cg11886100	9.41E-06	- 0.066	17	65244481	RGS9	cg16183924	4.92E-05	- 0.033	22	38200455	MAFF
cg04912784	9.41E-06	- 0.037	1	166907963	ILDR2 MAEL	cg01872077	6.08E-05	0.018	2	218781649	CYP27A1
cg23077884	9.41E-06	- 0.067	2	156539323	GPD2	cg03565499	6.08E-05	- 0.006	6	89658044	MDN1-AS MDN1 LYRM2
cg03881544	1.14E-05	0.018	4	5710854	EVC EVC2	cg21387752	6.08E-05	- 0.011	17	48602926	HOXB HOXB6 HOXB-AS3
cg22993554	1.15E-05	0.026	8	18840540	PSD3	cg19165344	6.08E-05	- 0.037	22	29389366	RFPL1 AP1B1
cg14761552	1.17E-05	- 0.006	2	190880676	GLS	cg00664416	6.18E-05	- 0.052	1	37795520	MANEAL
cg20610177	1.29E-05	- 0.034	16	482468	RAB11FIP3 LOC105369937	cg03278250	6.75E-05	0.003	22	43400193	LINC01639
cg14634053	1.29E-05	- 0.037	12	101660148	MYBPC1 LOC105369937	cg03263117	7.22E-05	0.006	17	47721401	TBX21
cg14933812	1.69E-05	- 0.050	1	25813614	SELENON MTFR1L	cg19221542	8.86E-05	0.002	12	130160084	FZD10 FZD10-AS1
cg03717503	1.70E-05	- 0.014	16	86700570	RP11-58A18.2 LINC02189	cg14039306	9.35E-05	- 0.027	4	4860513	MSX1
cg03442269	2.94E-05	- 0.107	2	30959195	GALNT14	cg08368948	9.91E-05	- 0.003	12	52655926	KRT2
cg19741032	3.00E-05	0.161	13	114313349	CHAMP1	cg19977004	9.91E-05	- 0.037	11	1461333	LOC105376514 BRSK2
cg05762432	3.25E-05	- 0.125	4	168741927	PALLD	cg05750078	1.5E-04	- 0.031	10	1525551	ADARB2 ADARB2-AS1

Table 3. Top 30 CpGs significantly associated with bronchopulmonary dysplasia (BPD) risk on postnatal days. Selected from a total of 153 CpGs (225 gene annotated) or 116 CpGs (172 genes annotated) significantly different on postnatal day 14 (p < 6.05E-08) or day 28 (p < 6.52E-08), respectively, with Bonferroni correction between BPD or nonBPD treated with any day(s) of oxygen (nonBPD-AnyO₂). Robust linear regression adjusted with 10 covariates (gestational age, sex, birth weight, 7 cell-type %). *dMeth* methylation difference in BPD relative to nonBPD-AnyO₂, *Chr* chromosome, *hg38* human genome assembly GRCh38. Full list of the differentially methylated CPGs at false discovery rate 1% cut-off is in Additional file: Table S5 (day 14; 2871 CpGs annotated to 3801 genes), S8 (day 28; 2299 CpGs annotated to 3173 genes). *Overlap between two postnatal days.

Postnatal Day	Gene	FDR	p	FC	Description	
	NAAA	1.13E-02	9.19E-07	- 1.74	N-acylethanolamine acid amidase	
	PPM1N	2.88E-02	6.47E-06	3.35	Protein phosphatase, Mg2 + /Mn2 + dependent 1N	
	H2AC14	2.88E-02	1.14E-05	3.10	H2A clustered histone 14	
	TNFSF8*	2.88E-02	1.28E-05	- 1.74	TNF superfamily member 8	
	CCNA2	2.88E-02	1.63E-05	2.45	Cyclin A2	
	RRM2	2.88E-02	1.73E-05	2.47	Ribonucleotide reductase regulatory subunit M2	
	WLS	2.88E-02	1.87E-05	- 3.39	Wnt ligand secretion mediator	
	PATJ	3.16E-02	2.31E-05	- 1.89	PATJ crumbs cell polarity complex component	
	FLT1*	3.56E-02	2.89E-05	- 1.82	Fms related receptor tyrosine kinase 1	
	RSAD2	3.68E-02	3.97E-05	6.91	Radical S-adenosyl methionine domain containing 2	
	DBF4B*	3.68E-02	4.12E-05	1.91	DBF4 zinc finger B	
	TUBG1	3.68E-02	4.30E-05	1.96	Tubulin gamma 1	
	CLSPN	3.68E-02	4.93E-05	2.29	Claspin	
Day 14	FAM114A2	3.68E-02	5.20E-05	1.99	Family with sequence similarity 114 member A2	
	ZNF155	3.68E-02	5.50E-05	- 1.73	Zinc finger protein 155	
	POM121	3.68E-02	5.62E-05	1.91	POM121 transmembrane nucleoporin	
	FOXM1	3.68E-02	5.80E-05	2.61	Forkhead box M1	
	CDCA2	3.68E-02	5.98E-05	2.39	Cell division cycle associated 2	
	ENC1	4.11E-02	7.00E-05	- 1.83	Ectodermal-neural cortex 1	
	SPC25	4.39E-02	7.85E-05	3.80	SPC25 component of NDC80 kinetochore complex	
	HBG1	8.28E-02	5.78E-04	39.62	Hemoglobin subunit gamma 1	
	CD28*	8.62E-02	8.59E-04	- 1.74	CD28 molecule	
	IFI6	9.41E-02	1.40E-03	4.71	Interferon alpha inducible protein 6	
	IL15RA	9.41E-02	1.39E-03	2.15	Interleukin 15 receptor subunit alpha	
	IFIT1	1.07E-01	2.36E-03	6.89	Interferon induced protein with tetratricopeptide repeats 1	
	AURKB	1.11E-01	2.99E-03	1.95	Aurora kinase B	
	SLC18A2*	1.11E-01	3.04E-03	- 2.22	Solute carrier family 18 member A2	
	GNLY*	1.17E-02	8.61E-07	3.81	Granulysin	
	МСМ6	1.00E+00	2.10E-04	- 1.75	Minichromosome maintenance complex component 6	
	TRDC	1.00E+00	1.07E-03	1.99	T cell receptor delta constant	
	GRIP1	1.00E+00	1.14E-03	2.31	Glutamate receptor interacting protein 1	
	LTF	1.00E+00	1.65E-03	- 6.90	Lactotransferrin	
	HEBP1	1.00E+00	1.69E-03	3.16	Heme binding protein 1	
	PLA2G4A	1.00E+00	2.39E-03	- 1.81	Phospholipase A2 group IVA	
	TCF19	1.00E+00	2.73E-03	- 1.96	Transcription factor 19	
	PTPN11	1.00E+00	3.00E-03	- 1.40	Protein tyrosine phosphatase non-receptor type 11	
	KNDC1	1.00E+00	3.30E-03	2.41	Kinase non-catalytic C-lobe domain containing 1	
Day 28	MPO	1.00E+00	3.58E-03	- 4.32	Myeloperoxidase	
	ANKRD16	1.00E+00	3.82E-03	1.68	Ankyrin repeat domain 16	
	CEACAM21	1.00E+00	3.85E-03	- 1.75	CEA cell adhesion molecule 21	
	SNORD89	1.00E+00	4.29E-03	2.34	Small nucleolar RNA, C/D box 89	
	CDC6	1.00E+00	4.41E-03	- 2.22	Cell division cycle 6	
	CHEK1	1.00E+00	5.34E-03	- 1.83	Checkpoint kinase 1	
	JUNB	1.00E+00	1.40E-02	1.71	JunB proto-oncogene	
	PRTN3	1.00E+00	1.43E-02	- 4.15	Proteinase 3	
	IL23A	1.00E+00	2.33E-02	1.67	Interleukin 23 subunit alpha	
	RAG1	1.00E+00	3.05E-02	- 2.37	Recombination activating 1	
	RCOR1*	1.00E+00	4.48E-02	- 1.40	REST corepressor 1	

Table 4. Representative differentially expressed genes (DEGs) in peripheral blood cells of preterm infants with bronchopulmonary dysplasia (BPD). A total of 731 DEGs (p < 0.01or 312 DEGs (p < 0.05), 1 DEG at FDR 10%) significantly varied between BPD and nonBPD-exposed to any day(s) of oxygen (O₂) on postnatal days 14 or 28, respectively, determined by RNA-sequencing analysis. *FC* expression difference in BPD vs. nonBPD-AnyO₂. Full lists of the DEGs in Additional file: Tables S6 and S10. *Genes overlapped with those annotated to epigenome-wide association study of the corresponding time.

Not applicable

Figure 5. Epigenome-wide association study (EWAS) and genome-wide gene expression analysis for bronchopulmonary dysplasia (BPD) development in blood cells from premature infants on postnatal day 28. (**A**) A Manhattan plot displays BPD-associated CpGs on day 28 by comparison of BPD (n = 11) and nonBPD (n = 48, \geq 1 day of oxygen (O₂) treated in the newborn intensive care unit) with adjustment for covariates (seven cell types, sex, gestational age, birth weight). Robust linear regression model elucidated 116 CpGs with Bonferroni correction (*p* < 6.46–E08, red line) and 2299 CpGs at FDR 1% (*p* < 3.0E–05, blue line). (**B**) Topranked pathways and gene ontologies of BPD-associated genes and BPD CpG-annotated genes determined by pathway analysis tools depict similar or unique molecular events in transcriptome and epigenome. Circle size and label indicate $-\log_{10} p$ values (adjusted *p* for RNA-Seq). Details of the pathways are in Additional file: Table S9.

Methods

Study cohort. The Discovery-Bronchopulmonary Dysplasia Program (D-BPD) cohort was described in previous publications^{21,22} and much of the methods overlap with the present work. In brief, in the parent study, 378 preterm infants < 1500 g of birth weight in Buenos Aires, Argentina, were recruited within 13 days of life and followed prospectively in the NICU until discharged or 44 weeks of corrected GA^{21,22}. A diagnosis of BPD was made for infants who received at least 28 days of O₂ (>21%) supplementation therapy and need for O₂ (\geq 30%) and/or positive pressure (1) at 36 weeks of PMA or at discharge (whichever comes first) if born < 32 weeks GA or (2) at 28–56 days postnatal age or at discharge (whichever comes first) if born > 32 weeks GA, as defined in Jobe and Bancalari²³. A total of 109 patients (15 BPD, 94 nonBPD) satisfying all study inclusion criteria provided a cord and/or peripheral blood sample for methylation arrays and/or RNA-Seq analysis (Table 1; Additional file 1: Table S1). The study methods were performed in accordance with the relevant guidelines and regulations and the design was approved by each of the local Institutional Review Boards (IRB) in Buenos Aires and at the NIEHS (08-E-N159). Parents provided written informed consent as described elsewhere^{21,22}.

CpG	FDR	dMeth	Chr	hg38 position	Associated genes
cg05355320	8.59E-06	0.042531	19	55059986	RDH13
cg10315128	1.31E-05	0.004523	18	51030261	LOC105372117 SMAD4
cg01772192	2.97E-05	- 0.0629	15	80977761	MESD
cg08975094	5.41E-05	- 0.00325	16	89922880	MC1R TUBB3
cg01071808	6.09E-05	0.031849	21	10521563	TPTE BAGE2
cg24525563	6.76E-05	0.028264	7	32961715	FKBP9
cg15612682	8.22E-05	- 0.0032	12	123602356	TMED2 DDX55
cg17172683	8.22E-05	0.048487	2	132586045	GPR39 LOC105373623
cg01917080	8.61E-05	- 0.04708	12	1663338	MIR3649
cg02256969	1.41E-04	- 0.01706	16	2858244	PRSS22
cg15152208	1.47E-04	- 0.03727	21	32475600	EVA1C
cg15893057	2.70E-04	0.003187	4	140282044	SCOC-AS1 SCOC
cg17306740	3.36E-04	0.02259	20	57620378	ZBP1
cg04428115	3.36E-04	- 0.02107	12	131002449	ADGRD1
cg00171275	3.36E-04	0.01405	18	59909068	PMAIP1
cg16951654	3.36E-04	- 0.00452	6	32839564	PSMB8 TAP2 PSMB8-AS1
cg10192836	3.36E-04	- 0.00615	1	19882143	LOC105376823 OTUD3
cg08601917	3.36E-04	0.007117	16	66604493	CMTM4 CMTM3
cg24831541	3.36E-04	0.024357	17	4709750	ARRB2 PELP1-DT
cg25922935	3.47E-04	- 0.05769	3	157029702	LEKR1 LINC02029
cg23220346	3.61E-04	0.007405	3	35744538	ARPP21 MIR128-2
cg17849972	4.19E-04	0.011417	1	203085848	MYOPARR MYOG
Gene	FDR	FC	Description		
MT-ND5	2.23E-07	- 48.76	NADH dehydrogenase subunit 5		
МТ-СҮВ	2.63E-07	- 23.50	Cytochrome b		
MT-ND1	2.63E-07	- 32.56	NADH dehydrogenase subunit 1		
TPP1	1.09E-06	- 3.72	Tripeptidyl peptidase 1		
MT-ND4	1.66E-06	- 22.21	NADH dehydrogenase subunit 4		
MT-ND2	2.00E-06	- 27.95	NADH dehydrogenase subunit 2		
MT-ATP6	2.17E-06	- 17.26	ATP synthase F0 subunit 6		
RNF26	4.22E-06	- 3.03	Ring finger protein 26		
OSBPL8	4.22E-06	2.17	Oxysterol binding protein like 8		
PRKACB	1.62E-05	2.79	Protein kinase cAMP-activated catalytic subunit beta		
MT-ND4L	1.76E-05	- 13.85	NADH dehydrogenase subunit 4L		
MT-CO2	2.21E-05	- 7.15	Cytochrome c oxidase subunit II		
MPIG6B*	4.78E-05	- 8.13	Megakaryocyte and platelet inhibitory receptor G6b		
CMTR2	4.78E-05	2.40	Cap methyltransferase 2		
PPDPF	5.27E-05	- 5.59	Pancreatic progenitor cell differentiation and proliferation factor		
FAM189B	7.16E-05	- 4.51	Family with sequence similarity 189 member B		
ZNF385A	8.45E-05	- 5.91	Zinc finger protein 385A		
PCBP1	8.62E-05	- 2.62	Poly(rC) binding protein 1		
MT-ND3	8.62E-05	- 6.82	NADH dehydrogenase subunit 3		
CTDNEP1	9.08E-05	- 4.11	CTD nuclear envelope phosphatase 1		
SYVN1	9.60E-05	- 2.31	Synoviolin 1		
ZNF91	1.25E-04	2.41	Zinc finger protein 91		
GP1BA	1.26E-04	- 5.31	Glycoprotein Ib platelet subunit alpha		
MT-CO1	1.26E-04	- 4.45	Cytochrome c oxidase subunit I		
PLBD2	1.63E-04	- 3.11	Phospholipase B domain containing 2		

Table 5. Representative differentially methylated CpGs and differentially expressed genes (DEGs) associated with prolonged oxygen (O_2) exposure on postnatal day 14. Differentially methylated CpGs (346 at false discovery rate (FDR) 1% cut-off) and DEGs (513 genes at FDR 1%, 1480 genes at FDR 5%) between nonBPD-exposed to prolonged O_2 (\geq 14 days, High- O_2) in the neonatal intensive unit and nonBPD-no O_2 (No- O_2) exposure. *dMeth* methylation difference in \geq 14 days- O_2 vs. No- O_2 . *hg38* human genome assembly GRCh38, *FC* expression difference in High- O_2 vs No- O_2 . Robust linear regression adjusted with 10 covariates (gestational age, sex, birth weight, 7 cell-type %) to determine DEGs. *Gene overlapped with CpG-annotated genes. Full lists of data in Additional file: Tables S11 and S12.

.....

A

which leads to mitochondrial dysfunction and related diseases such as neurological disorders. (C) Comparison of epigenome and transcriptome changed by \geq 14 days of NICU O₂ supplementation in premature infants elucidates similar enriched pathways and gene ontologies such as developmental signaling (TGF- β , NGF, ID-1), cellular assembly (cytoskeleton, cytoplasm), reactive oxygen species (ROS) production and xenobiotic metabolism, inflammation (interleukin 8, IL-8), and T cell differentiation (IL-15). The activation z-scores of methylome changes (EWAS) are in general reciprocal to expression changes (RNA-Seq).

Scientific Reports | (2023) 13:12262 |

Figure 7. Comparison of epigenome-wide association study (EWAS) and genome-wide gene expression analysis of bronchopulmonary dysplasia (BPD) risk in cord blood and postnatal day peripheral blood. (**A**) Overlapping genes annotated to differentially methylated CpGs determined by EWAS or differentially expressed genes determined by RNA-sequencing (RNA-Seq) between different times of samples. Common 103 genes from extended list (false discovery rate 1%) from EWAS were mainly associated with organ morphology and neonatal death, inflammation, and molecular transport. RNA-Seq elucidated seven overlapping genes (at *p* < 0.05) increased (\uparrow) or decreased (\downarrow) in BPD compared to nonBPD. (**B**) BPD-associated pathways and gene ontologies predicted from epigenome and transcriptome changes were compared by time.

.....

Genomic DNA and total RNA extraction. Cord or peripheral blood samples were collected at birth and at day 14 and day 28 of life, placed in PAXgene reagent (Qiagen Inc., Valencia, CA) and then snap frozen at – 80 °C. The PAXgene Blood miRNA Kit (PreAnalytix/Qiagen) was used following the manufacturer's procedure. As in Wang et al.²² blood specimens were incubated at room temperature for > 2 h to lyse RBCs and centrifuged (3500 g, 15 min) to acquire cell pellets. Pellets were washed and treated with proteinase K at 55 °C (800 rpm, 15 min), and isopropanol was added to the soluble fractions of the supernatants prepared from the QiaShredder spin columns. For RNA isolation, the isopropanol precipitants were added into the PAXgene RNA spin columns and processed for DNase treatment followed by RNA extraction procedures as indicated in the manufacturer's brochure. As in Wang et al.²², for DNA isolation, the isopropanol precipitants prepared with the PAXgene miRNA Kit were loaded into the DNeasy Mini spin columns (DNeasy Blood & Tissue Kit, Qiagen) and followed the manufacturer's procedure. DNAs and RNAs were quantified using Qubit (Thermo Fisher, Waltham, MA) and stored at – 80 °C until used.

DNA methylation microarray analysis. Aliquots (100–500 ng) of genomic DNA from whole peripheral blood were bisulfite-converted using EZ-96 DNA Methylation MagPrep kits (Zymo Research, Irvine, CA) following the manufacturer's instructions as described previously²². Bisulfite-converted DNAs were applied to Human MethylationEPIC BeadChip (Illumina, San Diego, CA), which covers over 850,000 CpG sites in the human genome, at the NIEHS Molecular Genomics Core Laboratory. The raw IDAT files from the EPIC methvlation arrays were read into R with the minfi package⁵¹, and the data was preprocessed with background correction and dye-bias normalization using the preprocessNoob method⁵² as in²². The champ.runCombat function in ChAMP package⁵³ was used for batch correction ("Sentrix_ID" and "Sentrix_Position"). DNA methylation data were filtered prior to normalization, using the following exclusion criteria: arrays with >5% failed probes; CpG probes located on X and Y chromosomes; and any probes containing one or more single-nucleotide polymorphisms having a minor allele frequency≥1% (in EUR population of the 1000 Genomes Project) occurring within 5 nucleotides relative to the CpG site. Probes reported to hybridize to one or more non-target sites in the genome were deleted⁵⁴. There were 775,201 CpG probes remaining after exclusions. DNA methylation array data are deposited in Gene Expression Omnibus (GEO, accession number: GSE225313). To detect potential outlier samples in the methylation dataset we prepared principal component analysis (PCA) plots of methylation data from Day 14, Day 28 and combined (Additional file 2: Fig S6). No methylation samples were excluded.

Methylation-based cord blood and peripheral blood cell type estimation. The percentages of seven blood cell types (CD4 + T, CD8 + T, NK cells, B cells, monocytes, granulocytes, and nucleated red blood cells) were estimated using reference DNA methylation profiles (https://github.com/immunomethylomics/ FlowSorted.CordBloodCombined.450k) for cord blood and the IDOL deconvolution algorithm²⁵. The 12 cell-type model of Salas et al.²⁸ was used to differentiate naïve from memory B cells, CD4 T cells and CD8 T cells.

Differentially methylated loci associated with BPD or NICU O₂ **exposure.** Identification of differentially methylated probes was accomplished using a robust linear regression analysis of M values (log ratio of beta values) on disease status (BPD vs nonBPD-exposed to ≥ 1 day O₂ in NICU) on methylation values from postnatal day 14 and day 28 with adjustment for infant sex, GA, BW, and seven estimated blood cell type proportions (CD4 + T, CD8 + T, NK, B, monocyte, granulocyte, NRBC). Differentially methylated loci associated with O₂ exposure were identified on day 14 among nonBPD neonates (nonBPD-no O₂ vs nonBPD- ≥ 14 days O₂ in NICU) with adjustment for the 10 covariates indicated above. The Winsorize technique (https://www.rdocumentation.org/packages/DescTools/versions/0.99.44/topics/Winsorize) was used in an alternative EWAS analysis to test if outlier data points affected the resulting differentially methylated CpGs. We did 90% winsorization, that is the top 5% of the data is replaced by the value of the data at the 95th percentile and the value of the bottom 5% of the data is replaced by the value of the data at the 5th percentile. The re-analysis of all EWAS comparisons using the Winsorization method produced very similar results for differentially methylated CpGs at the FDR1% level (Additional file 1: Table S13). Differentially methylated CpGs were annotated to genes using the Illumina manifest and also by identifying the nearest transcription start site, which resulted in some CpGs being associated with more than one transcript.

RNA-seq analysis. Aliquots of RNA (250 ng) were used to generate poly-adenylated RNA libraries with TruSeq Stranded Total RNA Ribo-Zero Human Gold kit (Illumina). Samples were indexed with NEXTfle-96 RNA-Seq Barcodes (Bioo-scientific, Austin, TX) and 75 bp single-end sequencing was performed on NovaSeq 6000 platform using S4 flow cell (Illumina) in the NIEHS Epigenomics and DNA Sequencing Core Laboratory. Raw sequencing reads (FASTQ files, 22-150 million reads per sample) were aligned to hg38 using STAR and gene counts were generated with featureCounts using the GENCODE version 39 annotation. Count matrix data were then imported to Partek Flow (Partek Inc., Chesterfield, MO) and PCA was used to visualize outlier samples (Additional File 2: Fig S7). One outlier was removed from the cord blood analysis. Quantification of transcript expression and differential expression analyses were performed using DESeq adjusting for nine covariates (GA, BW, sex, CD4+T%, CD8+T%, B%, monocyte%, granulocyte%, NRBC%). DEGs were determined between BPD and nonBPD on day 0 (cord blood) or between BPD and nonBPD exposed to any day(s) of O₂ on days 14 and 28 (peripheral blood) with cutoff for significance at p < 0.05 and/or FDR-adjusted p < 0.1. DEGs between nonBPD exposed no NICU O_2 and nonBPD exposed to ≥ 14 days NICU O_2 with cutoff for significance at FDR-adjusted p < 0.01. Controlled hierarchical cluster analysis by disease status generated heatmaps showing a structure of DEG expression trends and partition of DEGs into different clusters using Partek Flow. RNA-Seq raw data are deposited in GEO (accession number: GSE220135).

Pathway analyses. Enrichment of canonical pathways, functions, biological processes and diseases for the genes annotated to the differentially methylated loci or the DEGs were analyzed using Ingenuity Pathway Analysis (IPA, Qiagen), ToppGene Suite (https://toppgene.cchmc.org), Reactome Pathway Database (https://react ome.org) and/or David BioInformatics Resources (https://david.ncifcrf.gov) as described previously²². All *p* values of pathways and gene ontologies were corrected for multiple testing using the Benjamini–Hochberg method.

Statistical analyses. Association between percentages of granulocyte and GA, lymphocytes and GA, or NLR and NICU O_2 days were analyzed by linear regression analyses without covariates (GraphPad Prism 9, GraphPad Software, San Diego, CA). Student's *t*-test, Fisher Exact, or Chi-square tests were used to determine differences between BPD and nonBPD for each cell type percentage, NLR, and population demographics (SigmaPlot 14.0, Systat Software, San Jose, CA).

Ethics approval and consent to participate. All participating mothers provided written formed consent. The research was performed under the supervision and approval of the Institutional Review Board at recruiting centers in Argentina and National Institute of Environmental Health Sciences, National Institutes of Health (Protocol 08-E-N159).

Data availability

The datasets analyzed during the current study are available in the GEO repository (https://www.ncbi.nlm.nih. gov/gds) with accession numbers GSE225313 (DNA methylation) and GSE220135 (RNA-Seq). The other datasets generated or analyzed during the current study are included in this article and its supplementary information files or available from the corresponding author on reasonable request.

Received: 9 May 2023; Accepted: 23 July 2023 Published online: 28 July 2023

References

- 1. Baraldi, E. & Filippone, M. Chronic lung disease after premature birth. N. Engl. J. Med. 357(19), 1946–1955 (2007).
- 2. Thebaud, B. et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers. 5(1), 78 (2019).
- Skromme, K., Vollsaeter, M., Oymar, K., Markestad, T. & Halvorsen, T. Respiratory morbidity through the first decade of life in a national cohort of children born extremely preterm. BMC Pediatr. 18(1), 102 (2018).
- Davidson, L. M. & Berkelhamer, S. K. Bronchopulmonary dysplasia: Chronic lung disease of infancy and long-term pulmonary outcomes. J. Clin. Med. 6(1), 1004 (2017).
- Caskey, S. et al. Structural and functional lung impairment in adult survivors of bronchopulmonary dysplasia. Ann. Am. Thorac. Soc. 13(8), 1262–1270 (2016).
- Sillers, L., Alexiou, S. & Jensen, E. A. Lifelong pulmonary sequelae of bronchopulmonary dysplasia. Curr. Opin. Pediatr. 32(2), 252–260 (2020).
- Hadchouel, A. et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 184(10), 1164–1170 (2011).
- 8. Wang, H. et al. A genome-wide association study (GWAS) for bronchopulmonary dysplasia. Pediatrics 132(2), 290-297 (2013).
- 9. Mahlman, M. et al. Genome-wide association study of bronchopulmonary dysplasia: A potential role for variants near the CRP gene. Sci. Rep. 7(1), 9271 (2017).
- 10. Ambalavanan, N. et al. Integrated genomic analyses in bronchopulmonary dysplasia. J. Pediatr. 166(3), 531–537 (2015).
- Li, J. et al. Exome sequencing of neonatal blood spots and the identification of genes implicated in bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 192(5), 589–596 (2015).
- 12. Hamvas, A. et al. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet. 19(1), 94 (2018).
- Yang, M. et al. Angiogenesis-related genes may be a more important factor than matrix metalloproteinases in bronchopulmonary dysplasia development. Oncotarget 8(12), 18670–18679 (2017).
- Pietrzyk, J. J. et al. Gene expression profiling in preterm infants: New aspects of bronchopulmonary dysplasia development. PLoS ONE 8(10), e78585 (2013).
- Cuna, A. et al. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation. Am. J. Respir. Cell Mol. Biol. 53(1), 60–73 (2015).
- 16. Ryan, F. J. *et al.* Changes in the composition of the gut microbiota and the blood transcriptome in preterm infants at less than 29 weeks gestation diagnosed with bronchopulmonary dysplasia. *MSystems.* **4**(5), 19 (2019).
- 17. Bhattacharya, S. et al. Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 186(4), 349–358 (2012).
- Eldredge, L. C. et al. Infants with evolving bronchopulmonary dysplasia demonstrate monocyte-specific expression of IL-1 in tracheal aspirates. Am. J. Physiol. Lung Cell. Mol. Physiol. 317(1), L49–L56 (2019).
- Bhattacharya, S. *et al.* Lymphocyte-specific biomarkers associated with preterm birth and bronchopulmonary dysplasia. *Front. Immunol.* 11, 563473 (2020).
- 20. Everson, T. M. *et al.* Serious neonatal morbidities are associated with differences in DNA methylation among very preterm infants. *Clin. Epigenet.* **12**(1), 151 (2020).
- Ofman, G. et al. The discovery BPD (D-BPD) program: Study protocol of a prospective translational multicenter collaborative study to investigate determinants of chronic lung disease in very low birth weight infants. BMC Pediatr. 19(1), 227 (2019).
- 22. Wang, X. *et al.* Epigenome-wide association study of bronchopulmonary dysplasia in preterm infants: results from the discovery-BPD program. *Clin. Epigenet.* 14(1), 57 (2022).
- 23. Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 163(7), 1723-1729 (2001).
- Houseman, E. A. *et al.* DNA methylation arrays as surrogate measures of cell mixture distribution. *BMC Bioinform.* 13, 86 (2012).
 Koestler, D. C. *et al.* Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL). *BMC Bioinform.* 17, 120 (2016).
- Chen, X., Li, H., Qiu, X., Yang, C. & Walther, F. J. Neonatal hematological parameters and the risk of moderate-severe bronchopulmonary dysplasia in extremely premature infants. BMC Pediatr. 19(1), 138 (2019).
- 27. Sun, Y. et al. High neutrophil-to-lymphocyte ratio is an early predictor of bronchopulmonary dysplasia. Front. Pediatr. 7, 464 (2019).

- Salas, L. A. *et al.* Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. *Nat. Commun.* 13(1), 761 (2022).
- Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12(3), 180–190 (2012).
- Hadchouel, A. et al. Overexpression of Spock2 in mice leads to altered lung alveolar development and worsens lesions induced by hyperoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 319(1), L71–L81 (2020).
- Demling, N. et al. Promotion of cell adherence and spreading: A novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res. 323(3), 475–488 (2006).
- Benjamin, J. T. et al. Inverse relationship between soluble RAGE and risk for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 197(8), 1083–1086 (2018).
- Speer, C. P. Pulmonary inflammation and bronchopulmonary dysplasia. J. Perinatol. 26(Suppl 1), S57-62 (2006) (Discussion S3-S4).
- Simonsen, K. A., Anderson-Berry, A. L., Delair, S. F. & Davies, H. D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 27(1), 21–47 (2014).
- 35. Gancia, P., Delogu, A. & Pomero, G. Ureaplasma and bronchopulmonary dysplasia. Early Hum. Dev. 90(Suppl 1), S39-41 (2014).
- 36. Dotiwala, F. & Lieberman, J. Granulysin: Killer lymphocyte safeguard against microbes. Curr. Opin. Immunol. 60, 19–29 (2019).
- 37. Marin, N. D. & Garcia, L. F. The role of CD30 and CD153 (CD30L) in the anti-mycobacterial immune response. *Tuberculosis* **102**, 8–15 (2017).
- Cerutti, A. *et al.* Engagement of CD153 (CD30 ligand) by CD30 + T cells inhibits class switch DNA recombination and antibody production in human IgD + IgM + B cells. *J. Immunol.* 165(2), 786–794 (2000).
- Scheible, K. M. et al. T cell developmental arrest in former premature infants increases risk of respiratory morbidity later in infancy. JCI Insight. 3(4), 96784 (2018).
- Sigurdson, A. J. et al. International study of factors affecting human chromosome translocations. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 652(2), 112–121 (2008).
- Tsai, Č. Y., Chou, H. C. & Chen, C. M. Perinatal nicotine exposure alters lung development and induces HMGB1-RAGE expression in neonatal mice. *Birth Defects Res.* 113(7), 570–578 (2021).
- Chung, M. I. & Hogan, B. L. M. Ager-CreER(T2): A new genetic tool for studying lung alveolar development, homeostasis, and repair. Am. J. Respir. Cell Mol. Biol. 59(6), 706–712 (2018).
- 43. Das, K. C. Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE-12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria. *PLoS ONE* 8(9), e73358 (2013).
- Ratner, V., Starkov, A., Matsiukevich, D., Polin, R. A. & Ten, V. S. Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. *Am. J. Respir. Cell Mol. Biol.* 40(5), 511–518 (2009).
- Kandasamy, J., Olave, N., Ballinger, S. W. & Ambalavanan, N. Vascular endothelial mitochondrial function predicts death or pulmonary outcomes in preterm infants. Am. J. Respir. Crit. Care Med. 196(8), 1040–1049 (2017).
- Suga, S. et al. Long use of continuous positive airway pressure protects against the development of treatment-requiring retinopathy of prematurity. Sci. Rep. 12(1), 7799 (2022).
- Trittmann, J. K., Nelin, L. D. & Klebanoff, M. A. Bronchopulmonary dysplasia and neurodevelopmental outcome in extremely preterm neonates. *Eur. J. Pediatr.* 172(9), 1173–1180 (2013).
- 48. Wright, R. Mitochondrial dysfunction and Parkinson's disease. Nat. Neurosci. 25(1), 2 (2022).
- Peoples, J. N., Saraf, A., Ghazal, N., Pham, T. T. & Kwong, J. Q. Mitochondrial dysfunction and oxidative stress in heart disease. *Exp. Mol. Med.* 51(12), 1–13 (2019).
- 50. Ten, V. S. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants. *Pediatr. Res.* 81(2), 286–292 (2017).
- 51. Aryee, M. J. *et al.* Minfi: A flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. *Bioinformatics* **30**(10), 1363–1369 (2014).
- Fortin, J. P., Triche, T. J. Jr. & Hansen, K. D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. *Bioinformatics* 33(4), 558–560 (2017).
- 53. Tian, Y. et al. ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33(24), 3982-3984 (2017).
- Nordlund, J. et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 14(9), r105 (2013).

Acknowledgements

Authors appreciate Nichole Reeves, Yingpei Zhang, Jason Malphurs, Gregory Solomon, Xin Xu, and Brian Papas at NIEHS Epigenomics and DNA Sequencing Core Laboratory for library generation and RNA-Seq analysis. We thank Dr. Kevin Gerrish and Ms. Laura Wharey at NIEHS Molecular Genomics Core Laboratory for performing DNA methylation microarray analyses and Deepa Sambandan, NIEHS, for sample preparation. We thank Dr. Frank Dai and Mr. Gregory Stamper at NIEHS Office of Scientific Computing who provided Linux computer support. Drs. Mariana Sorguetti, Guillermo Colantonio, Alejandra Bianchi, Luis M. Prudent, Nestor Vain, Gonzalo Mariani, Jorge DiGregorio, Elba Lopez Turconi, Cristina Osio, Fernanda Galleti, Mariangeles Quiroz, Andrea Brum, Santiago Lopez Garica, and Silvia Garcia at recruiting centers in Buenos Aires, Argentina, provided coordination for the clinical study. Drs. Kevin Gerrish and Ma Wan in NIEHS provided critical review of the manuscript.

Author contributions

S.R.K., F.P., G.O., and D.A.B. conceived and designed the experiments. S.C., M.T., F.P., and G.O. coordinated clinical study and collected samples. H.Y.C., M.R.C., and V.P. performed experiments. X.W., H.Y.C., B.B., and D.A.B. analyzed and interpreted data. H.Y.C. and D.A.B. drafted the manuscript. X.W., H.Y.C., M.R.C., G.O., and D.A.B. reviewed and revised the manuscript. D.A.B. funded and supervised the study. All authors read and approved the final manuscript.

Funding

Open Access funding provided by the National Institutes of Health (NIH). This research was supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services (Z01-ES100475).

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/ 10.1038/s41598-023-39313-0.

Correspondence and requests for materials should be addressed to D.A.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023