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A method of gas sensor drift 
compensation based on intrinsic 
characteristics of response curve
Yubing Sun 1* & Yutong Zheng 2

Sensor drift, which is an inevitable and challenging problem in gas sensing, seriously affects the 
detection performance of sensor. In this study, a new sensor drift compensation method, which 
is based on intrinsic characteristic of sensory response, is proposed. The dataset of gas sensor for 
two types of gas with a period of 36 months are collected and two features (one is steady-state 
feature, another is transient feature) are extracted. Their relationship, which is found to be certain 
for different months and sensors, is explored. Then, drift compensation method is processed based 
on this relationship, aiming to make the drifted sensor features adjusted to that of month 1, which is 
considered as having no drift phenomenon. Moreover, small amount of dataset is necessary for model 
building and it has strong scalability. Finally, SVM is employed for proving the performance of the drift 
compensation method proposed in this study. The results show the efficacy of 22 month of continuous 
monitoring, which has been enough for most application scenario, and almost 20% of increasement 
of correct classification rate of SVM after drift compensation, which indicates the effect of drift 
compensation method.

Sensor is a way obtaining information, which is a basic and important tool in information age and has been 
largely applied in many areas1,2. Gas sensor is an indispensable kind of sensor, which is a nondestructive and rapid 
detection way, having aroused wide concern from researchers due to its close relation to practical applications. 
Because of those advantages, it has been successfully applied in many areas, such as air quality monitoring3, 
drunk driving4, food quality detection5, and so on.

Sensor drift is a phenomenon that sensory signal response would gradually and unpredictably change even 
exposed to the same analyte under identical condition when sensors are operated over a long period of time 6. 
Furthermore, sensor drift is an inevitable problem, which is the characteristic of sensor itself and has plagued the 
sensor research community for many years. Existing types of gas sensor7,8 all belong to chemical sensor, where 
sensor drift is a serious impairment.

In general, sensor drift can be attributed to two predominant sources 910: real drift and measurement system 
drift. The real drift is the main one, which happens due to the chemical and physical interaction processes of the 
chemical analytes, occurring at the sensing film microstructure. The measurement system drift is produced by 
the external and uncontrollable alterations of the experimental operating system.

Promoting anti-drift performance of sensor material and proposing a method for drift compensation are two 
main ways for solving this problem. Developing a new sensor material is cost-consuming and time-consuming. 
By contrast, proposing a method for drift compensation is relatively easy and has high feasibility. Hence, many 
studies have been done for drift compensation and two main ways are proposed, which are divided into based 
on providing reference gas or not.

Drift compensation method based on reference gas is relatively traditional, whose data processing is simple 
and rapid. Furthermore, acceptable results could be obtained. Ziyatdinov et al.11 proposed drift compensation 
methods based on common principal component analysis combined with reference gas. Good results were 
obtained. However, practically more devices are needed for supplying extra reference gas, which increases the 
detection cost and makes the detection process more complicated. Moreover, the choosing of reference gas is 
another problem. They limit its application scenarios.

For the drift compensation method without reference gas, it is always complex relatively and many studies 
also have been done. Liu, Chaibou, and Huang12 proposed a novel retraining method of multiple self-organizing 
maps for gas sensor drift compensation. Liu and Tang13 developed a novel ensemble method using a dynamic 
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weighted combination of support vector machine (SVM) classifiers. Lei and David14 proposed a unified frame-
work called domain adaptation extreme learning machine for drift compensation. Good performances are all 
obtained. However, those methods are all one step for results obtaining, which contains both drift compensation 
and gas identification, reducing the flexibility of this method. Furthermore, as the increasement of classified 
category, the model would be more and more complex. Moreover, large amount of training dataset is necessary 
for model building and a new model needs to be built when other categories include. Therefore, exploring a new 
drift compensation method, which needs small amount of training dataset for model building and has strong 
scalability, is meaningful.

In this paper, a novel drift compensation method based on intrinsic characteristics of response signal, which 
proceeds without reference gas, is proposed. A parameter, which reflects intrinsic characteristics of gas sensor 
response signal, is researched. This parameter is invariant for certain sensor and detection time. Furthermore, 
drift compensation and classification methods are built separately, leading to small amount of training dataset 
requirement for model building and good model extension ability when other categories include. Moreover, 
classification algorithm is applied for proving the performance of the new proposed method. The aims of this 
paper are: (1) to explore the intrinsic characteristics of response signal; (2) to propose a new method realizing 
drift compensation through intrinsic characteristics; (3) to evaluate the drift compensation performances through 
support vector machine (SVM)15.

Data acquisition and processing
Data acquisition.  The experiment was carried out during January 2019 to December 2021 (36 months) 
in a gas delivery platform facility. Eight gas sensors were applied for collecting dataset and two kinds of gases 
(Ethanol and Ethylene) were tested. The sensors, which were metal-oxide semiconductor (MOS) gas sensors, 
were bought from Figaro Inc. and the model numbers were TGS 2600, TGS 2602, TGS 2603, TGS 2610-C00, 
TGS 2611-C00, TGS 2612-D00, TGS2620 and TGS 2630, respectively. For each sensor, the heater module is 
integrated in sensor for temperature control and 65% RH (relative humidity) is also required for test gas, making 
the detection environment stability.

In detail, their features display in Table 1 below.
All the sensors have response to gases Ethanol and Ethylene. The target gases are the ones that corresponding 

sensor sensitive to. For gas Ethanol, sensor TGS 2600, TGS 2602, TGS 2603, TGS2620 and TGS 2630 have high 
sensitivity. For gas Ethylene, there is not specific sensor corresponding to. However, the combination of eight 
sensors gives comprehensive information, making it feasible for Ethylene detection.

The sensors were placed in a 60 ml-volume closed container, which contained inlet and outlet for gas passing 
through. The flow level of each gas was set as 100 ml/min, ± 1% of accuracy. All the gases were stored in pres-
surized gas cylinders. Synthetic air was applied as background gas and two tested gases were added to it for all 
experiment. Moreover, the relative humidity of the tested gas was controlled in 65%. Furthermore, for obtaining 
stable and effective results, the response of the gas sensor array was measured after seven days preheating period, 
which is attained via a built-in heater. More details could be seen from the product information at https://​www.​
figar​osens​or.​com/​produ​ct/​sensor/.

For the detection time, 600 s were applied for the gas injection and 500 s for the recovery (cleaning). The 
sampling rate was set to 60 Hz. The dataset during a period of month 1, 4, 14, 16, 20, 22, 36 was collected and 
employed for drift compensation research. The data of month 1 was taken as the benchmark, which considered as 
no drift. The data of month 4 showed the characteristic of the initiating. While, the data of month 14, 16, 20 and 
22 showed that of intermediate stage. The data of month 36 showed the characteristic of end stage. The number 
of samples collected during a period of one month for two gases are showed in Table 2 below.

For model building and testing, the dataset is divided into training set and testing set. 25 samples of each 
month and gas were selected and applied for model building. Other samples were applied for model testing.

Data processing.  Feature extraction.  Feature extraction 16 is an extremely important and inevitable pre-
processing step for exploring the data characteristic and applying in real application 17. Figure 1 shows a typical 
response curve of gas sensor, which is also the data collected for analysis.

According to Fig. 1, for gas injection (adsorption) phase, the curve increases first, then become stable. For 
the cleaning (desorption) phase, the curve decreases first and then returns to the initial stage. Furthermore, the 

Table 1.   The features of sensors.

Model number Features Target gases

TGS 2600 High sensitivity to total air contaminants Air pollutants

TGS 2602 High sensitivity to VOCs, ammonia and H2S Air pollutants

TGS 2603 High sensitivity to amine and sulfur series odor (Trimethylamine, methyl mercaptan, etc.) Air pollutants

TGS 2610-C00 Quick response to LP gas Butane Propane

TGS 2611-C00 Quick response to methane Methane

TGS 2612-D00 Comparable response to %LEL of methane and LP gas Methane, propane, butane

TGS 2620 High sensitivity to organic solvent vapors Alcohol, solvent vapors

TGS 2630 High sensitivity to low-flammable refrigerant gases Refrigerant gases

https://www.figarosensor.com/product/sensor/
https://www.figarosensor.com/product/sensor/
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trends of the original curve and drifted curve are similar. On the other hand, the curve trend of desorption phase 
is largely depended on the characteristic of adsorption phase. The higher stable value means the higher slope 
values of adsorption and desorption phase. Hence, for reducing the calculation quantity, the data of response 
curve of adsorption phase are applied for feature extraction.

By contrast, the main difference between them is the stable value and slope of response curve. Hence, four 
features (one steady-state and three transient features) are selected for drift compensation research in this study. 
The steady-state feature is defined as the difference of the maximal response value and the baseline.

where Fs represents the steady-state feature, Max(R) is maximal response value, Min(R) is the baseline of response 
curve.

Its normalized version is expressed by the ratio of the maximal response value and the baseline value.

where ‖Fs‖ represents the normalized version of steady-state feature.
The transition feature reflects the dynamics of sensor response and is evaluated based on exponential moving 

average. The equation presents below.

where n is the detection time point. Rn is response value when detection time point is n. α is the scaling parameter, 
which amplifies the rising amplitude of adjacent response values, and defined as 0.1, 0.01 and 0.001, respectively. 
Sn could be considered as the parameter containing information of Rn and Rn + 1 - Rn . Hence, Fn describes the 
rising amplitude of response value. All the Fn are calculated and the average of them is defined as transition 
feature. Then, three transition features are calculated through three scaling parameters, respectively.

Sensor drift compensation method.  The process of this method is as follows:

(1)	 Feature extraction and selection: According to the method described above, four features have been 
extracted, and two of them are selected (one is the steady-state feature, defined as Feature 1 and another is 
the transient feature, defined as Feature (2) based on the correlation of steady-state feature and transient 
feature for subsequent analysis.

(1)Fs = Max(R)−Min(R)

(2)�Fs� =
Max(R)−Min(R)

Min(R)

(3)
Rn + 1= (1−α)Rn + αSn

Fn = Sn + 1 - Sn

Table 2.   The number of samples collected during a period of one month for two gases.

Month ID

Number of samples

Ethanol Ethylene Total

Month 1 84 88 172

Month 4 82 170 252

Month 14 52 43 95

Month 16 28 40 68

Month 20 264 100 364

Month 22 30 30 60

Month 36 600 600 1200

Figure 1.   Typical response curve of gas sensor.
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(2)	  Relationship exploration of the Feature 1 and Feature 2: Build a model of Feature 1 and Feature 2, and use 
parameters of this model describing their relationship. According to analysis of values of Feature 1 and 
Feature 2, they basically follow a linear relationship. Hence, the equation is as follow:

where i represents feature number, j represents sample number, k represents month. Hence, F(i)(j)(k) is 
defined as the value of feature i of sample j of Month k, F(1)(j)(1) is the value of Feature 1 of sample j of 
Month 1, F(2)(j)(1) is the value of Feature 2 of sample j of Month 1, A(j) is the scaling coefficient of sample 
j of Month 1. A is the average of A(j).

(3)	 Relationship exploration of the Feature 1 of Month 1 and other months: Build a model of the Feature 1 of 
Month 1 and other months, and use parameters of this model describing their relationship. The parameter 
for all samples is calculated, respectively, and the average of them is defined as B(k) , k is 4, 14, 16, 20, 22 and 
36 representing Month4, Month14, Month16, Month20, Month22, Month36, respectively. The equation is 
as follows:

where a represents the average value. Hence, F(1)(a)(1) represents the average value of Feature 1 of Month 
1, F(1)(a)(k) represents the average value of Feature 1 of month k. Therefore, B(k) could be considered as 
the drift degree of month k.

(4)	 Drift compensation: Feature 1 is the feature for drift compensation and applied for next analysis. Parameter 
B(k) is the chief principal for compensation and parameter A is applied as an auxiliary parameter for 
improving compensation accuracy. The calculation process is as follows:

where Fnew(1)(j)(k) is the value of Feature 1 of the sample j of Month k after first step of drift compensation, 
which should be similar to that of Feature 1 of Month 1. F(1)(j)(k) is the value of Feature 1 of sample j of 
Month k.

where P(j)(k) is the scaling coefficient of sample j of Month k. Equation (7) is proposed based on Eq. (1). 
Hence, P(j)(k) should be transformed, making it as close as possible to A for drift compensation. The 
transformation equation is as follows:

where P(k) , which is average value of P(j)(k) , could be considered as the actual scaling coefficient of 
Month k. Equation (8) makes the value of P(j)(k) move towards to the value of A(j) , which is the scaling 
coefficient of sample j of Month 1. Therefore, M(j)(k) could be considered as the actual scale coefficient 
of sample j of month k.

	   Real drift and measurement system drift are two predominant sources causing sensor drift. M(j)(k) 
decreases the real drift. However, the measurement system drift is still existed. Hence, a new parameter is 
introduced and its equation is as follows:

where N(i)(j) is final scale coefficient. In Eq. (9), M(j)(k) and A decrease the real drift and measure system 
drift respectively, making the compensated result more accurate.

where Fnew(1)(j)(k) is the value of Feature 1 of the sample j of Month k after first step of drift compensation. 
Based on the relationship of Feature 1 and Feature 2 (Eq. (4)), Eq. (10) is obtained. G(j)(k) could be 
considered as the compensated result of Feature 2 of sample j of month k.

where Ffinal(1)(j)(k) is the final compensated value Feature 1 of the sample j of Month k. The produce of 
Ffinal(1)(j)(k) calculation combines Feature 1 and Feature 2, and considers both sensor itself and measure 
system factors inducing drift, which lead to more accurate results.

(5)	 Drift compensation for all sensors: Apply this method for all sensors and all samples. All the drift 
compensated features are obtained and applied for subsequence analysis.

According to this method building process, the amount of dataset for model building is small. In this study, 
25 samples of each month and gas were selected and applied. Furthermore, the drift compensation and group 
classification methods are separated leading to strong scalability.

Support vector machine.  SVM, which is based on the Structural Risk Minimization and Statistic Learning 
Theory, is considered as one of the most robust and accurate methods used for classification analysis18. Further-
more, it has global minimum of the error function and excellent generalization ability of the trained network19. 

(4)F(1)(j)(1) = 1000× A(j)× F(2)(j)(1)

(5)B(k) = F(1)(a)(1)/F(1)(a)(k)

(6)Fnew(1)(j)(k) = F(1)(j)(k)/B(k)

(7)P(j)(k) = F(1)(j)(k)/[1000× F(2)(j)(k)]

(8)M(j)(k) = P(j)(k)× A/P(k)

(9)N(j)(k) = (M(j)(k)+ A)/2

(10)G(j)(k) = Fnew(1)(j)(k)/[1000×M(j)(k)]

(11)Ffinal(1)(j)(k) = 1000× G(j)(k)× N(j)(k)
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It is a linear machine working in the high dimensional feature space formed by the non-linear mapping of the 
n-dimensional input vector x into a K-dimensional feature space (K > n) with a function. For the results of SVM, 
samples are considered as points in space and mapped so that the samples of the separated categories are divided 
by a clear gap that is as wide as possible, which is also the optimal hyperplane to separate two classes.

Results and discussion
In this part, the sensor drift compensation method proposed is carried out and its performance is discussed 
according to the results of SVM. Month 1 is set as benchmark, which is considered as no drift. The objective of the 
drift compensation method is to make the characteristics of features of other months similar to those of month 1.

The data analyzed in this study are: eight steady features and twenty-four transient features in total, which are 
extracted from eight sensor response curves for representing one sample. Based on Eq. (1)–(3), eight steady-state 
features are compensated and applied for classification analysis. Twenty-four transient features are compared 
and eight of them are selected as auxiliary data for drift compensation.

Sensor drift compensation method.  Feature extraction and selection.  As described above, four fea-
tures are extracted from one sensor response curve according to Eq. (1) to (3). The steady-state value is defined 
as Feature 1. Three transient values are compared and selected based on their correlations with Feature 1, and the 
chosen one is defined as Feature 2. All the samples are employed for feature selection. The scatter plots of Feature 
1 and other three features are shown in Fig. 2.

Linear correlation leads to less calculation complex and displays a more obvious visual effect. Hence, it is 
preferentially applied for selecting appropriate Feature 2. As shown in Fig. 2a, b and c, all plots display strong 
correlation, which proves the correctness of linear relationship of these two features.

Figure 2a, b and c are the linear relationship of Feature 1 and three transient features with 0.001, 0.01 and 0.1 
of scaling parameter, respectively. The fitting correlation coefficients (R2) and root mean square error (RMSE) 
are employed to reflect their fitting performance. According to Fig. 2, Fig. 2a has the best fitting performance, 
whose standard error is 0.06736, R2 is 0.9951. By contrary, Fig. 2c has the worst fitting performance. The reason 
might be that as the increasement of the scaling parameter α , more uncertainty includes, which makes the data 
fluctuate more greatly. However, the smaller scaling parameter means higher computing cost. For Fig. 2b, its 
standard error is 0.1348 and R2 is 0.9918, which is just a little worse than that of Fig. 2a and also shows good 
fitting performance. Hence, considering both the fitting performance and calculation complex, the feature with 
0.01 of scaling parameter is selected and defined as Feature 2.

Calculation of A and B(k).  The results of Fig. 2 display the whole relationship of Feature 1 and Feature 2. In 
this part, their relationships for different months and sensors are discussed in detail. R2 and RMSE are employed 
again and their values are showed in Tables 3 and 4, respectively. The values of RMSE have been normalized, 
making them comparable.

Figure 2.   Relevance of Feature 1 and other three transient features. (a) α = 0.001, (b) α = 0.01, (c) α = 0.1

Table 3.   The value of R2 of different months and sensors.

Month ID S1 S2 S3 S4 S5 S6 S7 S8

Month 1 0.9836 0.9811 0.9356 0.9435 0.9914 0.991 0.8769 0.8695

Month 4 0.7889 0.4307 0.0363 0.7590 0.6049 0.7219 0.5398 0.4874

Month 14 0.6677 0.6154 0.6828 0.7126 0.3071 0.0239 0.9763 0.8528

Month 16 0.9083 0.992 0.7255 0.7538 0.6742 0.6532 0.4625 0.4743

Month 20 0.9474 0.9862 0.7234 0.7420 0.6006 0.7508 0.5739 0.7648

Month 22 0.8322 0.1798 0.9684 0.9385 0.1864 0.1986 0.5421 0.5775

Month 36 0.9777 0.9363 0.7930 0.8000 0.4411 0.4181 0.7581 0.7476
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The fitting performance of Month 1 is the most important index for the reason of that it is the drift com-
pensation objective. According to Table 3, the values of R2 of Month 1 are all higher than 0.86, which indicates 
good correlation and that parameter A is able to reflect the characteristic of sensor signal response of Month1. 
Furthermore, values of R2 are all acceptable, which proves the correctness of linear correlation of two features 
again. According to Table 4, the values of RMSE of Month 1 are all less than 0.12, which means a good fitting 
performance. For all the values in Table 4, most of RMSE are less than 0.15, which also proves the existence of 
linear correlation of two features.

On the other hand, based on Tables 3 and 4, the fitting performance of Month 1 is the best. For other months, 
the values of R2 and RMSE are fluctuated and most of their fitting performances are worse than that of Month 1. 
The reason might be environment and measurement system factors, whose uncertainty makes the sensor drift 
fluctuated.

According to the description above, the relationship of Feature 1 and Feature 2 exists. Furthermore, their 
relationships for different months and sensors are different, which means that it could be taken as a characteristic 
for drift compensation. As described in ”Data Acquisition”, 25 samples of each month and gas are selected and 
applied for parameters A and B(k) calculation.

Parameter A reflects the relationship of two features of the same sensor. The values of parameter A with dif-
ferent sensors and months are calculated by Eq. (4) and presented for showing drift phenomena directly and 
analyzing the drift rule of sensor. Their trends with different months and sensors show in Fig. 3 below.

As shown in Fig. 3, parameter A’s trends of all sensors are similar, which reflects the similarity of drift 
phenomena. Moreover, the value of parameter A increases first, then fluctuates and finally decreases. For first 
several months, sensor drift might be influenced by both real drift and measurement system drift, which causes 
uncertainty and unpredictable. Hence, the values of parameter A fluctuate during this period. Then, drift caused 
by real drift become dominated with time goes, which has a certain trend and leads to the decrease of the value of 
parameter A. The results indicate that all sensors have similar drift rule and parameter A is a suitable parameter 
exhibiting it.

B(k) , which reflects the relationship of the Feature 1 of Month 1 and other months, is another important 
parameter for drift compensation and employed to judge drift degree. The value trends of B(k) with different 
sensors and months show in Fig. 4 below.

As shown in Fig. 4, the trends of B(k) for all sensors are also similar. It fluctuates first, then become stable. 
Moreover, the value of B(k) during month 14 to 20 decreases greatly, which increases the drift compensation 

Table 4.   The value of RMSE of different months and sensors.

Month ID S1 S2 S3 S4 S5 S6 S7 S8

Month 1 0.0358 0.0300 0.1127 0.1110 0.0426 0.0368 0.0692 0.0677

Month 4 0.0493 0.0989 0.2468 0.3109 0.2161 0.2245 0.0727 0.0786

Month 14 0.0384 0.0376 0.0317 0.0308 0.1177 0.1150 0.0195 0.0218

Month 16 0.0130 0.0089 0.0671 0.0620 0.0381 0.0417 0.0939 0.0939

Month 20 0.0058 0.0071 0.0266 0.0257 0.0199 0.0269 0.0420 0.0411

Month 22 0.1491 0.1647 0.1479 0.1523 0.1876 0.2078 0.1891 0.1908

Month 36 0.0068 0.0075 0.0111 0.0107 0.0138 0.0138 0.0114 0.0115

Figure 3.   Value trend of A with different sensors and months.
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difficulty. The reason of this trend rule is similar to that of parameter A. The results indicate that all sensors have 
similar drift pattern, and could be able to compensate using one method.

Drift compensation.  According to the description above, the relationships between two features of month 
1, 4, 14, 16, 20, 22 and 36 are presented. The values of parameters A and B(k) are given. Then, the value of 
Ffinal(1)(j)(k) is calculated according to the Eqs. (6)–(11) and the drift compensated features for all samples are 
easily obtained.

In this part, the characteristics of initial and compensated features of sensor 1 detecting gas Ethanol in month 
14 present as an example, and their values are compared with that of month 1. Furthermore, their average and 
standard error are calculated.

The results show that the average of initial feature of month 14 is 5537.32, and its standard error is 2270.74. 
After drift compensation, its average value becomes 10,599.53, and its standard error is 5740.68. By comparison, 
the average value of month 1 is 11,149.45, and its standard error is 5102.03, which are similar to those of the 
dataset after drift compensation. The results prove the effect of the drift compensation method proposed in this 
study.

Furthermore, the drift compensation features of other months also have similar characteristics, which 
indicates that the drift compensation method proposed in this study is reliable with high probability.

SVM.  Feature 1 of all sensors and samples are compensated based on the process above. Then, SVM is applied 
and the classification performances of original dataset and drift compensated dataset are compared for proving 
the effect of drift compensation method.

For SVM, 180 samples (60 samples for Ethanol, Ethylene and background air, respectively) of Month 1 were 
selected and applied for building classification model for the reason of that the data of month 1 was the bench-
mark without drift. The same number of samples of each group helped to balance the importance of each group 
and improve the classification performance of SVM model. The kernel function was set as Radial Basis Function. 
For obtaining the optimal SVM model, two parameters, penalty parameter c and kernel parameter g, were opti-
mized through grid search method with the growth of c and g at an interval of 2.5 for obtaining the best c and g. 
Five-fold cross-validation was applied to estimate the performance of each parameter and the parameters with 
best cross-validation accuracy were picked. Figure 5 shows the performance of SVM with different combinations 
of c and g. As shown in Fig. 5, 100% of classification correct rate is obtained when c = 0.1768 and g = 32, which 
are therefore applied for testing process.

Then, SVM built in previous sentence was applied for classification and the total samples showed in Table 2 
were involved. Table 5 presents the results of SVM based on the original dataset and dataset after compensated.

As shown in Table 5, the correct classification rates of the dataset of Month 1 are both 100%, which indicates 
that SVM has good classification performance and proves the effect of SVM. For other months, the original data 
could be considered as drifted one, whose correct classification rates are all lower than that of Month 1. On the 
other hand, the results show that the classification performances of compensated data are better than that of the 
original data for all months, which indicates the effect of this drift compensation method.

In detail, for original data, its correct classification rates decrease as time goes overall. The reason might be 
that the drift phenomenon become more and more obvious, making SVM model lose efficacy gradually and 
leading to the decrease of its correct classification rate. For Month 20, its correct classification rate is 56.04%, 
which has become almost uselessness for the classification of original data. For the compensated data, the correct 
classification rate obtains more than 20% of increasement compared with that of original data except Month 36 
and the average of them reaches to 89.78%, which reflect the good performance of drift compensation method. 
However, the correct classification rate also decreases as time goes, which indicates that the drift degree could 
influence the performance of drift compensation method and this influence became bigger with time goes.

Figure 4.   Trend of the value of B(k).
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As to certain month, the correct classification rates of Month 20 and 22 are low for original data. By contrast, 
the value of B(k) , which is the main parameter for drift compensation, also decreases quickly during this period 
as shown in Fig. 4. Hence, the reason for bad results might be that the drift degree of original data of Month 
20 and 22 has beyond the limit of SVM model. On the other hand, for compensated data, their classification 
correct rates are both acceptable, which prove that the drift compensation method is still worked in Month 22. 
For Month 36, the correct classification rate of compensated data is just a little higher than that of original data, 
which indicates the poor effect and that the drift compensation method does not work well.

According to the discussion above, the drift compensation method proposed in this study is effective when the 
continuous monitoring time less than 22 month, which has been enough for most application scenario. Hence, 
the drift compensation method proposed in this study achieves great development of correct classification rate 
and has practical significance.

Conclusion
Sensor drift is an inevitable problem in continuous monitoring application. In this study, a new drift compensation 
method, which is based on the intrinsic characteristics of response signal, is proposed. Small amount of dataset 
is necessary for model building and it has strong scalability. The dataset of month 1 is taken as no drift and the 
object of drift compensation. The results show that the characteristic of compensated dataset is similar to that 
of dataset of month 1, which indicates the efficacy of this method.

Then, SVM is applied for verifying the performance of drift compensation method. The results show almost 
20% improvement of correct classification rate, reaching to 89.78%, and the efficacy of 22 month of continuous 
monitoring, which has been enough for most application scenario.

According to the results above, it is proved that the drift compensation method proposed in this study is 
effective and this study provides another way for sensor drift compensation.

Data availibility
The data that support the findings of this study are available from State Grid Corporation of China but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available. Data are however available from the authors upon reasonable request and with permission of State 
Grid Corporation of China.
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Figure 5.   Search of best parameter for the building of SVM model.

Table 5.   Results of SVM based on the original data and compensated data.

Month ID Original data (%) Compensated data (%)

Month 1 100 100

Month 4 83.73 96.83

Month 14 74.74 88.42

Month 16 66.18 85.29

Month 20 56.04 93.38

Month 22 63.33 85

Month 36 70.67 74.17
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