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The relevance of a right scale 
for sampling when studying 
high‑resolution behavioral 
dynamics
L. Barberis 1,2, C. Simian 4, R. H. Marin 3,4 & J. M. Kembro 3,4*

Many species used in behavioral studies are small vertebrates with high metabolic rates and 
potentially enhanced temporal resolution of perception. Nevertheless, the selection of an appropriate 
scales to evaluate behavioral dynamics has received little attention. Herein, we studied the temporal 
organization of behaviors at fine-grain (i.e. sampling interval ≤1s) to gain insight into dynamics and 
to rethink how behavioral events are defined. We statistically explored high-resolution Japanese 
quail (Coturnix japonica) datasets encompassing 17 defined behaviors. We show that for the majority 
of these behaviors, events last predominately <300ms and can be shorter than 70ms. Insufficient 
sampling resolution, even in the order of 1s, of behaviors that involve spatial displacement (e.g. 
walking) yields distorted probability distributions of event durations and overestimation of event 
durations. Contrarily, behaviors without spatial displacement (e.g. vigilance) maintain non-Gaussian, 
power-law-type distributions indicative of long-term memory, independently of the sampling 
resolution evaluated. Since data probability distributions reflect underlying biological processes, our 
results highlight the importance of quantification of behavioral dynamics based on the temporal scale 
pertinent to the species, and data distribution. We propose a hierarchical model that links diverse 
types of behavioral definitions and distributions, and paves the way towards a statistical framework 
for defining behaviors.

Considering the West Brown Enquist law1, smaller animals have a faster metabolism, which in turn favors the 
possibility of performing faster body movements. Mice, Mus musculus, have been shown to move their whiskers 
at a speed of 25 Hz (1/25 s)2, and hens, Gallus gallus domesticus, can present rapid head movements associated 
with preening at 5 Hz (1/5 s)3. Interestingly, body size and metabolic rate have also been proposed to be linked 
with the perception of temporal information4, with fast movements of small animals being perceived by con-
specifics as social cues5. Although, high-resolution data can hold biologically relevant information, especially 
within social interactions, the temporal organization of behaviors at resolution ≤1s has received little attention. 
This raises the question of whether a species-specific appropriate temporal scale is in general being used in 
behavioral studies. Scale in this context refers to both the grain of observation, given by the temporal resolution 
available within a given data set (considered “fine” at high and “coarse” at low resolutions respectively) and the 
extent (i.e. duration) of analysis6. Following the conceptualization of the “Umwelt”, the grain of the study should 
be in accord with the animal’s perception of its environment through its senses7.

Since animal behavior is not random, the relative frequency and duration of behaviors can only be approxi-
mated through sampling8. However, exactly how this should be achieved is a long withstanding debate8,9. In small 
animals, an apparently simple question, such as the total time spent performing a behavior or the duration of 
each behavioral event (i.e. continuous time spent performing a given behavior), could have strikingly different 
answers depending on the methodology implemented (reviewed in8,9). Behaviors can be defined associated 
with topography e.g. overall body movements and/or function10. When events are recorded at real time, some 
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behaviors happen so rapidly that they can only be considered as an occurrence and not as a duration, while other 
can be considered as a state with longer meaningful durations8. However, if sufficient high-resolution data is 
analyzed, even behavioral states such as walking can appear more discontinuous than those visually observed, 
with pauses between steps becoming evident11–13. Thus the sampling interval (i.e. time between sample points) 
needed in order to be able to perform comprehensive analyses of behavioral dynamics is most likely associated 
with the type of behavior, as well as the species under study.

With the rise of computers in the 1970s, different approaches began to be used to gain understanding regard-
ing the temporal organization of behavior based on the frequency and/or probability distribution of the duration 
of behavioral events and inter-events (i.e. pauses between events)14. On one hand, researchers recognized that 
a behavior is usually clustered in bouts15. On the other hand, within the framework of complex systems and 
scaling, studies show that the duration of inter-event periods associated with movement can be described as a 
power law (i.e. a straight line in a double logarithmic plot) in a wide variety of species, for example, flies Dros-
ophila melanogaster16, humans Homo sapiens17, rats Rattus norvegicus18 and Japanese quail Coturnix japonica11–13. 
Power laws indicate that the underlying dynamic mechanism have self-similar statistical properties on different 
time scales17. This statistical self-similarity is a defining characteristic of fractal objects. Hence, the presence of 
a power law distribution has strong theoretical implications given that it implies that behavioral time series can 
be considered an output of a complex dynamical system, presenting long-range (auto) correlations associated 
with processes with long-term memory19.

The heated discussion associated with temporal organization, bouts, scaling, and complexity, in general, 
has not yet percolated to the rest of the scientific community. Most research continues to implicitly assume the 
absence of auto-correlations20 between data points within behavioral time series, and a Gaussian distribution. 
This is evidenced by the fact that the most frequently used variables in behavioral studies imply averaging tem-
poral data to extract a mean value, without checking if such a quantity has meaning as a representative time. 
In this regard, few studies have actually analyzed the probability distribution of duration of different types of 
behavioral events and, even less, how distributions change in different experimental contexts.

The aim of this study is to gain insight into the temporal dynamics of behavior by rethinking the definition 
of behavioral events. Using datasets of behavioral time series of Japanese quail (Coturnix japonica) within social 
groups21,22, we explore the effect of the sampling interval used and how behavior is defined based on topography 
and/or function10 on the distribution of events. We assessed not only Probability Distributions (PD), which 
provide information regarding how likely is an event of a given duration to occur, but also Relative Distribution 
(RD). These RDs provide information on how frequently an event would be recorded by the observer. In this 
analysis, longer events have more weight than shorter events, highlighting the representativeness of events within 
the observed animal’s time budget. We show not only that behavioral events last predominately less than 300 ms, 
but also, the impact of an insufficient sampling interval on distributions (PD and RD). In addition, we observe 
that power law distributions are widespread in the PD of event durations of behaviors that do not imply spatial 
displacement (e.g. vigilant, standing). We end by proposing a theoretical link between different behavioral dis-
tributions. In all, by combining the information on both PD and RD distributions and considering fine-grained 
time scales, we provide a framework to advance towards a statistical understanding of the diversity of types of 
behavioral events and the impact of the duration of the sampling interval in quantifying the events.

Results
In our first experiment, published21,22, and publicly available23,24 1 h long, behavioral time series of Japanese quail 
within social groups (2 females and 1 male) were studied. Figure 1a illustrates the of two mutually exclusive 
behaviors with and without spatial displacement, based on an empirically established threshold value of 1 cm22,25. 
The Probability Distribution (PD) associated to the frequency of the occurrence of these events of duration δ for 
all animals is depicted in Fig. 1b,c. The semilog plot emphasizes the distribution of data over the broad range of 
temporal scales from 1 to 230 s, spanning more than two orders of magnitude. The insets show the same data 
in a double logarithmic plot. Note that, contrary to what would be expected for a normal distribution, the dis-
tributions present a slow monotonic decay with a predominance of short events. Hence, the distribution does 
not develop a middle peak associated with a mean duration value (δ) representative of the most frequent event 
duration.

Since PDs represent the frequency of occurrence of an event of a given duration on a logarithmic scale, the 
area of all bars must sum up one. Hence, the height (hi) of the i-th bin is computed as the number of events that 
fall in the bin (ci), divided by the bin width (wi) and the total number of observations (N). Mathematically it 
reads hi = ci

wiN
 , which is consistent with 1

N

∑
i

ci
wiN

= 1 , the normalization condition. But, for the logarithmic 
binning used herein (x-axis), bin sizes are not constant but rather increases logarithmically (see justification in 
“Methods” section “Logarithmic binning”). It is evident in the PDs show in Fig. 1 panels b and c that long events 
are less probable to occur than short events. However, since long events span over a longer period of time, they 
proportionally represent more of the actual time budget of the animal, than many frequent very short events. 
These long events may also be easier to be observed by the experimenter than short events. Thus, we propose 
complementing PD with Relative Distributions (RD) in order to describe the probability of observing events 
considering both, their frequency and their duration. Basically, in RD the height of a given bin becomes relative 
to the heights of its neighbors hi = ci

N
 , deprecating the bin width. Thus, in the RD histograms (green bars in 

Fig. 1b,c), the probability of long events is larger than in PD (yellow bars in Fig. 1b,c). In addition, consistent 
with the PD, these RDs also show a non-Gaussian type distribution.

It is important to remark that the histograms reported in Fig. 1b,c start at an event durations, δ, of 1 s which 
corresponds to the sampling interval used. Thus, any shorter event, if observed, would be recorded as part of 
the smallest bin potentially resulting in the blurring of the real shape of the underlying distribution for short 
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durations (left side of plots). Since the 1 s bin is the highest in Fig. 1, it can be assumed that the actual temporal 
resolution of behavior could be below the 1 s sampling interval used. If so, an important question arises; How 
does the sampling interval length affect the distribution of behavioral events? To illustrate this, we show in Fig. 2 
the event durations that would be obtained at four different sampling intervals. In this example, colored boxes 
represent intervals with spatial displacement, while white boxes represent time periods without displacement 
behavior (given the empirically established of 1 cm threshold value 22,25, as shown in Fig. 1a). Note how the same 

Figure 1.   Statistical representation of events with and without spatial displacement in Japanese quail within 
their home-box social groups (Experiment 1). (a) Representation of the calculation associated with the 
definition of events with and without spatial displacement. Two consecutive frames are compared and the 
distance between the center of each animal (colored circles) is estimated (indicated by arrows in the third 
image). When the center of the animal moved more than 1 cm during the sampling interval, the animal was 
considered to be performing a spatial displacement. Oppositely, if the distance of movement was less than 1 
cm, then it was considered without spatial displacement22. (b,c) Probability (PD) and relative distributions 
(RD) histograms of the duration (δ) of events with and without spatial displacement (b) and (c), respectively). 
Semilog axes are used and event durations (x-axis) are expressed in seconds, thus noteworthy histograms use 
logarithmic binning (x-axis), hence bin width increase logarithmically. Yellow bars belong to PD, estimated 
by counting the number of events that fall in the bin, divided by the bin width and the total number of 
observations. These PD show that there are many events of short duration and fewer long-termed ones. Relative 
distributions, depicted as green bars, are the total number of observations in each bin divided by the total 
number of observations. Note that the histograms start at δ =1s which also corresponds to the 1s sampling 
interval used herein. Insets show the same plot, but with a double logarithmic scaled axes (log-log).
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two mutually exclusive behaviors, when collected at the different sampling intervals, results in differences in the 
number and duration of registered events.

At a one-tenth of a second sampling interval (Fig. 2a), six events with spatial displacement are detected. Since 
with spatial displacement was defined as movement above the threshold during any point of the sampling inter-
val, if sampling is increased five-folds (Fig. 2b) the first two events are merged into a longer one. Consecutively 
larger sampling intervals (Fig. 2c,d) lead to longer with spatial displacement events. Contrarily, given that events 
without spatial displacement can be considered as an inter-event (i.e. the period of time between with displace-
ment events), when the sampling size is sufficiently large, short events seemingly go undetected as observed 
progressively from top to bottom in Fig. 2.

In order to visualize the effect of sampling rate on the PD of event duration on real data, we compare the 
same data time series shown in Fig. 1 sampled at both 0.1s and 1s intervals (Fig. 3). Note that the x-axis is now 
expressed in milliseconds to highlight the high-resolution time scales assessed.

In the PDs of duration of events with spatial displacement, this ten-fold decrease in sampling interval results 
in a dramatic shift to shorter event durations. When PDs were fitted (see details regarding fitting in Supplemen-
tary Note 1S), the resulting probability density function, pdf, shows a clear exponential cutoff (black line, Fig. 3a). 
According to fitting, this fast exponential decline starts at the characteristic time ~850 ms (black arrow, Fig. 3a). 
On the other hand, for 1s sampling rates, the estimated cutoff is not observable, presumably beginning beyond 
the range of the histogram. Hence, the PD appears almost linear on this double logarithmic plot (gray line, 
Fig. 3a), and just the power law-like behavior is observable. Similar effects of sampling intervals are appreciated 
in Fig. 3c where RDs are depicted. In other words, for with displacement events longer sampling intervals result 
not only in a gross overestimation of distributions but also an overall distortion of the shape of the PD and RD.

The contrasting effect of the resolution is observed for without displacement events, where shorter events 
are now evident, but the range and shape of the PD (Fig. 3b) and RD (Fig. 3d) are practically not affected by the 
ten-fold decrease in sampling interval used. Note that for both resolutions a linear behavior is observed on the 
double logarithmic scale (Fig. 3b) which is typical for power law at least up to the 100.000 ms assessed herein. 
Cumulative probability distributions are shown in Supplementary Fig. S2.

How the dynamics of different types of behaviors are reflected in the probability and relative distribution of 
events is explored in Fig. 4. Here visual analysis of video recordings in real time was used to collect feeding, drink-
ing, foraging, dust bathing, pecking, mounting, cloacal contact, chasing, and grabbing event durations by pressing 
keys in ANY-maze (see “Methods”, and definitions in Supplementary Table S122). The resulting histograms are 
depicted using semi-log scales, where PD and RD are shown in blue and red, respectively. The characterization 
of these distributions is summarized in Supplementary Table S2. PD and RD were similar independent of sex 
and social group (Supplementary Figs. S3 and S4, respectively).

Figure 4 shows behaviors defined not only on topography but also including functional aspects10. Here, the 
shape of the PDs and RDs has dramatically changed compared to the definitions based on a threshold for move-
ment as previously shown in Figs. 1 and 3. Most behaviors show distributions with a well-defined maximum 

Figure 2.   Schematic illustration of the impact of sampling interval on the duration of mutually exclusive 
behaviors. Each line represents progressively larger sampling intervals as follows: (a) 0.1 s, (b) 0.5 s, (c) 1s and 
(d) 2s sampling interval. Black horizontal lines mark sampling intervals, colored boxes represent intervals 
in which spatial displacement is performed within the sampling interval, while white boxes indicate periods 
without spatial displacement. Note that when the sampling interval increases (top-down), the events with 
spatial displacement appear to have longer durations, while the without spatial displacement (inter-) events go 
undetected. Upper brackets provide examples of the two types of mutually exclusive events.
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value, indicative of a representative, behavior-specific, event duration (Fig. 4). Characterization of these maxi-
mum values (Supplementary Table S2), shows that for 4 out of the 9 behaviors analyzed, event durations below 
300s are the most frequent (i.e. grabs, mounts, feeding and pecking). Differences between behaviors in regard to 
the range of possible values in event durations are also observed. In Fig. 4 only feeding, foraging and dust bathing 
(Fig. 4d,g,h respectively), and to a lesser extent cloacal contacts (Fig. 4c) show event durations spanning for more 
than one order of magnitude with appreciable probability (see also Supplementary Table S2). As a consequence, 
their PDs are shifted with respect to their RDs, indicating that although short events are more probable, longer 
events contribute proportionally more to the time budget (i.e. total time performing the behavior). This shift is 
most noticeable in dust bathing, given that it has the broadest range of durations, covering three orders of mag-
nitude from 100 to 100,000 ms (equivalent to 0.1–100s; Supplementary Table S2). Moreover, their histograms 
appear to be bimodal (Fig. 4h, Supplementary Table S2), which could be associated with the fact that dust bathing 
involves a sequence of actions26.

The rest of the behaviors span for less than one order of magnitude (Supplementary Table S2) with appreci-
able probability (Fig. 4a,b,e,f,i). For these behaviors, the probability of relatively short or large events is low in 
comparison with that of the representative peak duration. Hence, bins of both PD and RD distributions have 
widths of the same order of magnitude (x-axes) and almost the same number of events will fall on each one 
(y-axis), thus the shape of both distributions almost match.

To further characterize the time interval in which different behavioral events are performed, a 10 min high-
resolution data set was used (see Experiment 2 in “Methods”). Although this data set is of shorter duration than 
the previously shown, it has several advantages. First, in addition to the top camera, a side camera was included 
that allowed enhanced visualization of behavior. Second, a high-resolution ethogram was used to record the 
male´s behavior at a frame-by-frame resolution (sampling interval of 66ms), as exemplified in Fig. 5. Third, the 
experimental design favored the performance of high-speed social behaviors. Specifically, a socially isolated adult 
male Japanese quail was introduced into a novel group of females. This experimental design allowed exploration 
of the functional relationships between different behavioral definitions in regard to their probability distributions, 

Figure 3.   Differential effects of sampling interval on the distribution of events. (a,b) Probability (PD) and 
(c,d) relative distribution (RD) histograms for with displacement (left panels) and without displacement 
(right panels) events. The larger sampling intervals (1s) are depicted in yellow and green (as in Fig. 1), while 
the shorter sampling interval (0.1s) is shown in blue and red. In the case of with displacement events, the 
overestimation of the duration of the events becomes evident for the 1s sampling interval in comparison to the 
0.1 s interval. Lines denote the fitting of the respective histograms (see Supplementary Note S1 for details), the 
black arrow marks the exponential cutoff observable for with displacement events at a 0.1 s, but not at the 1s 
sampling interval. Compare with a histogram from a single individual in Supplementary Figure S1. PDs are 
estimated by counting the number of events that fall in the bin, divided by the bin width and the total number of 
observations, while RDs represent the total number of observations in each bin divided by the total number of 
observations.
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as well as assessment of appropriate behavior-specific sampling intervals for the study of social interactions in 
Japanese quail. The number of events of each type of behavior is shown in Supplementary Table S3. The most 
frequent behaviors are shown in Fig. 6, with PD and RD represented on semi-log scales. As in the previous 
experiment (see Fig. 4), differences in distribution are observed between behaviors. Reproductive events, grab 
and mount, predominately last only 1 frame (i.e. 66 ms, Fig. 6a), thus, a characteristic duration could not be 
determined even for this high-resolution sampling interval, since it was insufficient to characterize the lower 
limit of the distribution. These fast changes between behaviors was most likely associated with the particular 

Figure 4.   The shape of probability and relative distributions (PD and RD) of event durations (δ) depend on the 
behavior analyzed. Logarithmic histograms of the event duration of: (a) grabs, (b) mounts, (c) cloacal contacts, 
(d) feeding, (e) drinking, (f) pecking, (g) foraging, (h) dust bathing and (i) chasing. behaviors of male Japanese 
quail PDs are depicted as blue histograms whose scales are on the right-blue axes. Orange RD histograms 
represent the probability of finding an event that lasts the represented time-interval δ, and the corresponding 
scales are on the left, orange axes. Note, as in Figs. 1 and 3, that long termed events have a larger probability to 
be observed than the shorter ones (orange maxima) but most of the behaviors are short-termed (blue maxima).

Figure 5.   Representative example of high-speed social interactions between Japanese quail within social 
groups. Three consecutive frames are shown in which different behaviors are observed. In this example, the grab 
event only lasts 1 frame, hence presents a duration of 66ms.
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experimental design which involved an unfamiliar male. Contrarily, cloacal contacts did present a characteristic 
duration, as observed by the maximum probability value at ~200 ms (Supplementary Table S3) in both PD and 
RD (Fig. 6a,d, respectively). Moreover, log-log plots (Fig. 6a, inset) do not show linearly but rather an increas-
ingly faster slope with increasing durations, representative of an exponential cutoff.

In regard to behaviors that involve spatial displacement, walking events predominately last only 66ms but 
spanned over a broad range up to 104 ms (Fig. 6b, Supplementary Table S3). As with reproductive behavior, an 
exponential cutoff in the PD is observable in log-log plots (Fig. 6b, inset). The corresponding RD of walking is 
also broad, but a maximum value is observable at ~400 ms (Supplementary Table S3). The exploring behavior 
showed a similar distribution as walking behavior, while running presents a characteristic maximum duration 
value at ~400 ms and a more limited range of durations spanning only 1 order of magnitude, as observed in both 
PD and RD (Fig. 6b,d, respectively; Supplementary Table S3).

In regard to behaviors without spatial displacement, the behavior with the broadest range of scales is stand-
ing vigilant (three orders of magnitude; Supplementary Table S3). Moreover, the corresponding log-log plot 
(Fig. 6c, inset) shows that the tail of its distribution reflects the mentioned power law distribution observed in 
the more general definition of events without spatial displacement previously shown (Fig. 1b, inset). Shakes are 
an interesting exception, while the behavior does not imply spatial displacement, they occur on a very fast time 
scale (Fig. 6c,f, Supplementary Table S3). From Fig. 6 it is evident the way behaviors are defined, as well as the 
sampling interval, significantly impact the statistical properties of the resulting temporal distributions. Hence, 
we continue by exploring how each of the fine-grained behavioral distributions contribute to the distributions 
of general coarse-grain behavioral definitions. We recreated the more general reproductive, with and with-
out spatial displacement time series by integrating associated high-resolution behavioral time series based on 
whether they are associated with reproduction, involve spatial displacement or do not involve spatial displace-
ment, respectively. In these recreated time series, event durations reflect a consecutive period of time while the 
Japanese quail is performing any of the encompassed behaviors (Fig. 7, Supplementary Table S3). The probability 
distributions of the recreated reproductive and with displacement events show exponential cutoffs (yellow and 

Figure 6.   High-resolution sampling and fine-grain behavioral definitions highlights behavior-specific temporal 
organization as shown by the analysis of the corresponding probability and relative distributions (PD and RD) 
of event durations. (a–c) PD semi-log plots and (d-f) RD semi-log plots of behaviors grouped into three general 
categories: (a,d) reproductive, (b,e) behaviors with spatial displacement and (c,f) without spatial displacement. 
Insets in panels (a-c) show PD using a double logarithmic scale, where the drawn dashed line in the panel c inset 
has a slope of -2, and has been provided as a visual reference. See numerical characterization in Supplementary 
Table S3. In panels d-f solid bars represent the overall histogram if all the events from each behavior depicted in 
the panel were combined.
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red, Fig. 7a), with the most frequent event being ~60 ms. However, RD shows a predominant maximum value 
at 1200 ms for with displacement events (Supplementary Table S3, Fig. 7b), indicating that longer events in the 
order of seconds are important contributors to the time budget of the animal with higher probabilities to be 
observed by the experimenter. Noteworthy, in the recreated without spatial displacement events, the expected 
power-law distribution (blue in Fig. 7a) on the double logarithmic scale is observed. This capability of recover-
ing behavioral distributions from by grouping specific behaviors, can be understood through hierarchical links 
between the different types of definition of behavior. Such hierarchy is schematically represented in Fig. 8. At 
the top is the complete behavior set, which is trivially described by a single dot in the distributions. A step down 
our first classification, definitions such as reproduction, with and without displacement are presented. When a 

Figure 7.   Probability and relative distribution of reproduction, with displacement, and without displacement 
events obtained by integrating associated behaviors. (a) PD on a double logarithmic scale shows a monotonic 
decreasing behavior. Since very short events are the most probable, they still range from 60ms. Note that the 
three distributions can be modeled by the PL+Exp function. However, reproduction and with displacement 
present clear cutoffs, while immobility does not. The continuous lines are fittings, note that reproduction 
and with displacement have a cutoff missing in without displacement behavior. (b) Corresponding RDs. 
Without displacement behavior has lost the mean value (peak) and is monotonic decreasing. Time series were 
approximated using the same data time series analyzed in Fig. 6.

Figure 8.   Hierarchical model of association between behavioral definitions. Lower levels fine-grain definitions 
can be considered as finer details, and thus can be integrated into coarser-grained definitions conserving 
characteristics associated with their distributions. Categorical representation of the behavior definitions.
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sufficient high-resolution sampling interval is used, they are shown to present exponential cutoff or power law 
PD as indicated by the bottom arrow. Stepping downwards, closer to the bottom, we have a more refined behavior 
description, representing more specific actions. Interestingly, most of the PD of these behaviors shown in the 
lower levels have the same type of distribution as the corresponding parent behaviors (compare Figs 6 and 7).

Discussion
Herein we show that the 0.5s – 6 min sampling interval used previously to assess the temporal dynamics of 
behavior in small animals18,27–31 including Japanese quail11–13,31,32 is insufficient to capture the most frequent 
event durations. Many of the behaviors studied showed that the most probable event durations lied between 60 
and 300 ms (Supplementary Tables S2 and S3). Moreover, maximum probability values in PD of event durations, 
for some behaviors, coincides with the sampling interval. Hence, it is logical to assume that the actual temporal 
resolution in which the animal is behaving and interacting with conspecifics could be faster than our 60 ms 
lower limit. This result is highly relevant since it reflects the Umwelt (self-centered world) of the Japanese quail, 
and its potential for perceiving and sensing its environment at these high resolutions. Although the concept 
of Umwelt is around 100 years old7,33,34, only more recently do researchers have readily available technology 
to study animal biology with an unprecedented level of temporal detail and across the full range of ecological 
scales35,36. In this modern technological landscape, the importance of the appropriate grain for characterizing 
behavioral dynamics and species-environment relationships is two-sided. On one side of the spectrum, if we 
continue making studies from an anthropocentric perspective6, which could lack sufficient sampling resolution, 
many behaviors and/or fundamental signals may go unrecognized. On the other side, when using arbitrarily 
high sampling resolutions above the appropriate grain, data may become noisy, thus difficult to interpret and 
lose relationship with its function10.

Traditionally, animal behavior is analyzed in real time. Thus not only is it recorded on a human perception 
temporal scale, but also, may be biased by how different types of behaviors are perceived by the human brain. 
The human perceptual system is strikingly able to detect and recognize the motion of dynamic stimuli37,38. Thus, 
in most studies, with obvious exceptions such as sleep studies, if during a sampling interval an active behavior 
with spatial displacement is performed, it would be recorded instead of the less notorious inactive pauses. As 
shown in Fig. 2, a biased focus on activity has enormous implications. It leads to a gross overestimation of the 
duration of active events, a loss of information regarding short inter-events, as well as distortions in the shape of 
the probability distributions. This last point could lead to misclassification of a distribution as a power law solely 
due to an insufficient sampling interval. Different approaches to coarse-graining also could impact differentially 
the resulting shape of the PD and RD, Thus, in future studies would be necessary to elucidate the effects on PD 
and RD of different coarse-graining methods, for example recording the behavior performed for the most time 
during the sampling interval (i.e. the mode).

By combining the use of both PD and RD we were able to provide a novel perspective in regard to the statisti-
cal distribution of behavioral events. Moreover, our results are self-consistent, and extend upon the understanding 
of behavior as the output of a large nonlinear dynamical system (e.g. the brain-body-environment ensemble) 
whose repertoire includes the diversity of dynamics observed in our experiments18. Using high-resolution data 
(Figs. 4 and 6) we show that, in general, behaviors can be qualitatively grouped into 3 conspicuous types. The 
first type corresponds to behaviors with evident peaks in both PD and RD distributions (although not always 
observable at the resolution evaluated herein), and that span over less than an order of magnitude. Hence, PD 
and RD overlap, e.g. pecks or shakes. The second type of behaviors have characteristic durations, but span over 
several orders of magnitude, e.g. walking, and exploration. Exponential cutoffs are observable at time scales in 
the order of seconds-minutes. Their respective PDs and RDs do not overlap, but rather show complementary 
information. The third type of behaviors show a broad range of possible durations spanning over three or more 
orders of magnitude, e.g. standing. RD shows higher probabilities of larger event durations and wider distribution 
in comparison to PD. For these last behaviors, linearity in log-log plots PD is observable, indicative of a power 
law type distribution. This diversity in types of observed behaviors highlights the importance of not assuming a 
typical mean value, i.e. the probability of a given behavior as normally distributed, as well as the need to consider 
the actual distribution in the behavioral events under analysis.

Our in-depth look at the high-resolution data, also revealed differences in regard to the two datasets evalu-
ated revealing insight on the impact of experimental design on PDs. Specifically, in regard to social behaviors, 
while the shape of the PD differ between experiments, in both the most frequent duration of grabs, mounts, and 
pecks observed are very short, being as low as 66ms (Figs. 4 and 6). Hence, the fast speed of social interactions 
does not hinder the detectability of the event in real-time39. Although, social cues included in short pauses or 
fast transitions between different types of social behavior may go unrecognized when videos are analyzed in 
real time in comparison to high-resolution frame-by-frame analysis. Contrary to the short durations of social 
interactions, dust baths, when present, show a very wide distribution with at least two peaks around 200ms 
and 7000m. (Fig. 4, Supplementary Table S2), which could reflect the fact that it involves performing a specific 
sequence of components26. Hence, the first maximum value observed in the distribution may reflect the char-
acteristic duration of the sequence. The following maximum values in the distribution may reflect the number 
of repetitions of the sequence or different levels of completeness. Dust bathing in this sense is not unique, 
even behavior definitions such as walking could also be further reduced to a repetitive sequence of individual 
components associated with leg movements. Hence, even higher resolution datasets would be useful to further 
characterizer the association between the sequence of movements that are associated with a given definition of 
behavioral event (see also model Fig. 8).

In both datasets, events without spatial displacement show power law type distributions. Different observa-
tions of such systems often follow a similar profile across multiple measurement scales (‘‘scale-free’’ patterns). 
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As a consequence of their non-Gaussian distributions, event durations are not well characterized by a typical 
or average value40. Naturally, there are biological limitations regarding the maximum possible event durations, 
which is usually mathematically modeled as an exponential cutoff of the power law distribution41,42. Guzman 
et al.11 from a week-long study with a 0.5 s sampling interval, showed that these inter-events can be as long as 
1h and present a power law like distribution at least up to 250 s. Contrarily, these authors showed that with 
displacement events always lasted less than 40s and presented a sharp exponential cutoff (see Supplementary 
Material in Guzman et al.11). This difference in the distribution, between with and without displacement events 
could be attributed to the energetic cost of movement43,44. Japanese quail are considered a polyphasic animal, 
with periods of sleep present throughout the daily 24 h period45. Hence, energy conservation and sleep, could 
both help to explain the long periods without displacement represented by the tail of the power law distribution.

Knowing when a variable does or does not follow a power law provides important theoretical clues about their 
underlying generative mechanisms40. It can also facilitate statistical extrapolations about the likelihood of very 
large events46. Chu-Shore et al.47 argue that, in humans, sleep-wake stage distributions are often complex, thus 
distinguishing between exponential and power law processes may not be straightforward. For example, multi-
exponential distributions can also appear linear on a log-log plot47,48. Specifically, if the part of the distribution 
corresponding to short time scales is obscured it is particularly difficult to distinguish a power law pattern, from 
alternative heavy-tailed distributions like stretched exponential or log-normal40. The advantage of our current 
study, in comparison to previous work in the field, is the high-temporal resolution of data. Although the two 
experiments analyzed were too short (≤ 1h) to observe long-durations of events that are needed to adequately 
approximate the tail (right-side of plots) of power law distribution, the upper part of the distribution (left side of 
plot) were observable for the first time. After collecting and analyzing over 6000 behavioral events we show that 
linearity in the log-log plot of the duration of without spatial displacement events holds up to 66 ms (Fig. 3b). 
Consistently, other analysis methods, such as Detrended Fluctuation Analysis, have shown long-range auto-
correlations in a variety of behaviors, associated with long-term memory11–13,18,30,31. Interestingly, herein not 
only without spatial displacement showed a power law distribution, but also the behaviors included within it 
(Figs. 6c and 7). It is unlikely that these distributions can merely stem from a sum of exponentials47, associated 
with superimposed behaviors. It is more likely that without spatial displacement captures the emergent complex-
ity and correlation properties of the system. Hence, a hierarchical organization of the behavior can be established 
according to the behavior definition (Fig. 8).

How to define behavior and how to determine its duration is commonly associated not only with the objec-
tives of the study but also with practical limitations such as how to conveniently position the camera, the sampling 
effort, etc. From our in-depth analysis of high-resolution behavioral time series, we can conclude that using a 
sampling interval shorter than the speed in which animals transition into and out of the behavior has important 
consequences. Not only because the duration of the activity events will be severely overestimated and the shape 
of the distribution could be distorted, but more importantly, because there are social interactions that may go 
unrecognized. The observation of the fast speed at which Japanese quail behave highlights the importance of 
moving away from anthropocentric ways of measuring behavior and redefining events based on the temporal 
scale pertinent to the species under study using an organism-centered perspective. Moreover, probability dis-
tributions of event durations vary between behaviors, thus we propose a hierarchical model that links diverse 
types of behavioral definitions and distributions. From this model it is evident that power laws do not emerge 
from a sum of exponentials but rather as an emergent property of the system, at least up to the time scales stud-
ied herein. These findings not only pave the way towards a statistical framework for defining behaviors but also 
have applied relevance, for instance, in the study of behavioral dynamics in diverse fields such as animal welfare, 
social dynamics, habit selection, and behavioral ecology. By ensuring the right species- and behavior- specific 
time scale we will advance towards a better learning and hopefully a better interpretation of how animals interact 
with conspecifics and their environment.

Methods
Animals and husbandry.  The study was performed with the Japanese quail (Coturnix japonica), a species 
widely used for covering neuroendocrine and social behavior studies49,50. The animals were bred according to 
standard laboratory protocols22,25. The experimental protocol was approved by the Institutional Council for the 
Care of Laboratory Animals (CICUAL, Comité Institucional de Cuidado de Animales de Laboratorio) of the 
Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, UNC-CONICET). Animal care and experimental 
treatments followed the Guide for the Care and Use of Laboratory Animals issued by the National Institute of 
Health (NIH Publications, Eighth Edition)51. They also followed local animal regulations including the Ani-
mal Protection law number 14346, National Administration of Drugs, Foods and Medical Devices (ANMAT) 
decree 6344/96, and the National Scientific and Technical Research Council (CONICET) resolution number 
1047/2005. This study was carried out in compliance with the ARRIVE guidelines.

Experiment 1: behavioral dynamics of Japanese quail within their social environment.  This 
experiment as well as the data time series obtained have been thoroughly described previously21,22. The effect 
of social environments and the consequence of dominance at an individual level on the temporal dynamics of 
behavior has been assessed in Alcalá et al.21. Briefly, a total of 106 Japanese quail (53 females and 53 males) were 
subjected to a combination of 4 preselection tests to favor diversity in the type of social groups. This was based 
on taking into consideration that Japanese quail that are more fearful also tend to be more aggressive52. Then, 
social groups (2 females: 1 male) of animals (156-171 days old) were housed in a white wooden apparatus meas-
uring 80 × 40 × 40 cm (width × length × height, respectively) with wood shavings on the floor. A feeder and an 
automatic nipple drinker were positioned in opposite corners of the apparatus. Monofilament nylon lines were 
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extended over the top of the boxes with a 1 cm separation to prevent the birds from escaping but without inter-
fering with their visualization. A closed-circuit television (CCTV) video camera (Pronext, EX20 4N1 1.0 HD) 
was suspended 1.5m above the box. After a 2-day habituation period, idTracker53 in MATLAB R2017a was 
used to register the position of each animal at each frame (15 frames per second) during a 1 h period. Behav-
ioral data were recorded in the form of a time series of mutually exclusive states. In the case of the with spatial 
displacement (locomotor) time series, at any given time, if the bird moved over the 1 cm threshold during the 
sampling interval (i.e. 0.1 or 1s) a number one was recorded, or zero if immobile. Datasets are publicly available 
at figshare24.

Time series of non-ambulation behaviors were obtained through visual observation of video recordings using 
an interface ANY-maze to register behavior. Definitions have been provided in Supplementary Table S1. For 
each bird, when the specific behavior was performed the corresponding key was pressed until the bird finished 
performing the behavior, thus a binary time series, xi, sampled at up to 2 data points per second was constructed 
for each behavior. Where, xi = 0 indicates that the animal is not performing the behavior, while xi = 1 indicates 
that the animal is performing the behavior, time series are publicly available at figshare23.

Experiment 2: high‑resolution dynamics of male Japanese quail associated with the display of 
reproductive behavior.  This study is part of a larger experiment designed to assess the capability of accel-
erometers to detect reproductive behavior in male Japanese quail54. Raw data is publically available at figshare55. 
Thus, 2/3 of the birds (male and females) had accelerometers attached as a dorsal patch or a backpack which, in 
general, did not interfere with social or reproductive behaviors56,57 All birds were subjected to the same manual 
manipulation in order to reduce variability between individuals. At the beginning of the experiment, 2 adult 
females (156-171 days old) were housed together in a white wooden apparatus measuring 40 × 40 × 40 cm 
(width x length x height, respectively), with 3 wooden walls and one wire mesh wall. After 9 days of habituation 
to the novel apparatus and social environment, an adult unfamiliar male was introduced into the box, and the 
behavior was recorded during a 10 min period.

Two closed-circuit television (CCTV) video cameras (Pronext, EX20 4N1 1.0 HD) were used to record 
behavior, one camera was suspended 1.5m above the box, and the second camera was positioned on the other 
side of the wire mesh wall. This second side camera allowed visual observation of the whole animal, and thus 
more specific behaviors were able to be recorded at the temporal resolution of the camera (15 frames per sec-
ond, equivalent to 67 ms) in comparison to Experiment 1. Male behavior was recorded using a customized app 
in MATLAB R2017a which is available to download from figshare58, where each frame was observed and the 
behavior being performed was recorded. For each behavior a binary time series, xi, sampled at a 67ms, the interval 
was constructed (9000 data time points).

Data analysis.  For each bird, behavioral events defined as the interval of time that an animal continuously 
performs a given behavior. In practice this consists in counting the number of continuous sampling intervals 
in the time series in which the behavior was recorded11,12. All events were organized as values of a vector, H, in 
order to perform the corresponding histograms.

Logarithmic binning.  This is a simple way of smoothing sample data which is distributed on a logarithmic scale 
and allows the graph to convey information about how many events are in a given range. Logarithmic binning 
is specifically important for understanding the distribution of events with relatively long durations which can 
be so infrequent that traditional linear histograms plots become uninformative (for further discussion see40,59). 
Herein, a logarithmic scale was used for binning data to capture time scales ranging from the lower limit (tmin) 
of possible durations of the behavioral event associated with sampling frequency. The upper limit (tmax) is 
defined by the longest observed event of a given behavior. The distribution of the bins’ edges is defined through 
the vector B=10[emin: 0.1: emax] in such a way that tmin=10emin and tmax=10emax, and a step of 0.1. Note that the first 
bin will include all the events with durations between tmin and 10(emin+0.1), such a feature is better illustrated in 
Supplementary Table 4 where, for each experiment, we present the values of emin and emax and the first and the 
last bin borders. Thus the first element of B coincides with tmin and the latest with tmax. With these logaritmic 
definitions of beginning, the distributions are straightforward obtained by the MATLAB function.

Were H is the vector containing all the recorded durations for a given experiment and behavior definition and 
B defines the binding. The parameter norm allows to specify the desired type of distribution. Its specification is 
built-in and agrees with the definitions presented in Supplementary Note S1. This parameter will take the value 
‘density’ for PD, ‘probability’ for RD and ‘cdf ’ for CD. This MATLAB function plots the corresponding histogram 
and saves the result in vectors X for the abscissa and Y for the height of the bars.

Fitting algorithms.  In order to characterize probability distributions with a representative function, data was 
fitted with a power law function with an exponential cutoff in MATLAB, using the following MATLAB code.

The vector X contains the duration of the event and the vector Y the probability of observing an event of a given 
duration. These vectors  are used as imput data to fit a continuous function that describe the distribution in a 
compact way. The third parameter corresponds to the definition of the objective function used to fit.

(1)[Y, X] = histogram (H, B, ‘normalization’, norm),

f = fit(X, Y, ‘a* exp( - x/b)*x( - c)’),
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From such a definition, we identify the characteristic time for the cutoff as with the parameter b and the 
exponent of the power law c.

Data availability
The data from experiments 1 and 2 that support the findings of this study are publically available on figshare24,55,58 
at the following links: https://​doi.​org/​10.​6084/​m9.​figsh​are.​71176​79.​v1, https://​doi.​org/​10.​6084/​m9.​figsh​are.​71176​
31.​v1, https://​doi.​org/​10.​6084/​m9.​figsh​are.​21792​887.​v1.

Code availability
The study was performed using publically or comercially available code. The idTracker has been previously 
published53. Our customized MATLAB app for analyzing simultaneously side and top cameras is published on 
figshare60, at available at https://​doi.​org/​10.​6084/​m9.​figsh​are.​21900​423.​v1. MATLAB code used for performing 
histograms and fitting is provided in the Methods section. The commercially available ANY-maze Video Track-
ing System software can be downloaded at www.​anyma​ze.​com.
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