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Nuclear shell‑model simulation 
in digital quantum computers
A. Pérez‑Obiol 1,5*, A. M. Romero 2,3,5*, J. Menéndez 2,3, A. Rios 2,3, A. García‑Sáez 1,4 & 
B. Juliá‑Díaz 2,3

The nuclear shell model is one of the prime many-body methods to study the structure of atomic 
nuclei, but it is hampered by an exponential scaling on the basis size as the number of particles 
increases. We present a shell-model quantum circuit design strategy to find nuclear ground states 
by exploiting an adaptive variational quantum eigensolver algorithm. Our circuit implementation is 
in excellent agreement with classical shell-model simulations for a dozen of light and medium-mass 
nuclei, including neon and calcium isotopes. We quantify the circuit depth, width and number of 
gates to encode realistic shell-model wavefunctions. Our strategy also addresses explicitly energy 
measurements and the required number of circuits to perform them. Our simulated circuits approach 
the benchmark results exponentially with a polynomial scaling in quantum resources for each nucleus. 
This work paves the way for quantum computing shell-model studies across the nuclear chart and 
our quantum resource quantification may be used in configuration-interaction calculations of other 
fermionic systems.

Atomic nuclei are complex many-body systems formed by protons and neutrons (collectively denoted as nucle-
ons) bound by the strong nuclear force. Nuclei exhibit captivating properties such as the coexistence of spherical 
and deformed shapes at low energies1–3, strong short-range correlations between pairs of nucleons4, or decay 
modes driven by the strong5, weak6 or electromagnetic7 forces. Furthermore, nuclear decays are crucial to under-
stand the origin of heavy elements in the universe8, and experiments using nuclei aim to answer fundamental 
physics questions such as which is the nature of dark matter9, why matter dominates over antimatter in the 
universe10, or whether neutrinos are their own antiparticles11.

The nuclear shell model, also known as the configuration-interaction method, is one of the leading many-body 
approaches to study the structure of nuclei. The shell model is grounded in the idea that, in a similar fashion to 
electrons in an atom, nucleons occupy orbitals organized in shells of different energies12,13. Nuclear states are then 
obtained by computationally intensive diagonalizations of the nuclear Hamiltonian in a many-body configura-
tion space comprising one or several shells. In spite of impressive progress in recent decades14–17, the exponential 
scaling of the many-body Hilbert space with the number of nucleons ultimately prevents the application of the 
shell model across the entire nuclear chart, particularly in heavy nuclei.

Quantum computing promises to circumvent limitations associated to any exponentially-scaling many-body 
system using the principle of superposition of qubit states18. In the current noisy intermediate-scale quantum 
(NISQ) device era19, variational quantum eigensolvers (VQE)20,21 are among the most successful algorithms22 
exploiting the benefits of quantum computing to deal with complex many-body problems in physics23,24 and 
chemistry25–27. Quantum many-body systems that have been used as VQE testbeds include the Fermi-Hubbard28, 
Ising29 and Lipkin–Meshkov–Glick models30–34, superfluid systems35,36, hadrons37 or molecules38–40.

In general, a VQE implementation requires a series of well-defined stages24, involving (a) a mapping between 
physical degrees of freedom (eg fermionic operators) and the qubits in a quantum computer; (b) the prepara-
tion of an initial reference state; (c) a (potentially iterative) variational optimization; (d) a measurement strategy 
for expectation values of operators (most importantly, the Hamiltonian); and (e) an error mitigation scheme. 
Previous nuclear shell-model studies have only partially tackled these problems41–44. The aim of this article is 
to present a circuit design strategy that explicitly addresses all these aspects to solve the nuclear shell model in 
a quantum computer. We also quantify the necessary circuit resources, such as depths and widths, to achieve 
precise predictions for nuclear masses. We do this in a set of test nuclei across different nuclear shells. To this 
end, we perform (classical) baseline simulations on the corresponding circuit architectures and benchmark the 
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results against diagonalizable shell-model simulations as well as independent ADAPT-VQE simulations without 
an explicit circuit implementation.

Results
Nuclear shell model.  The nuclear shell model14–17 considers nuclei composed by an inert core of nucleons, 
which do not explicitly contribute to the dynamics, and a set of valence protons and neutrons interacting in a 
relatively small configuration space. This space is usually bounded by two magic numbers, which denote special 
configurations of protons or neutrons leading to particularly stable nuclei. Magic numbers thus define shells 
with large energy gaps between them. Configuration spaces used in shell-model calculations usually comprise 
one or two shells. Panel (a) of Fig. 1 shows the light to mid-mass region of the isotope chart. We highlight areas 
where the p, sd and pf shell-model calculations are routinely employed.

Since the nuclear force is rotationally invariant and nucleons are fermions, it is useful to work in a single-
particle basis with states with quantum numbers n lj , where n is the principal quantum number, l the orbital 
angular momentum and j the total angular momentum45. This basis also includes m third-component projections 
of j degenerate in energy. The nuclear Hamiltonian is also to a very good approximation the same for neutrons 
and protons, so it is customary to define, additionally, the isospin quantum number t = 1/2 , with third compo-
nent tz discerning protons and neutrons46. Many-body nuclear states have good total angular momentum J and 
isospin T, with respective third components M and Tz given by the sum of the third components of all nucleons 
in the nucleus47.

The nuclear Hamiltonian in a given configuration space can be written as

where εi is the energy of the single-particle state i and v̄ijkl = vijkl − vijlk are antisymmetrized two-body matrix 
elements. ai and a†i  are fermionic annihilation and creation operators associated to each single-particle state, 
i. The matrix elements v̄ijkl can be obtained17,48 from an effective field theory of the underlying theory of the 
nuclear force, quantum chromodynamics49. Here, instead, we use standard phenomenological Hamiltonians, 
with components adjusted to better reproduce key properties of selected nuclei50. We choose the Cohen–Kurath 
interaction in the p shell51, USDB in the sd shell52 and KB3G in the pf shell53.

A suitable many-body basis, also referred to as Fock space, for shell-model calculations is provided by the so-
called M−scheme46, in which the Slater determinant states are chosen to have a well-defined M. Tz = (N − Z)/2 
is also well defined because the number of neutrons N and protons Z is fixed. Nuclear states are thus expanded 
in this basis,

and nuclear wavefunctions and their corresponding energies are eigenvectors and eigenvalues of the Hamiltonian 
matrix in the basis of Slater determinants. The cα coefficients are obtained through diagonalization employing 
state-of-the-art nuclear shell-model codes54–57 and ensure that eigenstates have good J and T quantum numbers.
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Figure 1.   The shell model and quantum encoding. (a) Segrè chart covering the p, sd and part of the pf shell. 
Solid lines indicate neutron and proton magic numbers. Open circles show the isotopes studied in this work. (b) 
Schematic representation of the p-, sd- and pf-shell configuration spaces. The number on top of every single-
particle state is the qubit label for the implementation in a quantum device under a Jordan–Wigner mapping. (c) 
Number of many-body configurations, dimmb , in the M-basis as a function of the number of active neutrons in 
the configuration space, NCI . We show results for the isotopic chains of He and Be in the p shell; O, F, Ne, and Al 
in the sd shell; and Ca, Ti, Cr, and Zn in the pf shell. Isotopes beyond the middle of the shell are not shown since 
the number of configurations is symmetric. Bold marker lines highlight nuclei studied in this work.
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However, this framework faces a steep computational bottleneck in terms of the maximum size of the Ham-
iltonian matrix from which the lowest eigenvalues and eigenvectors can be calculated. The dimension of the 
single-particle basis of a nuclear shell consisting of several orbitals nlj is

where the sum runs over the j values in a given configuration space, see panel (b) of Fig. 1 for details. The cor-
responding number of Slater determinants grows combinatorially as

where NCI ( ZCI ) is the number of active neutrons (protons) in the configuration space. Let us consider the sd shell, 
comprising the 1s1/2 , 0d3/2 and 0d5/2 orbitals for both protons and neutrons, and the pf shell, comprising the 0f7/2 , 
0f5/2 , 1p3/2 and 1p1/2 orbitals. There are 12 (20) single-particle states in the sd (pf) shell, so that it can describe 
the isotopic chains of 12 (20) elements with up to 12 (20) valence neutrons, as shown in panel (a) of Fig. 1. Panel 
(c) illustrates the exponential scaling of the number of many-body configurations, dimmb , present for isotopes 
of elements in different shells. The number of basis states needed to describe two isotopes of the same element, 
or two elements with the same N in the same shell, can differ by three or more orders of magnitude. In practical 
calculations, this number may be reduced by about an order of magnitude due to symmetry considerations, lead-
ing to a reduced number of Slater determinants, NSD

15. However, the scaling in either dimmb or NSD ultimately 
places a limit in the computational resources needed to study heavy nuclei with the nuclear shell model. This 
refers to both the number of operations per second, or CPU time, and the memory to store all configurations. 
In fact, the shell-model history is closely tied to that of computation, as larger-scale calculations became feasible 
with the advances in computational power and refined techniques in CPUs and GPUs14–17.

Variational algorithm.  Here, we implement the nuclear shell model in a quantum computer following a 
standard Jordan–Wigner (JW) mapping43,44,58,59. We associate each qubit with a single-particle state in the con-
figuration space, which can either be empty (projection 0) or occupied (projection 1). Panel (b) of Fig. 1 shows 
the mapping between single-particle states and qubits for the p (bottom), sd (central) and pf shells (top panel). 
From a memory-storage perspective, a shell-model VQE under the JW mapping only requires as many qubits 
as single-particle states in the configuration space. In other words, the number of qubits remains constant for 
all nuclei described within a given shell. If a VQE can be used to diagonalize the problem and is robust against 
errors, the approach may provide access to much larger configuration spaces, currently unattainable in classical 
computers.

A VQE uses the Rayleigh–Ritz variational principle60,61 to calculate the ground-state of a Hamiltonian starting 
from an initial ansatz. Our algorithm of choice is ADAPT-VQE27,38,40,59,62, which iteratively builds a wavefunc-
tion of the form

where |ref� is an initial (reference) state of the quantum system, k is the iteration (or layer) index, Ak are parti-
cle-hole excitation operators, and θ = {θi , i = 1, . . . , n} are a set of variational parameters. We stress that the 
adapted wavefunction in Eq. (5) is free of Trotter–Suzuki approximation errors63,64. This ansatz does not require 
decomposing an exponential map of a sum of excitation operators, as would be the case in algorithms such as 
UCC-VQE25,44.

The minimization of the energy of this wavefunction with respect to the parameters θ,

can be performed classically65 and yields an approximate ground-state energy. Here, we use the BFGS optimizer 
with a gradient tolerance set to 10−6 at every iteration. At each layer k of the iterative procedure, the ansatz grows 
by one parametrized unitary, |ψ(θ)� → eiθkAk |ψ(θ)� . The new operator Ak is selected according to the largest 
energy gradient computed as

Thus, at every layer, the wavefunction adapts to the new information acquired in the previous optimization. 
The set of parameters θ are obtained anew for every layer, so an updated state has no ties to former states. The 
adaptive character of ADAPT-VQE should lead to implementations with shallower circuits38,40.

A crucial point for the optimal convergence towards the target state is the choice of excitation operators Ak . 
These are predefined in an operator pool, prior to the start of the simulation. Since our interest lies in the nuclear 
shell model, with a Hamiltonian of the form in Eq. (1), we use a pool of two-body fermionic excitation operators
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where p, q, r and s are single-particle labels with quantum numbers n, l, j, m and tz . The same operator may be 
selected more than once throughout the iterative process, but not on consecutive iterations. We apply symmetry 
considerations when building the Slater determinant basis for the nuclear ground state, and only consider exci-
tation operators which conserve the total angular momentum and isospin projection M and Tz . This iterative 
procedure continues until convergence, defined when all the gradient norms in Eq. (7) vanish and/or when the 
energy is close enough to a known solution from, for instance, classical diagonalization benchmarks. While one 
could consider more complex operators, involving triple or quadruple particle-hole excitations43,44, our simula-
tions indicate that, for the wide set of nuclei studied in this work, full shell-model correlations can be captured 
at the two-body level with a commensurate number of ansatz layers, of at most a few hundred.

Circuit design strategy.  The main aim of this paper is to determine the optimal architecture of quantum 
circuits that can implement a nuclear shell-model VQE. We explore all the necessary stages of a VQE, from 
the encoding to the energy measurement in the “Methods” section. Ultimately, the circuit design strategy that 
we propose provides an approximation-free implementation of ADAPT-VQE, in a one-to-one correspondence 
with the method38,62. Having access to the circuit structure across the full VQE minimization process, including 
energy measurements, is a key step forward in discussing the scalability of nuclear shell-model simulations in 
quantum devices, and it is particularly critical to estimate the necessary resources for nuclear shell-model simu-
lations with a real quantum advantage, that is, in isotopes or regions of the chart where current classical devices 
cannot be employed.

We benchmark our circuit implementation with circuit-free ADAPT-VQE simulations59. The latter imple-
ment the full algorithm using regular matrix calculus, expressing statevectors, Hamiltonians and pool operators 
as sparse matrices in the Fock basis. With the circuit for the ansatz built and optimized, we simulate the energy 
measurement protocol, to test the circuits for the changes of basis needed to extract energies in an actual quan-
tum computer.

The state preparation protocol is the most resource-intensive part of the algorithm and we provide indications 
of the resource costs in the Simulations subsection. We can also quantify and optimize the scaling of the energy 
measurements. The nuclear shell-model Hamiltonian in Eq. (1) consists of one and two-body operators, which 
can be expressed in terms of Pauli strings (see the “Methods” section). The one-body part of the Hamiltonian is 
diagonal and can be measured directly. We divide the two-body part in three different kinds of terms, depending 
on the number of repeated indices. Table 1 lists the number of circuits needed to measure the expectation value 
of each part of the Hamiltonian for the p, sd and pf shells. Our design strategy indicates that 100 circuits should 
suffice to compute any isotope in the p shell and semi-magic nuclei in the sd shell. Open-shell isotopes require 
a factor of 4–6 more circuits than their semi-magic counterparts in a given shell.

In a quantum computer implementation, an energy calculation will be affected by statistical errors. Across a 
whole ADAPT-VQE simulation, the total number of circuits to be measured for each layer will be the product 
of three terms, Ns × Ntot × Nfc . The number of shots, Ns , is of statistical nature and, as discussed in the Methods 
section in the context of Eq. (19), it will be sensitive to error mitigation schemes.

Ntot is the number of different energy measurement circuits. We estimate this number and show the results 
in Table 1. Finally, Nfc is the number of function calls from the classical optimizer, which we analyze in the Sup-
plementary Information.

Simulations. 
The systems we explore include nuclei across different shells, with even and odd numbers of protons and neutrons 
(see panel (a) of Fig. 1). We find that circuit-free and circuit-full simulations employing the same parameter 
minimization algorithm agree to numerical accuracy. We estimate the required depth of a circuit by imposing 

(8)T
pq
rs = i(a†pa

†
qaras − a†r a

†
s apaq),

Table 1.   Number of circuits needed to measure the expectation value of the nuclear shell-model for the p, sd 
and pf shells. Nqb indicates the number of qubits for only neutrons or protons (top row for each shell) or both 
nucleon types (bottom). Nh and Nhh are the number of single- and double-hopping terms in the Hamiltonian 
(related to hijki and hijkl , respectively), defining the number of circuits needed to measure these parts. The 
last column lists the total number of circuits, Nh + Nhh + 1 , accounting also for the single circuit needed to 
measure 〈ni〉 and 〈h(l)ijij〉 . The values in parenthesis correspond to the minimum number of groups containing 
hijkl terms that commute with each other and thus can be measured with the same circuit.

Shell Nqb Nh Nhh Ntot

p
6 2 10 (9) 13 (12)

12 4 109 (44) 114 (49)

sd
12 8 203 (86) 212 (95)

24 16 1389 (518) 1406 (535)

pf
20 20 1507 (570) 1528 (591)

40 40 10,572 (3459) 10,613 (3500)
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bounds on the relative error of the ground-state energy, εE =
|E − ESM|

ESM
 , where ESM is the corresponding clas-

sical shell-model diagonalization result. Table 2 lists the number of ADAPT-VQE layers needed in an ansatz state 
to achieve a given value of εE for a series of nuclei across the p, sd and pf shells. All energies tend to converge to 
the benchmark values, albeit with different rates. Semi-magic nuclei close to the closed shell typically converge 
rapidly, with less than 10 ADAPT-VQE layers. In contrast, the most costly nuclei simulated in this work, neon 
isotopes, require a few hundred ADAPT-VQE layers to reach a ground-state energy error of 2%. Nonetheless, 
we stress that the optimizations do not get stuck in barren plateaus. A key advantage of our circuit design strategy 
is that it allows us to quantify the associated quantum circuit resources. We take the number of CNOT gates 
required in the state preparation, NCNOT , as a quantitative indicator of circuit resources.

Figure 2 shows the evolution of εE (top panel) and NCNOT (bottom) as a function of the number of ADAPT-
VQE layers for four representative isotopes across different nuclear shells. Simulations for all nuclei show that 
εE decreases exponentially as the number of layers in the ansatz increases, while the number of CNOT gates 
grows linearly or polynomially. This number depends on the particular operators chosen by the ADAPT-VQE 
minimization, but it is at most 16 (Nqb − 1) per ansatz layer (see “Methods” section). In contrast, the average 
number of CNOT gates per ansatz layer found by ADAPT-VQE simulations is roughly half of the corresponding 
upper bounds, see Table 2. As an example, finding the ground-state energy of 22 O with an error of few percent, 
requires about 20 ansatz layers and ≈ 2000 CNOT gates. We provide more details for all the nuclei studied in 
this work in the Supplementary Information.

Figure 2 and Table 2 demonstrate that ADAPT-VQE converges exponentially as the number of layers, or 
equivalently CNOT gates, is increased.

Our results are either commensurate or competitive compared to previous estimates of circuit depth based 
on UCC-VQE on the p shell and on two oxygen isotopes on the sd shell43,44. For 8Be, Stetcu et al. require 112 
variational parameters to reach εE ≈ 1% even after including triple and quadruple excitation operators43. Our 
implementation of ADAPT-VQE, with two-body excitation operators only, requires 48 parameters to reach 
εE = 10−7 . In 22 O, the UCC-VQE ansatz leads to εE ≈ 3% with 35 parameters43, whereas Fig. 3 indicates that 
ADAPT-VQE reaches a similar level of accuracy with about 20 layers. For 6Li, we find that 9 layers suffice to 
get a converged result up to 10−7 , in contrast to the observations of Ref.44, where an alternative ADAPT-VQE 
implementation reaches only εE ≈ 10−3 . A difference between previous implementations and our work is that 
we let our classical minimizer reach bottom precision at each ADAPT-VQE layer, whereas Kiss et al. employ 10 
minimization steps per layer (with the SPSA optimizer)44. Moreover, UCC-VQE shell-model implementations 
have so far relied on Hartree–Fock reference states, which may not be optimal starting points for VQEs59,66. Either 
way, it appears that ADAPT-VQE shell-model simulations outperform their UCC-VQE counterparts in terms of 
layers, an observation that is in line with findings in quantum chemistry27. We note, however, that an unbiased 
comparison of quantum hardware efficiency between different methods requires a one-to-one quantification of 
the resources in each approach, including explicitly energy measurement overheads.

Table 2.   Ansatz and circuit depth for a given energy bound. Number of ansatz layers ( Nlayers ) and relative-
error ( εE ) upper bounds for the ground-state energy of all nuclei simulated in this work, organized according 
to their configuration space (p, sd, and pf shells), number of qubits Nqb , and of many-body configurations 
(Slater determinants) NSD . The last column reports the average number of CNOT gates per layer NC together 
with its upper bound, 16(Nqb − 2) (see “Methods” section). For nuclei with Nlayers > 100 , the average only 
accounts for the first 100 layers.

Shell Nqb NSD Nucleus Nlayers εE bound NC (bound)

p

6 5 6Be 2 10−8 42 (80)

12

10 6Li 9 10−7 92 (176)

53 8Be 48 10−7 68 (176)

51 10Be 48 10−7 62 (176)

21 13C 19 10−7 77 (176)

sd

12

14 18O 5 10−6 99 (176)

37 19O 32 10−6 85 (176)

81 20O 70 10−6 98 (176)

142 22O 117 10−6 93 (176)

24

640 20Ne 167 2× 10−2 137 (368)

4206 22Ne 236 2× 10−2 137 (368)

7562 24Ne 345 2× 10−2 138 (368)

pf 20

30 42Ca 9 10−8 116 (304)

565 44Ca 132 10−2 153 (304)

3952 46Ca 124 10−2 139 (304)

12,022 48Ca 101 10−2 137 (304)

17,276 50Ca 221 10−2 130 (304)
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Figure 2.   Energy relative error and circuit complexity as a function of ADAPT-VQE layers. Evolution of the 
relative error for the ground-state energy, εE , (top panel) and number of CNOT gates in the ansatz circuit 
(bottom) as a function of the number of ansatz layers for simulations of 8Be, 22 O, 20 Ne and 48Ca. As the 
algorithm adaptively iterates, errors decay exponentially while the number of CNOT gates increases linearly or 
polynomially.

Figure 3.   Quality of the wavefunction and entanglement entropy as a function of ADAPT-VQE layers. 
Evolution of the relative error for the ground-state energy, εE , the infidelity, I, and the average relative error of 
single-orbital entropies, εS(1) for 20 O as a function of the number of ansatz layers (top panel). Evolution of S(1)i  for 
the same nucleus and i orbitals 0d3/2 , 1s1/2 and 0d5/2 , where the dotted lines indicate the entropies for the exact 
solution (bottom panel). The maximum S(1)k  is 1, very close to the value of the 0d5/2 orbitals.
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ADAPT-VQE predicts the ground-state energy of the nucleus, but one also has access to the nuclear wave-
function |ψ(θ)� , although reconstructing it from quantum hardware may require costly quantum tomography. 
One can quantify the quality with respect to a given benchmark wavefunction, |ψb� , by employing the infidelity 
I = 1− |�ψb|ψ(θ)�|2 . We take the classical shell model as a benchmark, and the better the level of agreement 
between both wavefunctions, the closer I is to 0. We also use the single-orbital entanglement entropy, 
Si = −(1− γi) log2(1− γi)− γi log2 γi , with γi = �ψ(θ)|a†i ai|ψ(θ)� , bound between 0 and 1, to evaluate the 
importance of quantum correlations in the ansatz67–72. These two indicators provide quantitative complementary 
information on the quality of the wavefunction and the variational process. Focusing on the test case example 
of 20 O, the top panel of Fig. 3 shows the infidelity I of the ground state with respect to the shell-model wavefunc-
tion (dashed line). The panel also shows the average of relative errors of each single-particle state entanglement 
entropy, εS(1) = 1

Nqb

∑

i εS(1)i
 (dotted line). These two quantities follow closely εE along the iterative process. We 

observe a few sudden drops in the relative error for the energy, which correlate with similar drops in I and εS(1) . 
This indicates that, at certain points in the optimization, ADAPT-VQE entangles parts of the nucleus relatively 
faster than others. Overall, the curves suggest that the ADAPT-VQE ansatz captures efficiently the entanglement 
structure of the many-body wavefunction. A more extensive analysis of the infidelity is provided in the Sup-
plementary Information. The bottom panel of Fig. 3 provides a closer inspection to the entanglement structure 
of this nucleus. Based on previous studies43,68,69, we expect nuclear-structure features to correlate with single-
particle states entanglement properties. The panel shows the quantum simulated single-orbital entropies of the 
12 single-particle states as a function of the number of ansatz layers, compared to the classical shell-model 
entropies (horizontal dotted lines). We clearly distinguish the emergence of three subshells in the entropy. The 
most entangled qubits are those in the lowest-energy orbital, 0d5/2 , reaching almost the maximal value. These 
are followed by the 1s1/2 and the 0d3/2 states, which are correspondingly less entangled (and occupied). The 
entropies saturate to the shell-model value relatively quickly, within about 20 layers. We take this as an indication 
that ADAPT-VQE captures early on the most important correlations of the nucleus, which are subsequently 
refined by the variational process.

Discussion
In this work, we provide a detailed framework for a quantum hardware implementation of ADAPT-VQE tailored 
to nuclear shell-model calculations. The algorithm requires as many qubits as the number of single-particle states, 
a relatively small number ( ≈ 50 ) even for valence spaces demanding currently unavailable classical computational 
resources. We benchmark our results with calculations using a circuit-free, regular matrix implementation of 
the algorithm.

Our simulations do not become stuck in local minima or barren plateaus. We find that the majority of the 
resources in the quantum circuit are dedicated to the construction of the parametrized ansatz wave function. 
Each additional parameter in the ansatz increases the circuit depth linearly with the number of qubits. In con-
trast, the preparation of the reference state and the implementation of the basis changes to measure Hamiltonian 
expectation values are comparatively small parts of the total circuit depth. We quantify (see “Methods” section) 
the number of circuits needed to measure energies in the different isotopes. Our proposed energy-measuring 
circuits are not substantially deeper than the corresponding circuit encoding the wave function.

We calculate the ground state of selected nuclei in the p-, sd- and pf-shell valence spaces, using up to 24 
qubits. For all these systems, our simulations indicate that the relative error in the ground-state energy and the 
infidelity decrease exponentially as the number of layers in the ansatz increases (see Supplementary Informa-
tion). While the number of parameters needed to reach a certain precision depends on the nucleus, our results 
indicate that at most 150 CNOT gates per ADAPT-VQE layer are necessary to get ground-state energies accurate 
at the percent level. This suggests that a circuit implementation of the shell model with ADAPT-VQE may be 
a suitable way forward for quantum computing simulations of nuclei. Nevertheless, the number of layers and 
CNOTs shown in Table 2 do not demonstrate an exponential quantum advantage73 with respect to the classical 
computation cost. This is indeed seen more clearly in Fig. 4, which shows the number of total CNOTs needed to 
obtain an energy relative error of 2%, as a function of the number of Slater determinants for all nuclei studied 
in this work. Figure 4 indicates that up to nuclear masses A ≃ 50 the number of CNOT gates scales roughly as 
the number of Slater determinants.

Our study opens several potential avenues for further exploration. First, different fermionic encodings may 
reduce the number of CNOT gates, which are subject to noise errors that can limit realistic implementations 
in quantum devices. A preliminary analysis using the Bravyi–Kitaev basis58 (instead of a JW transformation) 
suggests a ≈ 10% reduction in the number of CNOT gates of ADAPT-VQE after 100 iterations in the sd and pf 
shells. Other options of fermionic mappings such as Gray code encoding74,75 should also be explored. Second, the 
present work is an ideal testbed for the implementation of quantum information tools for the study of nuclear 
structure. Our calculated single-particle state entropies reveal the entanglement structure of nuclei, in close 
analogy to the occupation probabilities of the orbitals obtained in classical diagonalization schemes. Other cor-
relation measures, such as quantum discord32,76,77, will be the subject of future work. Furthermore, one should 
elucidate more clearly the sharp differences between the UCC and ADAPT ansatz VQEs. On the one hand, the 
choice of initial states, at the mean-field level43,44 or mixing many-body configurations, may improve the overall 
performance36,59 of the minimization process. On the other, understanding why the ordering in the choice of 
operators is so relevant may provide further insights into nuclear many-body correlations. A better understanding 
on these issues is key to find optimal algorithms and circuit designs for the nuclear shell model that avoid the 
exponential scaling of resources and can be realistically implemented in NISQ devices. We note that there are 
promising alternative algorithms for nuclear shell-model calculations based on the Lanczos method78.
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Methods
We simulate circuits for several p-, sd- and pf-shell nuclei using the statevector simulator qibo79, together with 
the qibojit package, which harnesses multi-core parallelization based on JIT (just-in-time) compilation and the 
numba compiler80. qibo has been found to be specially efficient when compared to other simulators for similar 
fermionic quantum-circuit simulations81. At each layer, we execute the quantum circuit to extract a statevector 
|ψn� of dimension 2Nqb . This extraction is limited by classical computer resources, which in turn provide stringent 
mass limits for our classical circuit simulations. For instance, simulating open-shell nuclei in the pf shell valence 
space, requires state-vectors with 240 complex coefficients, demanding 8 TB of memory in single-precision for-
mat. When dealing with 20 or more qubits, we use GPUs and the cupy compiler82 to accelerate computations.

Next, we describe the five different stages24 of our VQE circuit design strategy.

Mapping.  We consider the JW mapping58,83, which transforms nucleonic creation and annihilation operators 
as

where σ±
j = 1

2 (Xj ± iYj) and Xj , Yj , Zj are the usual Pauli matrices applied to qubit j. Using these relations we can 
express any fermionic operator in terms of Pauli strings. Table 3 lists the expressions for the two types of (self-
adjoint) terms appearing in the nuclear shell-model Hamiltonian Heff  in Eq. (1). We use an auxiliary operator

(9)a†i =

(

i−1
∏

k=0

Zk

)

σ−
i , ai =

(

i−1
∏

k=0

Zk

)

σ+
i ,

Figure 4.   Correlation between number of CNOTs and Slater determinants. Total number of CNOTs NCNOT 
needed to obtain a ground-state relative energy error of 2% as a function of the number of Slater determinants 
NSD in the many-body basis for all nuclei considered in this work. The observed trend does not indicate a 
quantum exponential advantage over classical methods.

Table 3.   Jordan–Wigner transformation for the main operators appearing in the Hamiltonian and in our 
ADAPT-VQE operator pool. Indices run over p < q and r < s , assuming that all are different. If two indices 
are repeated, then hpqpr = −nphqr and Tpr

pq = npTqr , with q < r . We note that hpqpq = −2npnq and Tpq
pq = 0.

Fermion operators Qubit operators

np a†pap
1

2
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Table 3 also indicates the JW transformation for the pool operators Tpq
rs  , and for single-excitation operators 

which appear when indices are repeated in either hpqrs or Tpq
rs  . In this context, the most important features of an 

operator are the numbers and lengths of the Pauli strings they contain. These ultimately determine the efficiency 
in the circuit implementation of ADAPT-VQE. The two operators hpqrs and Tpq

rs  contain eight Pauli strings, each 
of length Lpqrs = n2 + n4 − n1 − n3 + 2 , where n1 , n2 , n3 and n4 are the indices p, q, r and s sorted in ascending 
order. For example, if (p, q, r, s) = (2, 8, 5, 7) , then (n1, n2, n3, n4) = (2, 5, 7, 8) and L2857 = 6 . If two indices are 
repeated, the expressions simplify to hpqpr and Tpr

pq , as indicated in Table 3. These consist of two Pauli strings of 
length L(1)pqr = r − q+ 1 and two other strings of length L(2)pqr = r − q+ 2.

Initial state preparation.  To provide a minimal starting point to the simulations, we choose the lowest-
energy Slater determinant as a reference state. Under the JW mapping, Slater determinants are mapped to the 
computational basis by flipping the qubits corresponding to the occupied orbitals using X gates. Considering 
for example the case of 6Be, an isotope in the p shell (panel (b) of Fig. 1) and for our interaction of choice, the 
lowest-energy Slater determinant is

where |vac� is the vacuum state with no particles in the valence space. After a JW mapping, the state is translated 
into the computational basis as

The leftmost block of Fig. 5 shows the corresponding circuit.
This choice of initial state preparation is minimal in terms of circuit resources: it has unit depth independently 

of the number of orbitals in the valence space and it does not involve any two-qubit gates. For a given valence 
neutron and proton number, NCI and ZCI , finding the lowest energy Slater determinant requires at most NSD 
operations. This task can be performed relatively quickly in a classical computer, and is a one-off pre-processing 
overhead that we do not incorporate in the circuit resources discussed below.

Variational optimization.  The variational ansatz is parametrized as in  Eq.  (5), with pool operators 
Ak = T

pq
rs  given in Table 3 after the JW transformation. We convert the pool operators Tpq

rs  to Pauli strings using 
the OpenFermion package84, and for the circuits for the unitaries eiθT

pq
rs  we follow the staircase algorithm of 

Fig. 5. In the simulated circuits we only use single-qubit and CNOT gates.
All Pauli strings in these sums commute with each other, so each term in Tpq

rs  can be exponentiated separately 
and there is no need for a Trotter-Suzuki approximation. This results in the expression

with θ ′ = θ/8 and Ppqrs  given in Eq. (10). The exponential of a single Pauli string is particularly easy to implement 
with the staircase algorithm85. If the Pauli string contains only Z matrices, the circuit contains two cascades of 
CNOTs and a Z rotation, Rz(θ) ≡ e−i θ2 Z , with − θ

2 the coefficient multiplying the Pauli string. If the product con-
tains an X or Y matrix, we apply a basis change in the corresponding qubit, namely X = HZH and Y = R†

xZRx , 

(10)P
pq
rs ≡





q−1
�
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




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

.

(11)|0, 3� = a
†
0a

†
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(12)|100100� = X0X3|000000�.

(13)
eiθT

pq
rs =e−iθ ′P

pq
rs XpYqYrYs e−iθ ′P

pq
rs YpXqYrYs eiθ

′P
pq
rs YpYqXrYs eiθ

′P
pq
rs YpYqYrXs

× eiθ
′P

pq
rs YpXqXrXs eiθ

′P
pq
rs XpYqXrXs e−iθ ′P

pq
rs XpXqYrXs e−iθ ′P

pq
rs XpXqXrYs ,

q0 |0〉 X • •

q1 |0〉

q2 |0〉 H • • H • •

q3 |0〉 X H • • H • H •

q4 |0〉 Rx • • R†
x

q5 |0〉 H Rz(θ) H

Figure 5.   Examples of main circuit blocks, separated by dashed boxes, in ADAPT-VQE for the simulation of 6
Be. Left: preparation of the reference state defined in Eqs. (11) and (12). Middle: implementation of e−i θ

2
X2X3Y4Z5 

using the CNOT staircase algorithm, one out of the many unitaries in the variational part of ADAPT-VQE. 
Right: circuit of the basis change M0123 needed to diagonalize h0123 . The subcircuit in qubits q2 and q3 containing 
two CNOTs and a Hadamard gate H corresponds to the basis change M23.
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where H is the Hadamard gate and Rx the rotation e−i π4 X . Figure 5 (middle) illustrates the procedure for the 
example implementation of e−i θ2 X2X3Y4X5 . If eiθT

pq
rs  acts on non-adjacent qubits, we implement a change of basis 

through fermionic SWAP (FSWAP) gates, so that only CNOTs applied to contiguous qubits are needed. The 
FSWAP exchanges states while maintaining the correct parity,

Using the staircase protocol, each parametrized layer eiθT
pq
rs  requires 16 (Lpqrs − 1) CNOT gates, where Lpqrs 

is the average length of the Pauli strings in the operator. Lpqrs is bounded by the number of qubits Nqb , implying 
that the maximum number of CNOTs per ansatz layer is 16 (Nqb − 1) and that the depth per layer grows linearly 
with the number of single-particle states in the valence space. If qubits are linearly connected in hardware and 
non-adjacent qubit states are brought together with FSWAPs, the depth per layer has a total linear overhead. The 
precise overhead size depends on how qubits are arranged and connected to each other. However, it is bounded 
by 4(Nqb − 4).

Let us provide an example illustrating the simplicity of the ADAPT-VQE circuit implementation. Obtaining 
the ground-state energy of simple nuclei only demands a few operators. As shown in Results, ADAPT-VQE 
simulations for 18 O converge to an energy accuracy better than 10−6 with a five-layer ansatz, reading

Figure 6 shows the full circuit assuming one-dimensional connectivity between qubits, and gives the param-
eter values. Our algorithm includes the multiqubit operators eiθT

pq
rs  involving CNOT gates acting on non-adjacent 

qubits when these are laid out in a one-dimensional array. We manipulate these operators to include only local 
two-qubit gates through a series of FSWAPs.

Measurement.  Once the ADAPT-VQE ansatz |ψn� is prepared in the quantum circuit at a given layer n, 
we measure the energy with the expectation value �ψn|Heff |ψn� . To this end, we build a series of circuits that 
implement a change of basis to diagonalize separately each term of the Hamiltonian. The number of terms in the 
shell-model Hamiltonian scales with the number of qubits as O(N4

qb) , but we find a much milder scaling of the 
circuit number with Nqb.

One-body (number) operators ni are diagonal and can be measured directly,

where p(i)1  , the probability of measuring “1” in qubit i, can be extracted by measuring multiple times that qubit. 
Since all one-body operators commute with each other, we can measure all of them simultaneously. The two-
body part of the Hamiltonian hijkl can be divided into three kinds of terms depending on whether indices (i, j, 
k, l) are two, three, or four different integers. Local terms hijij are the product of two number operators ni and nj 
and they can be measured simultaneously,

with p(ij)11  the probability to measure “1” in qubits i and j. The non-diagonal parts of hijik and hijkl swap two 
states in the subspaces of qubits (i, j, k) and (i, j, k, l), respectively. These operators can be disentangled through 

(14)FSWAP = 1+ a†i aj + a†j ai − a†i ai − a†j aj .

|ψ18O� = e
iθ4T

05
23 e

iθ3T
05
9 10e

iθ2T
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14 e

iθ1T
05
67 e
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05
8 11X0X5|0�⊗12.

(15)�ψn|ni|ψn� =
1

2
�ψn|1− Zi|ψn� = p

(i)
1 ,

(16)�ψn|hijij|ψn� = −2�ψn|ninj|ψn� = −2p
(ij)
11 ,

q0 |0〉 X

U69
05 (θ0)

U67
05 (θ1)

U12
03 (θ2)

U67
05 (θ3)

U23
05 (θ4)

q1 |0〉
q2 |0〉 × ×
q3 |0〉 ××× ×××
q4 |0〉 ××× ×××
q5 |0〉 X × ×
q6 |0〉 × × × ×
q7 |0〉 × ×× ××× ××× ×××
q8 |0〉 × ××× ×××× ×××× ××××
q9 |0〉 ×××× ×××× ××× ×××
q10 |0〉 ××× ××× × ×
q11 |0〉 × ×

Figure 6.   Circuit to prepare the 18 O ground state. X gates prepare the reference state and FSWAP gates change 
the basis so that pool-operator exponentials act on adjacent qubits. Multiqubit gates in boxes are defined as 
U

pq
rs (θ) ≡ eiθT

pq
rs  and θ0 = − 0.157263 , θ1 = − 0.437238 , θ2 = 0.604663 , θ3 = 0.214431 , θ4 = − 0.785469.
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series of CNOT gates and reduced to an X gate acting on a single qubit. The Pauli matrix X is then diagonal-
ized with a Hadamard gate, X = HZH . In turn, we diagonalize hijik and hijkl using Mjk ≡ CXkj Hk CXkj and 
Mijkl ≡ CXijCXkiCXlkHlCXlkCXkiCXij , where CXij represents a CNOT gate with control qubit i and target qubit 
j. The right block of Fig. 5 illustrates the corresponding circuit implementation. After diagonalization, assuming 
contiguous indices, the expectation values read

and

with p(q1...qk)r1···rk  being the probabilities of measuring results r1 to rk in qubits q1 to qk in the statevector where the 
basis changes have been applied. We refer to the Supplementary Information for a detailed derivation of Eqs. (17) 
and (18).

The changes of basis needed for measurements add, for any nucleus, an overhead of zero, two or six two-qubit 
gates depending on the Hamiltonian term measured. This represents a small fraction of the circuit depth and a 
constant scaling with the number of single-particle states in the valence space. We discuss in the Supplementary 
Information details regarding to the number of different measurement circuits required to measure the energy 
as well as the gradients of Eq. (7).

Error mitigation.  Finally, expectation values of the Hamiltonian computed using the algorithm described 
above are subject to statistical errors and quantum noise. The former scale as the inverse of the number of shots, 
σE ∝ 1√

Ns
 . In other words, given a target error in the energy accuracy ε〈H〉 , the number of necessary shots scales 

as

The specific factor may be estimated simulating the measurement protocol. A straightforward and robust 
strategy to mitigate errors for ADAPT-VQE shell-model simulations is to use symmetry considerations and 
discard measurements that do not yield results consistent with the Fock basis of the simulated nucleus. Since the 
JW mapping identifies Fock and computational states, this amounts to excluding all states with different number 
of measured “1”s than nucleons in the valence space. Likewise, one should also ignore states with measured “1”s 
distributed in a set of qubits corresponding to a different angular momentum or isospin than the simulated 
nucleus. This protocol should be particularly effective in mitigating single bit-flip errors, which effectively cre-
ate or destroy nucleons, as well as multiple bit-flip errors which do not preserve either nucleon number, angular 
momentum or isospin. These simple but robust strategies may be key in future implementations of this method 
on NISQ devices.

Data availability
The data that support the findings of this study are available within the paper and its Supplementary Information. 
Any additional information is available from the corresponding authors upon request.
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