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Spatiotemporal adaptive attention 
graph convolution network 
for city‑level air quality prediction
Hexiang Liu 1,2, Qilong Han 1, Hui Sun 2, Jingyu Sheng 2 & Ziyu Yang 2*

Air pollution is a leading cause of human diseases. Accurate air quality predictions are critical to human 
health. However, it is difficult to extract spatiotemporal features among complex spatiotemporal 
dependencies effectively. Most existing methods focus on constructing multiple spatial dependencies 
and ignore the systematic analysis of spatial dependencies. We found that besides spatial proximity 
stations, functional similarity stations, and temporal pattern similarity stations, the shared spatial 
dependencies also exist in the complete spatial dependencies. In this paper, we propose a novel deep 
learning model, the spatiotemporal adaptive attention graph convolution model, for city-level air 
quality prediction, in which the prediction of future short-term series of PM2.5 readings is preferred. 
Specifically, we encode multiple spatiotemporal dependencies and construct complete spatiotemporal 
interactions between stations using station-level attention. Among them, we design a Bi-level sharing 
strategy to extract shared inter-station relationship features between certain stations efficiently. Then 
we extract multiple spatiotemporal features with multiple decoders, which it is extracted from the 
complete spatial dependencies between stations. Finally, we fuse multiple spatiotemporal features 
with a gating mechanism for multi-step predictions. Our model achieves state-of-the-art experimental 
results in several real-world datasets.

Air pollution is a harmful substance mixed in the air in various gaseous (i.e., O3 and SO2) and particulate matter 
(i.e., PM). With an estimated nearly 12% of global disease deaths in 2019 being directly or indirectly caused by 
air pollution1, the negative impact of air pollution on public health and the environment has made it increasingly 
become the focus of science1,2. Policymakers monitor pollution concentrations in real-time by establishing air 
monitoring stations to keep abreast of regional pollution. In addition, air quality prediction is vital to reducing 
human disease. Accurate air quality prediction can assist policymakers in scientifically regulating corporate 
pollutant emissions, thereby reducing the concentration of pollutants in the air.

Differently from long-term predictions, which focus on capturing long-term dependencies in the temporal 
domain, we prefer to focus on accurate short-term air quality predictions. However, it is difficult to extract spa-
tiotemporal features effectively, due to the complex spatiotemporal dependencies among air quality monitoring 
stations. Many researchers have worked on accurate air quality prediction and have made significant progress. 
Earlier studies focus on the temporal evolution of individual stations3–7 using traditional methods or Long 
Short-Term Memory neural networks (LSTM) to model the temporal trends of linear, or nonlinear relationships 
between sequences. The prediction accuracy of these methods is limited as they do not consider the interactions 
between stations. Some efforts8–10 have been made to leverage potential correlations between different stations, 
which reveal the importance of spatial correlation for air quality prediction. Due to the high construction costs 
of air quality monitoring stations, the number of monitoring stations is relatively small and scattered in various 
locations in the city. Some recent studies11–13 attempt to use graph convolutional networks (GCN) to model 
the non-Euclidean between stations. In the methods based on GCN, all monitoring stations of the whole city 
are regarded as nodes in the graph, and correlations correspond to the graph’s edges. Multiple specific types of 
inter-station relationships are used to model complex spatiotemporal dependencies in air quality prediction. 
Each specific inter-station relationship represents a spatial dependence, such as spatial proximity, functional 
similarity, or temporal pattern similarity.

Although modeling multiple specific types of inter-station relationships contributes to the prediction accu-
racy, there are combinations of shared inter-station in the complete spatial dependencies. For stations, Fig. 1a,b, 
respectively, show the three specific types of inter-station relationships and the complete spatial dependen-
cies. According to observations, combinations of shared inter-station are found between certain stations. For 
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instance, stations b and c, which are geographically close with strong spatial proximity dependency, also have 
functional similarity dependence due to the influence of urban functional area planning. So, there are shared 
roles between stations b and c. Due to the diversity of combinations of shared inter-station, seven types of inter-
station relationships in total may exist in reality, including spatial proximity, functional similarity, temporal pat-
tern similarity, spatial adjacency-functional similarity, spatial adjacency-temporal pattern similarity, functional 
similarity-temporal pattern similarity, and spatial adjacency-functional similarity-temporal pattern similarity. 
Combining multiple inter-station relationships would be meaningless for extracting the above spatial features 
due to missing complete inter-station relationship interactions, making the extraction challenging.

To address the above challenges, we propose a novel deep learning model, the spatiotemporal adaptive atten-
tion graph convolution network model (STAA-GCN), for city-level air quality prediction. STAA-GCN cap-
tures multiple spatiotemporal features efficiently from the complex spatiotemporal dependencies and uses the 
encoder-decoder architecture to generate multi-step predictions. First, seven parallel encoder sets were used 
to encode all inter-station relationships for the complete spatiotemporal dependency construction. We design 
spatiotemporal relationship extraction units for specific and shared relationships, respectively. Considering 
complete station interaction can be correlated with either seven inter-station relationships or their combina-
tions. We use a station-level attention mechanism to learn the interaction process. In addition, we consider the 
dynamic, diffusible nature of air pollution, which can lead to unequal dynamic dependencies between stations. 
For this reason, we design multi-angle soft attention to adaptively capture the dynamic influence relationships 
between stations from multiple perspectives. For multi-step predictions, Multiple inter-station relationships are 
decoded from the complete spatiotemporal dependencies between stations and fused using a gating mechanism 
at each time step. The main contributions of this paper are as follows:

•	 We propose a novel deep learning model. We constructed complete spatiotemporal dependency using seven 
parallel encoder sets and station-level attention mechanisms, from which we effectively extracted multiple 
spatiotemporal features.

•	 We design a multi-angle soft attention mechanism, which captures unequal dependencies between stations 
from multiple perspectives.

•	 STAA-GCN automatically learned shared inter-station relationships between certain stations via a Bi-level 
sharing strategy.

•	 We test our model on three publicly available datasets, and the experimental results show the superiority of 
our model.

Related work
Air quality prediction.  Air quality forecasting is receiving increasing attention due to the deteriorat-
ing air environment. Existing works can be broadly classified into three categories, namely classical physical 
methods14,15, traditional methods3,4, and deep learning methods5,7. The classical physical models are based on 

Figure 1.   Diagram of spatial dependency. (a) shows three specific inter-station relationships, that is, spatial 
proximity (using purple to denote sparse connectivity relationship), functional similarity (green), and temporal 
pattern similarity (yellow). The different inter-station relationships are independent of each other. There is 
lacking the overall consideration of inter-station relationships. (b) shows the complete spatial interaction 
relationship in the real world, as shown in the figure, where stations may be subject to the common effects of 
specific inter-station relationships.
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the principle of atmospheric dispersion and use many relevant factor data to evolve the pollutant dispersion 
process. It is well known that there are complex correlations between relevant factors, which make it difficult to 
establish their numerical functions and lead to suboptimal prediction results. The traditional models, often with 
multi-source heterogeneous data, are employed to model temporal trends of linear between sequences. How-
ever, these methods are built from the temporal evolution of individual stations, in which spatial dependencies 
between stations are ignored.

Several recent studies have made significant progress that used deep learning methods to model spatiotem-
poral dependence6,8,16,17. Extensive use of feedforward neural networks for fusing influential features from other 
relevant stations. In addition10,18, consider the correlation of inequality between stations and calculate the weights 
of the hidden states of stations within a certain geospatial distance using an advanced attention mechanism. 
Some researchers11–13 have treated the spatial dependence between stations as non-Euclidean and used them to 
model the correlation between air quality stations. Although existing models such as ATGCN11 describe multiple 
spatial dependencies by constructing multi-graph, it is suboptimal due to the missing analysis of shared space 
dependencies.

Multi‑graph for spatiotemporal prediction.  Multi-graph based methods have been widely used in spa-
tiotemporal prediction for constructing multiple spatial dependencies19,20. The core of the multi-graph approach 
is to simultaneously learn multiple spatial dependencies by constructing multiple graphs. Existing multi-graph 
methods can be roughly divided into two categories: generate more graph structures to capture more detailed 
spatial dependencies and integrate multiple relational features more effectively.

In the first category, there are multiple correlations between stations, and pair-wise correlations are encoded 
as multiple graphs to capture more detailed spatial relationships. ST-MGCN21 believes that besides spatially 
adjacent, spatial dependencies also include functionality similar and transportation connected, multiple cor-
responding graph structures are constructed to describe a variety of spatial relationships. ATGCN11 coded the 
relationships among air quality stations as spatial adjacency, functional similarity, and temporal pattern similarity 
into multiple graphs, a parallel codec architecture is used for multi-step prediction.

In the second category, STAG-GCN22 explores Multi-layer stacked information fusion method in graph con-
volution, where dynamic graph features are used to automatically fuse information from each layer of static graph. 
DMGA-GNN13 first uses Spatial Attention to capture the contextual correlation of nodes in different graphs and 
then uses Graph Attention to obtain autocorrelation of nodes in different graphs. Finally, the gating mechanism 
is used to consider further the above two effects of node correlation in different graphs.

Table1 shows the comparative characteristics of existing methods and STAA-GCN. Different from other 
multi-graph methods, STAA-GCN relies on the construction of complete spatiotemporal dependency, which 
form specific and shared types of spatiotemporal relationships are extracted, rather than extracting dependencies 
by generating a graph for each dependency.

Problem formulation
We consider the multi-source heterogeneous data used in previous research6,11,18. Similarly, we use air quality, 
weather, points of interest (POI), and temporal information data for the city-wide station air quality prediction. 
In this section, we first describe the multi-source heterogeneous data and then formally represent the prediction.

Monitoring data.  Suppose there are n air quality monitoring stations within the city, and we use the set 
S = {si}

n
i=1 to denote all monitoring stations. For each monitoring station, si collects reading data for multiple 

pollutants (e.g., PM2.5, PM10, O3, NO2, SO2) and multiple weather data (e.g., temperature, humidity, wind 

Table 1.   The comparative characteristics of STAA-GCN and existing methods.

Methods Spatial dependencies categories Construction of spatial relationship Aggregate multiple spatial relationships

ST-MGCN21

A multi-graph based network for Ride-hailing 
Demand prediction, multiple convolutions are 
used to extract spatial features and then fuse 
them at each time step

3 Each relation corresponds to a graph structure Sum the spatial relationships

ATGCN11

A network that uses multiple sets of encoders 
and decoders to build and extract spatiotem-
poral features

3 Each relation corresponds to a graph structure Attention mechanisms integrate spatial features

STAG-GCN22

The method of using dynamic graph features to 
fuse the feature information of each layer in the 
static graph is used for traffic flow prediction

3 Each relation corresponds to a graph structure Adaptively fuse multi-layer spatial features of 
static graphs using dynamic graph features

DMGA-GNN13

A new dynamic multi-graph fusion method for 
spatiotemporal prediction

5 Each relation corresponds to a graph structure Spatial Attention, graph Attention and gating 
mechanism

STAA-GCN
The method proposed in this paper 7 In addition to graph, there is also extraction of 

shared relationships
Attention mechanisms to construct complete 
spatiotemporal and then extract the spatiotem-
poral relationships
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speed, direction) at hourly intervals. We use Q = {qi}
n
i=1 to denote the monitoring readings data from all sta-

tions.

POI data.  Besides, each monitoring station si contains rich information on geographical features. We collect 
data on different types of points of interest (e.g., factories, residential areas, commercial areas) in the area around 
each monitoring station, and P = {pi}

n
i=1 denotes the set of POIs for all stations.

Time information.  Each timestamp contains rich temporal information, which can respond to people’s 
travel situation time information and thus assist in air quality prediction. We collected three kinds of time infor-
mation: hour/day, day/week, and month. si ∈ W denotes the set of time information of all monitoring stations.

Problem definition.  Given historical time data with a time window of length T , we take the historical 
monitoring readings Q = (Qt−T+1,Qt−T+2, · · · ,Qt) for all stations as historical data, POI data P , and Time 
information W . The objective is to predict the value of some target pollutant at a future time step τ for all moni-
toring stations S within the city, denoted by ŷ = (ŷT+1, ŷT+2, · · · , ŷT+τ ).

where θ denotes all the parameters to be learned in the mapping function f (·).

Proposed method
This section describes in detail the modules of each part of our proposed STAA-GCN, and the overview frame-
work of STAA-GCN is shown in Fig. 2.

Graph generation.  This section describes the graph generation of three specific types of inter-station 
relationships. We no longer generate new relationship graphs for the shared inter-station relationships, which 
rely on the three specific graphs to extract spatial dependencies. Formally, we generate graphs GS = {V ,ES ,AS} 
based on spatial proximity spatial between stations, graphs GP = {V ,EP ,AP} based on functional similarity, and 
graphs GT = {V ,ET ,AT } based on temporal pattern similarity11.

Spatial proximity graph.  In general, the closer two things are to each other, the stronger the correlation. We 
generate a spatial proximity graph using the physical spatial distance between two stations to achieve edge con-
nectivity and assign weights.

f (Q; P;W; θ) → ŷ

Asij =

{
dist

(
vi , vj

)
< αS

0, otherwise

Figure 2.   The overview framework of STAA-GCN.
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where the threshold realizes the connectivity between stations i and j , the edge weights are calculated using the 
inverse of the physical space distance.

Functional similarity graph.  Intuitively, when the POI around the two stations is relatively similar, there is a 
strong correlation between their air quality. When two stations are surrounded by industrial parks, they must 
have high air quality readings. And they may be strongly correlated on certain pollutants, such as industrial 
parks with similar production. We consider the similarity between stations with similar functions, then generate 
a functional similarity graph.

where the threshold realizes whether the connectivity between stations i and j , the edge weights are calculated 
using the Euclidean Distance between the POI vectors of stations i and j.

Temporal pattern similarity graph.  In addition to the two inter-station relationships mentioned above, there 
are potential temporal correlations between stations. We use the monthly average as a criterion for correlation:

similarly, the edge weights are calculated using the Pearson Correlation Coefficient between the temporal pat-
terns of stations i and j.

Complete spatiotemporal relationship interaction modules.  We focus on complete spatiotemporal 
dependencies interaction modeling. Interactions between stations can be associated with one or more spati-
otemporal dependencies. Using seven sets of encoders, we first capture the seven spatial relationships’ spati-
otemporal dependencies. Then, we employ a station-level attention mechanism to learn the interaction process 
between monitoring stations. In addition, air pollution’s easy diffusion and dynamics cannot be ignored, and we 
design multi-angle soft attention to capture the pairwise dependencies between stations.

Multi‑angle soft attention.  First, air pollution is an aerosol mixture that exhibits a dynamic and easily diffusible 
nature in space, and it is inappropriate to ignore the unequal dynamic dependencies between stations. Second, 
the dependencies between stations are complex and diverse, and it is unconvincing to consider them simply 
from the intrinsic station data. To this end, we propose to capture the dynamic influence relationships between 
stations from multi-angle adaptively. Specifically, we first project station inherent data into multiple semantic 
spaces for enriching their semantic representations. Second, the influence of stations may vary nonlinearly. We 
nonlinearly map different semantic space information and obtain the final influence weights by computing them 
as the mean of the influence weights of all semantic spaces between stations.

For all stations S at each time step t  , we first concatenate its monitoring data (e.g., air pollutants and weather 
data), POI data, and time information as inputs Xt ∈ Rn×d , the weights of multi-angle soft attention are:

where Wm
i ∈ Rd×d′ , Vm

i ∈ Rd′×1 , bmi ∈ Rd are trainable parameters, σ is the tanh activation function, and m ∈ M 
denotes the mth hidden space of the projection. Here, xti ∈ Rd , xtj ∈ Rd represent the observations at station i, j at 
the tth moment. We recombine the computed weights among all stations into a weight matrix with Et ∈ RN×N.

Specific graph convolutional unit.  We capture specific types of inter-station relationships with their graphs, 
which rspeǫ{S, F,T} denotes any specific types of inter-station. Specifically, inspired by the success of Li and 
Kipf5,7,23 on graph convolution, combined with the weight matrix E, we use graph convolution in the vertex 
domain to aggregate K-hop neighbor information.

Given the observation Xt ∈ RN×d at step t  , we perform the Hadamard product operation on all stations 
weight matrices Et ∈ RN×N learned in Multi-angle soft attention with the weighted symmetric adjacency matrix 
Asp ∈ RN×N . Finally, we aggregate the k-hop neighbor information as follows:

where Wk
rspe

∈ Rd×d is the trainable parameter, k denotes k-hop neighbor reachable, and ⊙ is the Hadamard 
product. 

(
Dt
rspe

)−1
 is the diagonal matrix of Arspe ⊙ Et.

Shared graph convolutional unit.  Intuitively, there are shared inter-station relationships in air quality predic-
tion. We design a Bi-level sharing strategy to extract their relational features effectively. In this paper, shared 

APij =

{
sim

(
pi , pj

)
> αF

0, otherwise

ATij =

{
sim

(
ti , tj

)
> αT

0, otherwise

(xm,t
i )′ = Vm

i · σ(Wm
i · xti + bmi )

αt
i,j =

1

M

M∑

1

softmax((xm,t
i )′) =

1

M

M∑

1

Vm
i · σ(Wm

i · xti + bmi )∑N
j=1 V

m
j · σ(Wm

j · xtj + bmj )

X̃t
rspe

=

K∑

k=1

((
Dt
rspe

)−1

Arspe ⊙ Et
)k

XtWk
rspe
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inter-station relationships are divided into two categories, i.e., the combination of two arbitrary specific types 
of shared inter-station relationships and the combination of three specific types of shared inter-station relation-
ships.

Shared graph convolution kernel strategy.  We first train a set of shared graph convolution kernels to extract the 
features of shared inter-station among different spaces. For the combination of three, which rsctǫ{S − F − T} , 
the spatial proximity graph GS , the functional similarity graph GP , and the temporal pattern similarity graph GT 
are taken as input; For the combination of the combination of two arbitrary, which rscaǫ{S − F, S − T , F − T} , 
the graph used is consistent with the relationship of any combination. Here we take an example as the combina-
tion of three, and the overall process is shown in Fig. 3. The shared graph convolution kernel strategy is formal-
ized as follows:

where Wk
rsct

∈ Rd×d are trainable parameters. Xt
S,X

t
F ,X

t
T are the station features extracted from GS , GP , and GT 

using shared graph convolution.

Shared diagonal matrix strategy.  Not all stations have combinatorial shared dependencies with each other, 
and we use a set of shared diagonal matrices to remove irrelevant station feature information. The intuition 
behind the shared diagonal matrix is that using the shared graph convolution kernel, the feature information 
with shared dependencies dominates. We remove the sites with common weaker representation information by 
a set of shared diagonal matrices.

Specifically, diagonal matrix sharing is a set of shared sparse diagonal weight matrices. We first apply L1 
regularization to the diagonal weight matrix to remove irrelevant station feature information, so the sum of 
diagonal weight values is relatively small. Then by setting a threshold, we reset the station feature representation 
with consistently smaller weights in the three sets of feature representations to zero as follows:

Finally, we obtain the shared relation inter-station dependency feature representation as follows:





Xt
S =

K�
k=1

��
Dt
S

�−1
AS ⊙ Et

�k
XtWk

rsct

Xt
F =

K�
k=1

��
Dt
F

�−1
AF ⊙ Et

�k
XtWk

rsct

Xt
T =

K�
k=1

��
Dt
T

�−1
AT ⊙ Et

�k
XtWk

rsct





�Xt
S = Xt

SW
t
D

�Xt
F = Xt

FW
t
D

�Xt
T = Xt

TW
t
D

X̃t
rsct

= (X̃t
S + X̃t

F + X̃t
T )/3

Figure 3.   Diagram of Bi-level sharing strategy for three specific types of shared inter-station relationships.
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We adopt the Bi-level sharing strategy similar to that used for the three specific types of shared inter-station 
relationships for extracting the relationship between two arbitrary combinatorial stations. The difference is that 
two arbitrary are about sharing two arbitrary graphs, not three graphs, such as the spatial proximity graph and 
the functional similarity graph.

Temporal autocorrelation unit.  We use the Gated Recurrent Units (GRU) on the temporal dependencies to cap-
ture the correlations on the temporal domain of each spatial dependence. Given any station spatial dependencies 
after learning at the current time step t  denoted X̃t

rǫ{rspe ∪ r
sct

∪ rsca} , combined with the hidden state ht−1 at 
the previous step t − 1 , we compute the hidden state h at time step t  as follows:

where zt , rt denote the update gate and reset gate for controlling the inflow of previous information and for-
getting the previous history information, respectively. Trainable parameters. Wr ∈ R(d+h)×d , Wz ∈ R(d+h)×d , 
Wh̃ ∈ R(d+h)×d , br ∈ Rd , bz ∈ Rd , bh̃ ∈ Rd are trainable parameters, respectively.

Station‑level attention fusion.  Now we have seven spatiotemporal dependencies hidden states 
M{h̃tS, h̃

t
F , h̃

t
T , h̃

t
S−F , h̃

t
S−T , h̃

t
F−T , h̃

t
S−F−T , } . We considered that the spatiotemporal dependencies between two 

stations could be one or more related spatiotemporal relationships. For this reason, we designed station-level 
attention fusion to learn the interaction process between stations:

where Wt
m ∈ Rd×d′ , Vt

m ∈ Rd′×1 , btm ∈ Rd are trainable parameters.

Spatiotemporal feature extraction module.  The correlation between the target series and its asso-
ciated historical series is dynamic10. Therefore, before capturing the spatiotemporal dependence, we use 
temporal-level attention to capture the correlation between dt′m and {h1, · · · , hT } in an adaptive manner and 
capturing the multiple spatiotemporal dependence from the complete spatiotemporal relationship, which 
dtm ∈ {dt′s , d

t′
F , d

t′
T , d

t′
S−F , d

t′
S−T , d

t′
F−T , d

t′
S−F−T } . The dt′m is decoded at each future time step t′ with similar to 

encoders.

where Wm ∈ Rd×d′ , Vm ∈ Rd′×1 , bm ∈ Rd are trainable parameters. ctm is contextual feature used as input to dt′m 
and then update dt′m.

For the multi-step predictions, we aggregate multiple spatiotemporal dependencies dt′m with a gating 
mechanism.

where WS ∈ Rd , WF ∈ Rd , WT ∈ Rd ,WS−F ∈ Rd , WS−T ∈ Rd , WF−T ∈ Rd ,WS−F−T ∈ Rd are trainable 
parameters.

Objective function.  Regularization for multiple inter‑station relationships.  With the seven inter-station 
relationships modeling, which will lead to large number of parameters in the graph. To ensure the trainability of 
the model while reducing the risk of overfitting, we introduce basis decomposition:





ht =
�
1− zt

�
⊙ ht−1 + zt ⊙ �ht

rt = σ(Wr[ht−1||�Xt
r ] + br)

zt = σ(Wz[ht−1||�Xt
r ] + bz)

�ht = tanh(W
�h[rt ⊙ ht−1||�Xt

r ] + b
�h)

hi,tm = Vt
mtanh(W

t
m ·

(
h̃i,tm

)T
+ btm)

αi,t
m = softmax

(
hi,tm

)
=

exp(hi,tm )
∑

m∈M exp(hi,tm )

hi,t =
∑

m∈M

αi,t
m · hi,tm

d̃t′m = Vmtanh(Wm ·
(
dt′m

)T
+ bm)

αt
m = softmax

(
d̃t′m

)
=

exp(d̃t′m)∑
t∈T exp(ht)

ctm =
∑

T

αt
m · ht

ŷt′ = tanh(dt′s WS+dt′FWF+dt′TWT+dt′S−FWS−F+dt′S−TWS−T+dt′F−TWF−T+dt′s−F−TWS−F−T )
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where rǫ{rspe ∪ r
sct

∪ rsca} , Vl
b is the share basis matrix between different convolution kernels, alrb is the linear 

coefficients of Vl
b.

Regularization for sparse of shared diagonal matrix.  To get closer to the set threshold more efficiently, we apply 
L1 regularization to the sum of diagonal weight values close to zero.

Consistency constraint.  For shared inter-station relationships, we obtain the shared feature with L2 regulariza-
tion to consistency constraint between features. As following:

Essentially, air quality prediction is a matter of regression. Therefore we use the root mean square error (MSE) 
as a loss function between the predicted and ground truth.

The total loss of the proposed architecture as following:

where γ,δ, ε, ǫ, ζ , η,ϑ , and ι are the hyper-parameters. Since the decoders have similar modules with encoders, 
a double loss is generated in the sparse of shared diagonal matrix and the consistency constraint, where LE , LD 
denote the losses of encoders, decoders, respectively.

Data availability
Air quality dataset.  We conducted experiments on three real-world air quality datasets. Beijing air quality 
dataset is available in Chinses Air Quality Historical Data, https://​quots​oft.​net/​air/. Tianjin air quality dataset is 
available in Urban Computing, http://​urban-​compu​ting.​com/​data/​Data-1.​zip. And London air quality dataset is 
available in the Artificial Intelligence Competition Learning Platform, https://​www.​biend​ata.​net/​compe​tition/​
kdd_​2018/. The datasets widely used in the air quality prediction literature. The Beijing air quality dataset is from 
01/2016 to 01/2018, including PM2.5, PM10, SO2, NO2, and O3; The Tianjin air quality dataset is from 01/2014 
to 04/2015, including PM2.5, PM10, SO2, NO2, O3, and CO; The London air quality dataset is from 01/2017 to 
03/2018, including PM2.5, PM10, and NO2.

Meteorology and POI data.  Historical meteorology data and weather forecasts are used to improve the 
accuracy of predictions6,11. We selected five attributes of grid weather datasets, including temperature, humid-
ity, wind speed, wind-u, and wind-v. The gridded weather dataset for Beijing is available in the Global Data 
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Assimilation System, https://​www.​ncdc.​noaa.​gov. The gridded weather dataset for Tianjin is available in Urban 
Computing, http://​urban-​compu​ting.​com/​data/​Data-1.​zip. The gridded weather dataset for London is available 
in the Artificial Intelligence Competition Learning Platform, https://​www.​biend​ata.​net/​compe​tition/​kdd_​2018/. 
Following the ATGCN11, POI data for all three datasets are available in Amap, https://​lbs.​amap.​com/​api/​webse​
rvice/​downl​oad. POI data including 12 categories from Beijing, 20 from Tianjin and 8 from London. In addition, 
Following previous work6, we also used temporal information features to support air quality prediction, includ-
ing hours/day, days/week, and months. The statistics of the datasets are shown in Table 2.

Experiments
Implementation details.  We use linear interpolation extensively for data pre-processing. To ensure the 
authenticity and reliability of the experiments, we used a non-overlapping 8:1:1 ratio for the training, validation, 
and test sets.

STAA-GCN and all the deep learning model experiments were run on Python 3.7.4, PyTorch 1.9.1 environ-
ment. For STAA-GCN, the cell size of GRU and the hidden states size in the graph convolution layer to 64. We 
aggregate 2-hop neighbor information with K = 2.

The learning parameters used initialize with uniform distribution. Our model is trained by objective function 
with the Adam optimizer, and the learning rate is set to 0.001. We set the batch size to 256 for Beijing, Tianjin 
and London datasets. We prevent overfitting the training data with the early stop mechanism in the training 
phase, in which patience is 15. The time window T we set to 12 and the prediction step τ to 6. We use PM2.5 as 
the prediction target because it is always the most important of all pollutants. Our code is publicly available at 
https://​github.​com/​34911​7955/​STAAG​CN.

Evaluation metrics and baselines.  We use Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), and Mean Absolute Percentage Error (MAPE), widely used for air quality prediction tasks, to measure 
model performance. The model’s validity is verified by comparing it with the following seven methods.

HA The average of the historical time steps was used as the predicted value of PM2.5.
SVR Learned linear relationships between historical time series to perform multi-step forecasting.
Seq2seq Encoder-Decoder based methods have been widely used in multi-step forecasting.

Table 2.   Statistics of the datasets used in this paper.

Description Beijing Tianjin London

# Of air quality stations 35 26 13

# Of air quality timespan 01/2016–01/2018 01/2014–04/2015 01/2017–03/2018

# Of air quality features 5 6 3

# Of air quality records 1,079,040 214,760 141,661

# Of POI categories 12 20 8

# Of meteorology features 4 5 5

# Of time features 3 3 3

Table 3.   The prediction performance of different methods and removal of different inter-station relationships 
are compared on three datasets.

Model

Beijing Tianjin London

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 20.68 32.10 0.89 34.44 49.66 0.83 5.37 7.76 0.84

SVR 22.35 27.80 0.83 28.45 38.98 0.84 7.94 9.15 0.91

Seq2seq 14.90 22.51 0.62 19.41 30.21 0.43 5.32 7.22 0.78

MGED-Net 14.85 22.12 0.68 18.42 28.41 0.45 5.15 7.11 0.69

Graph WaveNet 14.75 22.24 0.59 16.81 26.49 0.40 4.16 5.80 0.55

ATGCN 14.73 22.05 0.58 16.91 26.21 0.39 4.44 6.31 0.58

-w/o S 14.15 21.89 0.51 16.31 25.51 0.39 4.21 5.83 0.56

-w/o F 14.27 21.95 0.57 16.65 25.79 0.39 4.13 5.76 0.53

-w/o T 14.18 21.92 0.52 16.71 25.87 0.40 4.14 5.77 0.54

-w/o S-F 14.51 21.93 0.53 16.25 25.42 0.38 4.12 5.79 0.55

-w/o S-T 14.53 21.94 0.53 16.52 25.65 0.39 4.09 5.79 0.50

-w/o F-T 14.28 21.91 0.52 16.69 25.91 0.42 4.11 5.76 0.49

-w/o S-F-T 14.54 21.98 0.55 16.72 25.97 0.41 4.13 5.79 0.51

STAA-GCN 13.97 21.51 0.49 16.13 25.37 0.37 4.07 5.73 0.48

https://www.ncdc.noaa.gov
http://urban-computing.com/data/Data-1.zip
https://www.biendata.net/competition/kdd_2018/
https://lbs.amap.com/api/webservice/download
https://lbs.amap.com/api/webservice/download
https://github.com/349117955/STAAGCN
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MGED-Net6 Air quality prediction model for multi-feature relationship learning using multi-group feature 
fusion approach.

Graph WaveNet24 In spatiotemporal prediction, GCN models spatial dependencies with spatiotemporal data.
ATGCN11 Multi-graph based air quality prediction methods, using multiple sets of Encoder-Decoder to 

model the Inter-station relationships.

Experimental results.  Performance comparison.  Table  3 shows the experimental prediction results of 
all methods and the effect of different inter-station relationships, which measure the method’s performance 
using the MAE and RMSE over the next 6 h. We observe that STAA-GCN achieves state-of-the-art experimen-
tal results in all methods using two evaluation metrics. All deep learning methods outperform the traditional 
methods, which demonstrate the non-linear between sequences. The experimental results of Seq2seq, Graph 
WaveNet, and ATGCN methods illustrate the effectiveness of the spatial modeling approach. STAA-GCN out-
performs all the methods because the interaction between stations is fully considered, and spatiotemporal fea-
tures are effectively extracted.

To verify that multiple inter-station relationships exist, we conduct experiments on multiple sets of variants 
of STAA-GCN on three datasets. We remove different types of inter-station relationships, including spatial 
proximity (S), functional similarity (F), temporal pattern similarity (T), spatial adjacency-functional similarity 
(S-F), spatial adjacency-temporal pattern similarity (S-T), functional similarity-temporal pattern similarity (F-T), 
and spatial adjacency-functional similarity-temporal pattern similarity (S-F-T). We observed that the removal 
of each inter-station relationship causes a degradation of the model performance, which suggests the validity of 
these inter-station relationships.

Ablation experiment.  To study the effectiveness of each component in our model, we conduct experiments on 
four variants of STAA-GCN on three datasets. (1) STAA-GCN w/o STA-attn, which removes the station-level 
attention mechanism for building complete spatiotemporal interaction; (2) STAA-GCN w/o Mul-attn, which 
removes the multi-angle soft attention for capturing unequal weights between stations; (3) STAA-GCN w/o 
SA-matrix, which removes shared diagonal matrix for removing stations features without shared dependencies; 
(4) STAA-GCN w/o similar loss, which removes similarity constraints for extraction sharing representation. We 
tested the performance of different variants in agreement with the parameters of the STAA-GCN.

Figure 4 shows the ablation Experiment of STAA-GCN with the method’s performance using the MAE 
and RMSE on three datasets. First, the model performance declines sharply without complete spatiotemporal 
interaction. Second, variants without multi-angle soft focus obtained poorer results than STAA-GCN, which 
validates the validity of our approach and the existence of the unequal relationship between stations. For shared 
inter-station relations, we remove the shared diagonal matrix or similar sharing constraints, respectively, and 
the effectiveness of our designed scheme is illustrated with the experimental results.

Hyperparameter sensitivity.  We conducted extensive experiments on three datasets to further study the sensi-
tivity of parameters in our model.

First, we vary the number of multi-angle from 1 to 8 on three datasets. The results are shown in Fig. 5. As 
the number of multiple angles increases, the performance drops sharply, picks up at number three, levels off at 
number four, and then drops again. STAA-GCN obtains the best performance on three datasets with the number 
four. The cause of the above is that smaller quantities cannot capture multi-dimensional relationships, and more 
quantities introduce extraneous noise, leading to performance degradation.

Figure 4.   Ablation Experiment of STAA-GCN on three datasets.
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Then, we vary the number of the graph convolution step K from 1 to 4 on three datasets. The results are shown 
in Fig. 6. we can see that as the graph convolution step increases and then decreases. The best performance is step 
2 on all datasets. The cause of the above is that a low or high graph convolution step can lead to fewer aggregated 
or irrelevant features aggregated from k-order neighbors.

After that, we vary the dimension of hidden states as {16, 32, 64, 128} on three datasets. The results are shown 
in Fig. 7. We can see that the best performance is 64. Generally, A hidden state that is too small will lose some 
information, while too large will cause poor performance due to overfitting.

Finally, we vary the threshold for removing irrelevant station feature information. We experiment by setting 
the thresholds to α for triple-shares, which α from 0.15 to 0.95. We test the validity of the parameters α, the results 
are shown in Fig. 8. we can see that the performance increases and then drops. The main reason is that shared 
dependencies exist only between certain stations.

Conclusions and future work
This paper proposes a new deep learning model, the spatiotemporal adaptive attention graph convolution model 
STAA-GCN, for city-level air quality prediction. The core of STAA-GCN is its efficient extract multiple spati-
otemporal features, which are extracted from the complete inter-station interactions between stations. Further-
more, this model also considers the inherent inequality relationship between stations. Our model achieves the 
best experimental results in a broad range of tests on all three publicly available datasets and demonstrates the 
importance of the complete spatiotemporal interactions for the extraction of spatiotemporal dependencies and 
the effectiveness of the seven inter-station relationships.

In the future, we would like to fully use more datasets from areas without air pollutant monitoring, such as 
fine-grained gridded weather datasets and POI datasets. The spread and dispersion of air pollution are unstable 
and mutable, related to the weather changes and environmental characteristics during transmission. Therefore, 
we will use the tensor decomposition as a basis, combined with a large amount of gridded influence factor data, 
to fill the areas where no monitoring data are available. That will further clarify the process of pollutant disper-
sion, rather than just passing information between monitoring stations, and we will achieve the improvement 
of the accuracy of existing models, thereby enabling a more accurate basis for people’s healthy outdoor travel.
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