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Unconventional quantum criticality 
in a non‑Hermitian extended 
Kitaev chain
S. Rahul 1,2,3, Nilanjan Roy 4,5, Ranjith R. Kumar 1,2, Y. R. Kartik 1,2 & Sujit Sarkar 1*

We investigate the nature of quantum criticality and topological phase transitions near the critical 
lines obtained for the extended Kitaev chain with next nearest neighbor hopping parameters and 
non‑Hermitian chemical potential. We surprisingly find multiple gap‑less points, the locations of 
which in the momentum space can change along the critical line unlike the Hermitian counterpart. The 
interesting simultaneous occurrences of vanishing and sign flipping behavior by real and imaginary 
components, respectively of the lowest excitation is observed near the topological phase transition. 
Introduction of non‑Hermitian factor leads to an isolated critical point instead of a critical line and 
hence, reduced number of multi‑critical points as compared to the Hermitian case. The critical 
exponents obtained for the multi‑critical and critical points show a very distinct behavior from the 
Hermitian case.

The study of topological properties of non-Hermitian systems has acquired a growing attention in the recent 
times since these systems possess a rather unique set of features such as complex excitation  spectrum1, special 
degenerate points called the exceptional points (EPs)2, modification of bulk boundary  correspondence3,4 etc. Top-
ological phases in the non-Hermitian systems have been shown to host Majorana zero modes (MZMs)5. Recent 
studies have shown that non-Hermitian Hamiltonains support topological non-trivial phases, for example, one 
dimensional Kitaev chain with the complex chemical potential shows topologically trivial and non-trivial phase 
with  MZMs6. Also fractional invariant number has been realized in the non-Hermitian system with anisotropy in 
the  hopping7. The non-Hermitian Hamiltonians which obey PT symmetry with real  eigenvalues8,9 undergo transi-
tion from PT symmetric to PT symmetry broken region through exceptional points which are degenerate  points9. 
PT symmetric Hamiltonians have been explored in one dimensional topological  systems10–14 and it has got a 
variety of application in quantum  information15. Topological non-Hermitian systems have found applications in 
various areas such as, non-equilibrium open quantum  systems16,17, correlated electronic  systems18,19 and in the 
novel lasing techniques enabled by edge states amplification which is topologically protected against disorder 
and  defects20–22. Non-Hermitian systems can be thought of as a Hermitian systems interacting with the environ-
ment which is represented by the non-Hermitian term in the Hamiltonian. There have been numerous studies 
where one dimensional Hermitian topological systems have been connected to an external  bath23 to understand 
the stability of MZMs, symmetry and topological phase transition.  These non-Hermitian systems have been 
studied in the context of dissipative quantum  systems24,25, and most recently in topological  insulators14,26 and 
topological  superconductors27,28.

In this work, we study the role of non-Hermiticity on the topological phases and near phase transitions in an 
extended Kitaev chain. To be more specific, we investigate the complex excitation spectrum and obtain the criti-
cal lines of the non-Hermitian extended Kitaev chain with next nearest neighbor hopping parameters. We study 
the gap closing points in the excitation spectra from the analysis of k. We also calculate the critical exponents 
for the multicritical points and critical lines of the non-Hermitian model and discuss the difference in behavior 
between Hermitian and non-Hermitian cases.

Model. We consider an extended Kitaev chain in presence of non-Hermiticity given by,
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Where �1 , �2 , µ and γ corresponds to nearest, next nearest neighbor hopping parameters, chemical potential 
and non-Hermitian factor respectively. The inclusion of the imaginary term iγ to the extended Kitaev model 
is graphically depicted in the Fig. 1II. The non-Hermitian factor γ acts as a local bath at each site of the chain. 
Here c†i  is the spinless fermionic creation operator at site i. After the Fourier transformation, the Hamiltonian 
in Eq. (1) becomes,

The Bogoliubov-de-Gennes (BdG) form of the Hamiltonian is,

where χz(k) = −2�1 cos k − 2�2 cos 2k + 2(µ+ iγ ), and χy(k) = 2�1 sin k + 2�2 sin 2k . The energy dispersion 
relation is given by,

Since the energy eigenvalues are complex throughout the parameter space, model Hamiltonian Eq. (3) does not 
obey PT symmetry which can be verified using the PT symmetry operator K̂σz acting on the Hamiltonian H, 
i.e., K̂σzĤkσz

ˆK−1 �= Ĥk . The model Hamiltonian possess three topological phases characterized by winding 
number W = 0 , 1 and 2 which are separated by the critical lines presented in the Fig.1I. The solid black lines in 
the Fig. 1I are the Hermitian critical lines which is presented to differentiate the Hermitian and non-Hermitian 
criticality. In this case the topological cases are characterized using two ways. One is by calculating the winding 
number using the expression,

where F is the curvature function defined in the Eq. (8). It is possible to define the integer valued winding 
number to a non-Hermitian system in the presence of a complex chemical potential. There are also evidences 
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Figure 1.  (I) Phase diagram of the non-Hermitian model Hamiltonian in presence of γ = 1 and µ = 1 . Dashed 
and dotted lines corresponds to non-Hermitian critical lines. Solid black lines corresponds to Hermitian critical 
lines where γ = 0 . (II) A schematic representation of the model Hamiltonian in presence of non-Hermitian 
factor γ introduced in the chemical potential. aj and bj are the Majorana operators where fermionic operator 
cj = (aj + ibj)/2 . �1 , �2 and µ are the nearest neighbor, next nearest neighbor hopping parameters and on-site 
chemical potential respectively.
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to define topological phases through complex Berry phase in  1D38. In the presence of complex potential, the 
Hamiltonian can be expressed in biorthnormal vectors, where the exceptional points are represented by eq 6. 
The effective winding number can be calculated by integrating the curvature function around the exceptional 
 points7,39. Transition can also be recognized by the complex energy spectrum, where the energy gap closes and 
reopens during this process signalling a topological phase transition. This kind of non-Hermitian system posses 
a line gap in the complex spectrum, where the winding numbers can be mapped to their Hermitian counterparts. 
And moreover, there are no evidences of non-Hermitian skin effects in this kind of  models40. The other method 
is by calculating the zeros of the Hamiltonian by writing it in as complex  function29,30. Here winding number 
expression can be written in terms of zeros and poles of a complex function which takes the form, W = z − p , 
where z is the number of zeros and p is number of poles. In our case since there are poles, the winding number is 
directly equals to number of zeros of the complex function. We attempt to characterize all the topological phases 
and criticality using the zero mode solutions (ZMS) method. For the Hermitian case, the critical lines are fairly 
easy to obtain since there is no complex terms to deal with but at criticality we use the same method “ZMS” to 
characterize and obtain the topological invariant  number31.

Results
Multiple gap closing phenomena. Here we analyze the excitation spectra for topological phase transi-
tions between the topological phases, W = 0 to 1 and W = 1 to 2. Comparing the Hermitian and non-Hermitian 
versions of the model Hamiltonian, we observe a striking difference where the third critical line (�2 = µ− �1) 
degenerate isolated critical point in the non-Hermitian case where the critical line (�2 = µ− �1) in the Hermi-
tian case is a phase boundary between the topological phases W = 0 and W = 2 . In the non-Hermitian case, the 
third critical line becomes an isolated critical point becoming degenerate with the critical line �2 = µ− �1 at 
position �1 = 0 , �2 =

√

µ2 + γ 2 . Hence we study the W = 0 to 1, W = 1 to 2 topological phase transitions and 
later we study the behavior of the multicritical and critical points.

In the Fig. 2I and II, we study the behavior of gap closing points in the excitation spectrum along the critical 
lines.

Along the dashed critical line (Fig. 1), gap closing points in the excitation spectra continuously changes. The 
change in the gap closing points is governed by the Eq. (6). Real and imaginary part of the zero mode eigenvalue 
is studied with respect to the system parameter �1 . In the Hermitian case the gap closing points corresponding to 
three critical lines are at k = 0,±π and cos−1(−�1/2�2)  respectively32. These gap closing points do not change 
along the respective critical lines.

In the non-Hermitian case the values of k at which the gap closes keep changing indicating the conceptual 
difference in the criticality between the non-Hermitian model and its Hermitian counterpart. In Fig. 2III we 
show the behavior of real and imaginary eigenvalues in the open boundary setting. The real part (dotted) shows 
fluctuatory behavior whereas the imaginary part (solid) goes from negative to positive energy axes or vice versa 
when the real part goes to zero. This behavior starts at the Hermitian critical point and persists till the non-
Hermitian critical point where both real and imaginary parts go to zero. In other way, this interesting behavior 
of zero mode eigenvalue is observed in the region between the Hermitian and non-Hermitian critical points. 
We study only the zero mode eigenvalue to avoid the complexity in analyzing the bulk eigenvalues. The behavior 
of the real and imaginary parts of the energy eigenvalue has been analyzed analytically for periodic boundary 
condition in the "Methods" section. The real and imaginary eigenvalues behave in the same way for all other 
topological phase transitions.

By equating the Eq. (4) to zero we obtain an analytical expression for k± which gives the values of k at the gap 
closing points respectively. The analytical expression of k± is given by,

where η1 and η2 take different signs, i.e., (−,−) , (−,+) , (+,−) and (+,+) respectively which makes four solutions 
of k. At any critical point, k(−,+) and k(+,+) equations provide the information on the the gap closing location in 
the excitation spectra (Fig. 2I). Similarly at the multicritical points, all four equations of k provides the location 
of the gap closing in the excitation spectra (Fig. 2II). The excitation spectrum and k equations along the dotted 
critical line (Fig. 1) also shows similar behavior which is presented in the Fig. 6 in "Methods" section. The gap 
closing points along the dotted critical line is also governed by the k expression Eq. (6).

For studying the critical exponents such as γCE and ν the divergent property of the curvature function at 
criticality is essential. The behavior of the curvature function is presented in the Fig. 3. At the gap closing points 
in the excitation spectra, the divergence of the curvature function F is observed. In the non-Hermitian case too, 
the curvature function F retains the divergent behavior at the criticality and thus the critical exponents can be 
calculated which is studied in the next section.

Critical exponents for multicritical points. The dynamical critical exponent z, which takes the form 
|E| ∝ kz . Depending on the value of the dynamical critical exponent, the nature of the excitation dispersion. 
The critical exponents ν and γCE are defined with the consideration of the curvature function. These critical 
exponents are calculated numerically using curve fitting method where the fitting curve takes the Orenstien-
Zernike33 form given as,

(6)
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Figure 2.  (I) and (II) Energy spectrum |E| is plotted with respect to k at a critical and multicritical point (e) 
respectively. a and b marked in the plot (II) are the two gap closing points at the multicritical point e. (III) 
Eigenvalues plotted with respect to the parameter �1 in the open boundary setting with system size n = 50 . 
Dotted and dashed curves represents real and imaginary part of the zero mode eigenvalue respectively. Inset 
corresponds to the Hermitian case ( γ = 0).

Figure 3.  Curvature function F(k,�) plotted with respect to k at a critical point for the fixed values of 
�1 = 0.970 , �2 = 0.5 , µ = 1 and γ = 1.
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with the divergent behavior: F(k0,�) ∝ |�−�c|
−γCE and ξ ∝ |�−�c|

−ν.
In the topological systems, multicritical point separates more than two topological phases. Considering the 

example of Hermitian extended Kitaev chain, it has three topological phases, W = 0 , 1 and 2 and two multicriti-
cal points at �1 = 0, �2 = 1 and �1 = 2, �2 = −1 . Authors of the  reference34 have studied the properties of both 
the multicritical points. With the same spirit of investigation we study the nature of dispersion and its critical 
exponents for the two multicritical points present in the non-Hermitian systems.

We have observed an interesting behavior in the nature of multicritical points in the non-Hermitian model 
compared to the Hermitian case. These multicritical points in the non-Hermitian case are displaced to its new 
locations, �1 = 0 , �2 =

√

µ2 + γ 2 (e) and �1 = 0 , �2 = −
√

µ2 + γ 2 (d) (For the points “e” and “d”, refer the 
phase diagram presented in the Fig. 1I) in contrast with the Hermitian case. The gap closing points in the excita-
tion spectra for multicritical point MC1 (e) is presented in the Fig. 2II. The excitation spectra for the multicritical 
point MC2 (d) is shown in Fig. 7 which is presented in the "Methods" section.

We calculate the critical exponents for the multicritical and critical points which are shown in the Fig. 4. The 
non-Hermitian case hosts two multicritical points �1 = 0 , �2 =

√

µ2 + γ 2 (e) and �1 = 0 , �2 = −
√

µ2 + γ 2 (d) 
as shown in the Fig. 1I. Both these multicritical points possess same critical exponents and nature of dispersion. 
In the Hermitian case, one of the multicritical point has linear dispersion dynamical critical exponent z = 1 and 
the other multicritical point has quadratic dispersion with z = 234,35. In the non-Hermitian model, the dynami-
cal critical exponent z acquires the values 0.49 and 0.5 at the gap closing point a of MC1 (e) and MC2 (d). By 
investigating the nature of excitation spectra through out the phase diagram, the dynamical critical exponent 
z acquires the value 0.5 which is discussed in the plots (I) and (II) for both multicritical point and critical line. 
The dynamical critical exponent z acquiring the value 0.5 throughout the criticality shows a major difference 
between the Hermitian and the non-Hermitian cases. For γ = 0 , i.e., in the Hermitian case, the authors  of34 have 
shown that the Lorentz invariance is preserved in one of the multicriticality and is violated in the other due to 
the quadratic nature of the  dispersion36. In the non-Hermitian case, at both the multicriticality, the dynamical 
critical exponent z takes the value 0.5. The critical exponents ν and γCE are calculated using the curvature func-
tion F(k,�) where � takes the system parameters �1 and �2 that are varied. The curvature function of the model 
Hamiltonian is given by,

where,

(7)F(k0 + δk,�c) =
F(k0,�)

1+ ξ 2δk2 + ξ 4c δk
4
,

(8)F = (∂kφ1 + ∂kφ2),

Figure 4.  Critical exponents z, ν and γCE calculated at the multicritical points MC1 (e) and MC2 (d). (I) and 
(III): Critical exponents z, ν and γCE are calculated at the gap closing point a of multicritical points MC1 (e) and 
MC2 (d). (II) and (IV): Critical exponents z, ν and γCE are calculated at the critical point BC1.
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and

The general notion is that, as one approaches the critical point, the curvature function diverges at the respec-
tive k value. In Hermitian systems, the critical lines are calculated for k = 0,±π and can take more values of 
k depending on the number of hopping parameters present in the system. An important contrast in the non-
Hermitian model under consideration is that the gap closing no longer occurs at k = 0,±π which is also one of 
the primary reasons for the difficulty in calculating critical lines. But the presence of multiple gap closing points 
is associated with the divergence of the curvature function and hence the critical exponents can be calculated 
without any hindrance.

The calculation of critical exponents ν and γCE at the multicritical point and critical point is discussed in 
Fig.4III and IV. The calculation of critical exponents at other gap closing points are discussed in detail in the 
Fig. 8 presented in the "Methods" section.

Critical exponents for critical points. The behavior of the critical points is as interesting as that of the 
multicritical points which is presented in the Fig. 4II and IV.

According to the critical exponents calculations at several critical points on the criticality, the dynamical criti-
cal exponent acquires the value 0.5 throughout the phase diagram which marks a significant difference from the 
Hermitian  case34. In the non-Hermitian case, the nature of the spectra remains the same at all the criticalities and 
also validate the scaling law which is explicitly explored  in33,34,36. Regarding the critical exponents γCE and ν , it 
acquires 0.99 both at multicritical points and at normal critical points as discussed in the Fig. 4. The values of γCE 
and ν are the same throughout the phase diagram which means the scaling law γCE = ν is obeyed. According to 
the observation, the model does not exhibit skin effect since there the non-Hermiticity is not direction depend-
ent. This model belongs to the category of non-Hermitian systems complex mass with Lorentz  invariance37.

Discussion
In this work, we have studied the effect of non-Hermitian factor γ in the chemical potential on the topological 
phases of non-Hermitian extended Kitaev chain with next nearest-neighbor hopping parameters. The phase 
diagram gets modified substantially with the introduction of γ : specifically, a critical line present in the Hermi-
tian case becomes degenerate isolated critical point in the non-Hermitian model. We have analyzed the multiple 
gap-less points in the momentum space interestingly found at the critical and multi-critical points of the non-
Hermitian model. We have observed a very distinct and surprising behavior of the real and imaginary parts of 
the lowest excitation along the line joining the Hermitian and non-Hermitian topological phase transition points. 
We have also analyze the nature of the multi-critical and critical points of the non-Hermitian system. The criti-
cal exponents indicates a significant change in the nature of criticality compared to the Hermitian case. In the 
non-Hermitian case, the value of the dynamical critical exponent z settles down to 0.5 throughout the parameter 
space for any value of γ > 0 . Also we have observed that the critical exponents γCE and ν acquires the value 1. 
Both the values of γCE and ν remain the same throughout the phase diagram hence obeying the scaling law. It 
will be interesting to see in future if our findings can be established for one dimensional non-Hermitian systems 
in general. We hope that the current work will lead to many interesting studies to understand non-Hermitian 
criticality, especially in the topological systems.

Methods
Zero mode solutions. The model Hamiltonian can be written as,

where χz(k) = 2�1 cos k + 2�2 cos 2k − 2(µ+ iγ ), and χy(k) = 2�1 sin k + 2�2 sin 2k.
Substituting the exponential forms of cos k and sin k , Eq. (11) becomes,

We replace e−ik = eq , Eq. (12) becomes,

We make H2
q = 031, to obtain the zero solutions for certain q where σz and σy square to 1 or become 0 due to 

anticommutation.
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Simplifying the Eq. (14), we end up with a quadratic equation,

Simplifying the Eq. (15) to a quadratic form and substituting eq = X,

The roots of this quadratic Equation is given by,

The roots of Eq. (17) are the solutions of zero modes. These roots are equated with 1 and solved for �1 for a given 
�2 , µ and γ.

When the solutions are equated to 1, graphically it means that for given value of �2 , the value �1 obtained gives 
the critical point. In other words, when these solutions are plotted with respect to a unit circle, we are looking 
at the values of the parameter for which the zero is placed on the unit circle since zeros inside and outside the 
unit circle corresponds to the topologically non-trivial and trivial phases whereas the zero on the unit circle 
corresponds to the transition point. Hence by solving the ZMS for different values of �2 , one obtains the critical 
points throughout for all the parameter values. By this method we can obtain the entire phase diagram of the 
model as shown in Fig. 1II.

Graphically Fig. 5 corresponds to the process of extracting the critical points in order to plot phase diagram 
(Fig. 1I). In the Fig. 5, red and blue curves are the roots representing W = 0 to 1 transition. Magenta and black 
curves are the roots representing W = 1 to 2 topological phase transition occurring in +�1 quadrant of the Fig. 1I.

To specify the transition point using ZMS, parallel to the x-axis, a reference line (unit line), y = 1 is drawn 
which acts in a same way as that of the unit circle drawn to analyze the zeros of a complex function. The point 
of the intersection between one of the ZMS and the unit line marks the transition point which is represented in 
blue dots (p1 and p2) in the Fig. 5.

Value of the roots greater than 1 corresponds to the non-topological phase whereas less than 1 corresponds to 
topological phase. Transition points p1 and p2 marks the critical points of W = 2 to 1 and W = 0 to 1 topological 
phase transitions respectively for fixed positive value of �2 ( �2 = 0.5, 2.0). Keeping track of these transition points 
via the ZMS method provides the phase diagram of the model Hamiltonian (Fig. 6).

Dynamics of gap closing points at criticality. The excitation spectra (see Eq. 6) of the non-Hermitian 
model also shows an interesting behavior when compared to the Fig. 2I and II.

In Fig. 2I and II the values of k at which the gap closes moves away from k = 0 point, as we move along 
the Dashed critical line from positive �2 quadrant to negative �2 quadrant. On contrary as we move along the 

(15)2�1
1

2
eq + 2�2

1

2
e2q + 2(µ+ iγ )+ 2�1

1

2
eq + 2�2

1

2
e2q = 0.

(16)�2X
2 + �1X + (µ+ iγ ) = 0.

(17)X =
−�1 ±

√

�
2
1 + 4�2(µ+ iγ )

2�2

Figure 5.  Zero mode solutions plotted with respect to the parameter �1 shows both W = 0 to W = 1 (�2 = 0.5) 
and W = 1 to W = 2 (�2 = 2.0) topological phase transitions. Two blue dots (p1 and p2) represent the transition 
points.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12121  | https://doi.org/10.1038/s41598-023-39234-y

www.nature.com/scientificreports/

dotted critical line from negative �2 quadrant to positive �2 quadrant, the values of k where the gap closes moves 
towards k = 0 point.

Figure 7 corresponds to the excitation spectra |E| plotted at the multicritical point “d”. At this multicritical 
point, the dynamical critical exponent z acquires the value 0.5 and the critical exponents γCE and ν acquires the 
value 0.99 which is shown in the Fig. 8.

Mathematical analysis on the behavior of real and imaginary components of the spec‑
trum. The dispersion relation is,

(18)E = ±

√

(χz(k))2 + (χy(k))2,

Figure 6.  Behavior of absolute energy spectra (under periodic boundary conditions) along the dotted critical 
line in phase diagram Fig. 1I.

Figure 7.  Excitation dispersion |E| plotted with respect to k at a multicritical point “d”(Fig.1 I).
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where χz(k) = −2�1 cos k − 2�2 cos 2k + 2(µ+ iγ ), and χy(k) = 2�1 sin k + 2�2 sin 2k . Expanding the disper-
sion relation (Eq. 18) and writing it in terms of x + iy form, we get,

where

and

where h1 = −γ 2 + �
2
1 + �

2
2 + µ2 + 2�1(�2 − µ) cos k − 2�2µ cos 2k , h2 = 2γµ− 2γ �1 cos k − 2γ �2 cos 2k.

The behavior of θ is studied with respect to k to understand the real imaginary components of the eigenvalues 
which has a θ factor in them when written in the complex form.

From the Fig. 9, θ is a γ induced argument which dictates the behavior of real and imaginary components. 
Fig. 9 comprises of left and right panel. In the left panel, θ is studied with respect to k and in right panel, h1 and 
h2 of θ (Eq. 21) are studied with respect to k.

In the right panel, in plot (a), h2 is positive and h1 is negative and in plot (b) h2 is zero and h1 is negative at 
k = 0 . Hence θ at k = 0 takes the value θ + π which is reflected in the plot (a) and (b) of left panel. In plot (c) 
and (d) of right panel, both h2 and h1 components are negative at k = 0 and hence θ takes the value θ − π which 
is also reflected in the plot (c) and (d) of left panel.

When either one of h2 or h1 of θ are negative and other remain positive, the argument takes the value θ + π . 
Since θ is negative and less than π , it is positive.

When both h2 and h1 are negative at k = 0 , argument takes the value θ − π and since θ < π , it becomes 
negative as shown in the plot (c) and (d), right panel of Fig. 9. This inherent nature of θ is responsible for the 
behavior of real and imaginary components of eigenvalues that we observe in previous sections. Investigating the 
Eq. (21) in detail with the help of θ , we come across cosine and sine terms for real and imaginary components 
respectively. When θ is negative, real component consist of cosine term which is an even function. Hence, the 
real component of eigenvalue never crosses from positive to negative quadrant like the imaginary component 
does. Imaginary component consist of sine term which is an odd function and hence the imaginary component 
makes a jump from negative to positive values and vice versa.

Analysis on the imaginary excitation spectrum. Excitation spectrum of the model Hamiltonian 
(Eq. 3) given as,

where χz(k) = −2�1 cos k − 2�2 cos 2k + 2(µ+ iγ ), and χy(k) = 2�1 sin k + 2�2 sin 2k. Expanding the complex 
term into real and imaginary components, Eq. (22) is rewritten as,

where

(19)E = ±r(cos
θ

2
+ i sin

θ

2
),

(20)
r = 2(4γ 2(−µ+ �1 cos k + �2 cos 2k)

2 + (−γ 2 + �
2
1 + �

2
2 + µ2 + 2�1(�2 − µ) cos k − 2�2µ cos 2k)2)

1
4

(21)θ = arctan

(

h1

h2

)

,

(22)Eµ+iγ = ±

√

(χz(k))2 + (χy(k))2,

(23)Eµ+iγ = ±r(cos
θ

2
+ i sin

θ

2
),

Figure 8.  Critical exponents ν and γCE calculated at the multicritical points MC1 (e) and MC2 (d).
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and

Considering only the imaginary part of the spectrum from Eq. (23),

From a careful analysis, one can see that positive and negative imaginary roots corresponds to the imaginary roots 
of the excitation spectrum when the non-Hermitian term is replaced with −iγ . The excitation spectra with −iγ is,

(24)
r = 2(4γ 2(−µ+ �1 cos k + �2 cos 2k)

2 + (−γ 2 + �
2
1 + �

2
2 + µ2 + 2�1(�2 − µ) cos k − 2�2µ cos 2k)2)

1
4

(25)θ = arg[(iγ + µ− �1 cos k − �2 cos 2k)
2 + (�1 + 2�2 cos k)

2 sin k2].

(26)Im : Eµ+iγ = ±r

(

sin

[

1

2
arg

[

(iγ + µ− �1 cos k − �2 cos 2k)
2 + (�1 + 2�2 cos k)

2 sin k2
]

])

Figure 9.  Nature of θ plotted with respect to k in the left panel. The components of θ i.e., h2 and h1 plotted with 
respect to k in the right panel.
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where χz(k) = −2�1 cos k − 2�2 cos 2k + 2(µ− iγ ), and χy(k) = 2�1 sin k + 2�2 sin 2k.
Expanding the complex part of the dispersion relation and focusing only on the imaginary part, we get,

The observation of imaginary component changing sign in the Fig. 2(III) is also observed in the excitation 
spectra Fig. 10 under periodic boundary condition. During the sign change of imaginary component, the real 
component becomes zero which is observed from both Fig. 2(III) and Fig. 10. Although it is not physically con-
sistent to draw a comparison between the open boundary setting and periodic boundary setting, the change of 
sign of imaginary component when the real component becomes zero is commonality is observed in the behavior 
of the real imaginary components. This behavior is clearly studied using the Eqs. (26) and (28). It is shown here 
that, the change in sign of the imaginary component corresponds to the change in the sign of the non-Hermitian 
factor γ (±iγ ) . The physical aspect of this behavior is +iγ and −iγ corresponds to the gain and loss of the system 
with the on-site local bath that is attached.
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