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CO
2
 footprint minimization 

of solar‑powered HALE using MDO 
and eco‑material selection
Edouard Duriez 1,3, Víctor Manuel Guadaño Martín 2,3 & Joseph Morlier  1,3*

Multidisciplinary Design Optimization (MDO) enables one to reach a better solution than by optimizing 
each discipline independently. In particular, the optimal structure of a drone varies depending on the 
selected material. The CO

2
 footprint of a solar-powered High Altitude Long Endurance (HALE) drone 

is optimized here, where the structural materials used is one of the design variables. Optimization 
is performed using a modified version of OpenAeroStruct, a framework based on OpenMDAO. 
Our EcoHale framework is validated on a classical HALE testcase in the MDO community (FBhale) 
constructed using high-fidelity codes compared to our low-fidelity approach. The originality of our 
work is to include two specific disciplines (energy and environment) to adapt to a new problem of 
CO

2
 minimization. The choice of eco-materials is performed in the global MDO loop from a choice 

of discrete materials . This is achieved through a variable relaxation, enabling the use of continuous 
optimization algorithms inspired from multimaterial topology optimization. Our results show that, 
in our specific case of electric drone, the optimal material in terms of CO

2
 footprint is also the optimal 

material in terms of weight. It opens the door to new researches on digital microarchitectured 
materials that will decrease the CO

2
 footprint of the drone.

High Altitude Long Endurance (HALE) drones driven by solar power could be an alternative to satellites for 
some missions. Their solar power cells and batteries enable them to fly for a few years, which added to their 
high altitude (above 20 km) make them fit for missions similar to those of satellites1. HALE drones can offer 
permanent coverage of a point or be re-positioned, and are repairable, unlike satellites, which are in orbit. Their 
lower altitude can offer better resolution for earth observation, but also results in smaller coverage. Their biggest 
advantage is their lower cost compared to satellites. HALE drones could also be more environmentally friendly 
as they do not require a high energy consuming launcher. This advantage can be enhanced if a special atten-
tion is paid to their environmental impact. For a fully electric HALE drone, most of this impact comes from 
the materials used and the manufacturing of the drone. Multidisciplinary Design Analysis and Optimization 
(MDAO) often compressed to MDO enables a better solution to be reached than by optimizing each discipline 
independently by developing efficient architecture2. The most advanced numerical framework is developed by 
NASA3. MDO has been successfully applied to the ecodesign of commercial planes4. However, HALE drone mis-
sion requirements are very different from commercial planes. In addition to the aforementioned features, flight 
speed is not a requirement as they fly in closed trajectories. Moreover, a large wing surface area is required in 
order to gather sufficient solar power. These requirements lead to very different designs, with high aspect ratios. 
The design of HALE drones has already been studied extensively. Global configuration optimization has been 
made to an ultralight 3.2 m span solar powered drone using analytical methodology for the conceptual design 
of such an aircraft5. Another related paper focused on the development of a multidisciplinary tool for analysis, 
design, and optimization of HALE UAVs which act as an “atmospheric satellites” with an extreme aspect ratio 
concept (500 ft wingspan) using standard approaches, ranging from conceptual design and mission analysis, to 
preliminary aircraft design methods6. In Montagnier et al.7 the mass of the flexible wing was minimized using 
composite materials. The cruise speed versus lift coefficient diagram revealed an optimal solution with a payload 
of approximately 4 percent of the total mass of 817 kg for a 69 m wing span. From an experimental point of view: 
scale-sized prototypes have been manufactured, for mechanical testing8,9 or aeroelastic studies10,11. More recently, 
a multi-fidelity design vehicle framework has been developed12. Botero et al.13 applied this framework to a Solar 
UAV design, highlighting the fact that the energy required for the larger vehicle is approximately twice that of 
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the smaller one (same 10 m wing span but different payload). The vehicles are not optimized for an objective. 
The optimizer is used to find a feasible vehicle using the mostly energy related constraints. Optimizations seeking 
higher fidelity were carried out14, and a design framework was built15. However, all these studies focused solely 
on mass optimization and did not consider the environmental footprint of the drones. The aim of this work is 
to close this gap in a global, low-fidelity but fast, environmental impact optimization using open source tools in 
order to produce reproducible research.

This work is therefore based on OpenAeroStruct (OAS), a global low-fidelity aerostructural optimization 
framework16,17. This framework is itself based on OpenMDAO3,18. The Fig. 1 presents the MDA/MDO process 
of a typical coupled aerodynamic and structural design problem (OAS), while the next chapter highlights the 
main differences with the original OAS tool and thus guide the reader to understand the HALE design process 
starting from a standard aircraft design process.

For a conventional aircraft, most of the CO2 emissions come from the fuel burned. For a solar powered 
HALE drone, however, no fuel is burned and most of the CO2 emissions come from the materials utilized and 
the manufacturing of the drone. If the structural material used is fixed, optimizing the environmental impact of 
the HALE drone is equivalent to optimizing the mass of the drone. Therefore, we decided to include the choice 
of structural material in the optimization. A recurring problem in optimal material selection is that the material 
handled as a discrete variable. Another problem is that optimal properties are usually antagonistic. For example 
a material with a higher Young’s modulus will also have a higher density.

In order to address these difficulties, Ashby indexes can be used19. These allow materials to be ordered 
according to a unique index. However, this method only works when choosing a material for a given simple 
part under a given loading. This method has been extended for simultaneous material selection and geometry 
design20 and more recently solved using Variational Autoencoder21. A new approach has also been developed by 
the authors to solve material and process selection and thus link ecodesign and topology optimization22,23. This 
method, however, is limited to a structure and cannot take into account the impact of this structure on a bigger 
system, along with the resulting feedback loops. Making the material variable continuous is a suitable solution 
for the gradient-based algorithm used in this paper and was first proposed to find the optimal material24 and 
developed in the form of an interpolation in topology optimization25. However, the use of this approach in a 
multidisciplinary design optimization framework is unique in the state of the art and thus constitutes a major 
contribution of this paper.

The paper is organized as follows. We present in section “HALE drone MDO formulation” the HALE drone 
model and the optimization framework. Then, we introduce in section “Results and discussion on CO2 footprint 
minimization” the numerical results and also give some hints on how to interpret them. Finally, we give some 
concluding remarks in section “Conclusion”.

HALE drone MDO formulation
OpenAeroStruct to Eco‑HALE.  We choose to derive our work from the OpenAeroStruct package with 
the wingbox full design (17). OpenAeroStruct is mainly utilized to study commercial aircraft which we modified 
to model a HALE drone. To validate our code, we used the single-boom HALE drone test case (data from FBhale 
publication14).

First, as there is no need for a 2.5 G maneuver on a HALE drone, we changed the design points used. We used 
one cruise flight design point where the lift and power constraints must be satisfied, and one gust design point 
where the structural constraints must be satisfied.

The OpenAeroStruct constraint on performance, based on the Bréguet equation26 cannot be used for a solar-
powered HALE aircraft, as the total weight of the aircraft does not change during flight and the range is not 
limited. The Bréguet range is a simple yet mathematically sound relationship between the main physics (aero-
dynamic, structural, and propulsion) of the aircraft. Instead, it is a power equilibrium that gives a performance 
constraint. Actually, the power used by the propulsion and the payload must be produced by the solar panels or 
stored in the batteries. The power needed for propulsion Pprop is derived from the 1D equilibrium between thrust 

(a) XDSM (eXtended Design Structure Matrix) of the Openaerostruct MDO
process. The geometry discipline output is the baseline mesh shared with the two
main disciplines Aerodynamics and Structure. On top the optimizer is
constructing the formal problem and solving it using a dedicated gradient based
optimizer.

(b) In Openaerostruct, the wingbox is described using
the Finite Elements Method (FEM) and the wetted
surface of the wing is described using the Vortex Lattice
Method (VLM)

Figure 1.   An overview of MDO applied to an aerostructural wing design problem16,17.
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(T) and drag (D). Thrust and drag are expressed in Eqs. (1) and (2), where W is the total weight of the drone, Cd 
is its drag coefficient, Cl is its lift coefficient, and v its speed.

These give a link between the power needed for propulsion and the total weight of the drone (Eq. 3).

The relationship we actually use is Eq. (4), in order to account for the propulsion efficiency η and the power 
needed by the payload and the avionics Ppayload.

During the day, power is supplied by the solar cells. Therefore a minimum wing surface area ( Swing ) is needed 
in order to place a sufficient number of solar cells. This is expressed in Ineq. (5).

APV is the power produced per unit of area of solar cells. Ineq. (5) is the constraint on performance we use. APV 
is chosen carefully in order to be in the same case as FBhale (14). Figure 2 comes from14, it was used to extract 
the mean solar power harvested during the 24h power equilibrium considered. This mean power was divided 
by the area of solar cells in14, and leads to APV = 54W/m2.

The computed surface area of solar cells necessary to produce the needed power is taken into account in the 
total weight computation, meaning that weight and power are coupled, as can be seen in Fig. 3.

The mass of the solar cells added to the total mass is computed using a surface density from14.
The mass of the batteries is also taken into account. In order to compute this mass, an assumption that the 

batteries power the drone during a 13 h night period ( tnight ) is made. This assumption is also based on Fig. 2, and 
enables a great simplification of the problem by not modeling the flight and gliding phases. This time multiplied 
by the power needed gives the size of the battery in kWh, which in turn gives the mass of the batteries ( Mbat ) 
when divided by the energy density ( dbat in kWh/kg). The energy density was taken equal to that of FBhale. The 
mass of the batteries is therefore computed with Eq. (6). Taking the battery mass into account adds to the weight 
and power coupling, as on Fig. 3.

These battery and solar panel masses are distributed along each of the beam elements of the wing, as was done in 
OpenAeroStruct for the fuel mass. This is closer to reality than a concentrated mass, and relieves the wing, allow-
ing thinner structural skins. Other masses are also taken into account but not distributed, such as the avionics, 
payload, and the propulsion system mass considered as fixed during optimization.

(1)D =W ·
Cd

Cl

(2)Pprop =T · v

(3)Pprop = W · v ·
Cd

Cl

(4)Pneeded =
W · v · Cd

Cl · η
+ Ppayload

(5)Swing >
Pneeded

APV

(6)Mbat =
Pneeded · tnight

dbat

Figure 2.   Solar and battery power for FBhale (14). The nighttime we considered starts at the end of the gliding 
phase.
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The propulsion mass ( Mprop ) models both the mass of the engine and the propeller. It is obtained as the 
product of Pprop (Eq. 3) and the propulsion density ( dprop in kg/W), as in Eq. (7).

In order for the data to be as close as possible to FBhale to validate our framework, without modelling the 
propeller, this propulsion density is estimated based on14. This estimate is obtained by dividing the propulsion 
mass (extracted from Supplementary materials) by the power used for propulsion (extracted from Fig. 2). These 
motors and propellers are added as point masses onto the wing structure. As in Eq. (8), the mass of each motor 
( Mmot ) is obtained by dividing the propulsion mass by the number of motors ( nmot).

The power system (solar panels, maximum power point tracker and batteries) is sized for a worst case corre-
sponding to the winter solstice where the least solar power is available. By choosing a more favorable launch 
day, much more power is available during climb. Therefore, the climb phase does not influence the sizing of the 
power system. As a result, computing the propulsion mass as in Eq. (7) also avoids the need to model the climb 
phase of the drone. This phase is taken into account through the propulsion mass data from14. A shear gust 
wall is added to the framework, in order to compute the loads used for the sizing of the wings. It has the same 
magnitude as in14. Our model only takes into account the weight of the wing, batteries, solar panels, propulsion, 
maximum power point tracker (MPPT), avionics (only the fixed mass) and payload mass. In order to account 
for the extra mass of the harness, the landing gear, the interfaces, the horizontal and vertical tail, the boom and 
the pod, the total weight of the drone is increased by 10%. This value comes from Supplementary materials (14).

Finally, the operational conditions of the HALE, such as the high altitude and the low speed, imply a low 
Reynolds number that lies in the range of 150,000–200,000. For this reason, high values of lift coefficient ( Cl ) 
are needed and a low-drag configuration is mandatory in order to minimize the power needed for propulsion 
(Eq. 3). Thus, as proposed in27, profile NACA 63412 is selected, which is a laminar airfoil with a high maximum 
lift coefficient ( Clmax ), a low value of the moment coefficient ( Cm ) and a “drag bucket” covering the desired Cl 
range (see Fig. 4).

(7)Mprop = Pprop · dprop

(8)Mmot =
Mprop

nmot

Figure 3.   Power and weight coupling: if the total weight changes, the power needed to thrust that weight 
changes; if the needed power changes, the battery weight, the photo-voltaic cells (PV) weight and possibly the 
wing weight, change, resulting in a total weight change. This coupling is solved by the same Gauss-Seidel solver 
as the aerostructural coupling.
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MDA framework summary.  The multidisciplinary design analysis (MDA) framework is summarized in 
Table 1. The method modeling each discipline is shown in this table, along with the implementation used and 
a reference.

MDA converges using the Gauss-Seidel method (also known as fixed-point iterations). Each discipline analy-
sis computes its own set of coupling variables that is passed to other disciplines (analysis). At the end of the MDA 
process, each discipline returns the final set of coupling variables computed at convergence. Additionally, the 
chosen optimizer will solve the constrained optimization problem with all the interactions shown in Figure 5.

Figure 4.   Polar curve for NACA 63412 airfoil.

Table 1.   Summary of multidisciplinary design analysis framework.

Discipline Method Implementation References

Aerodynamics VLM OAS 28

Structure Wingbox beams OAS 17

Energy Simple in-house method Section “OpenAeroStruct to Eco-HALE” Data from14

Environmental Proportional to mass Section “MDO framework summary” Data from29,30

Figure 5.   Component layout of the performance group adapted from OpenAeroStruct16,17. The coupling 
between power and weight is visible as a “PV_surface” variable from which the weight of the batteries and solar 
panels are derived.
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The energy and environmental models are described in other sections of this paper, listed in Table 1. We 
briefly present hereafter the aerodynamics and structural models used. These are kept unchanged from the 
OpenAeroStruct16 implementation, apart from the changes to the structure model described in section “MDO 
framework summary”.

The aerodynamics model is the implementation of the VLM model28 by OpenAeroStruct16. Each panel of the 
lifting surface is modeled as a horseshoe vortex. This horseshoe vortex is made of three vortex segments : one 
span-wise bound vortex located at 1

4
th of the panel’s chord-wise length and two semi-infinite chord-wise vortices 

extending towards infinity in the free-stream direction. The total lifting surface is modeled as the superimposi-
tion of all these horseshoe vortices. Flow tangency conditions are imposed preventing normal flow through the 
panel. The aerodynamic forces on each panel are derived from the circulation strength of the vortices. Finally, 
lift and drag are derived from these forces. Skin friction drag is also estimated. The reader is referred to16 for 
further details concerning this implementation.

The structure model is the beam FEM with wing-box cross-sections implemented in OAS (OpenAeroStruct17). 
The span-wise discretization of this model (7 elements) is the same as for the VLM mesh. Each span-wise section 
of wing is modeled as a beam element. The cross section of this beam element is a hollow rectangle modeling the 
upper and lower skins of the wing and the two spars. This model is used to compute the worst case von Mises 
stress values that are used as a mechanical failure constraint. The reader is referred to17 for more detail on this 
implementation.

MDO framework summary.  Adding more physical constraints in OAS.  The aim of this part is to add a 
more detailed sizing process to the existing OAS code and to describe the objective and constraints of the HALE 
design problem. One has to notice that a mechanical failure constraint leads to insufficient skin thicknesses. 
Therefore, a new (linear) buckling constraint is added in the design process. This buckling constraint imposes 
that the stress in the top skin of each element stays below the buckling critical stress of that panel. In order 
to have only one constraint, a Kreisselmeier-Steinhauser (KS) aggregation is used (31,32), as for the initial me-
chanical failure constraint. The buckling critical stresses are estimated by the case of a homogeneous rectangular 
curved plate subject to combined axial compression and shear. Therefore, two different buckling critical stresses 
are considered: an axial critical stress ( σc ) and a shear critical stress ( τc ), which can be expressed in the form of 
Eqs. (9) and (10), respectively, where kc is the buckling coefficient for axial load, ks the buckling coefficient for 
shear, b the width of the panel, and D, the flexural stiffness. In our approximate buckling case, we take b to be 
the distance between the two spars (set at half the chord) and the values of kc and ks can be obtained graphically 
from the charts presented in33, using the geometry of the panel as an input.

Thus, the buckling constraint is approximated by a parabolic interaction, as in Ineq. (11), proposed in33, Rs and 
Rc being the stress ratios for shear and axial compression, respectively. These stress ratios are defined as the ratio 
of the stress at buckling under combined loading to the buckling stress under simple loading.

We also add a constraint imposing that the skin thickness cannot be greater than half the wing thickness, in 
order to prevent the top and bottom skin from intersecting at the wing tips, where the chord is smaller and the 
thickness-to-chord ratio of the wing is is also small. To simplify the MDO process, the lower bound is fixed at 
1 mm for all materials such as homogeneous metals or homogenized composites materials. At the conceptual 
detailed design level this limitation can be easily treated.

New objective function: CO2 footprint.  We choose the CO2 emitted by the HALE drone during its life cycle 
( CO2tot ) as our objective function. As the drone does not burn any fuel during flight, it is assumed that the CO2 is 
mainly emitted before the use of the drone and is in particular due to the materials used and their processing. As 
the aim is to have a simple and fast tool, we consider only the CO2 emitted by the material used for the structure 
( CO2struct ), the CO2 emitted by the solar panels ( CO2PV ), and the CO2 emitted by the batteries ( CO2bat ), as these 
have the most influence on the total emitted CO2 . This is shown in Eq. (12).

The CO2 emitted by the structure is computed as the product of the mass of the spars ( Mspar ) by the CO2 foot-
print of the material used for the spars ( CO2mat1 ) and the product of the mass of the skins ( Mskin ) by the CO2 
footprint of the material used for the skins ( CO2mat2 ), as shown in Eq. (13). This CO2 footprint of the materials is 
considered to be equal to a weighted sum of the CO2 footprint of their primary production ( CO2p ) and the CO2 
footprint of their recycling ( CO2r ), depending on their recycled fraction in current supplies ( ηr ), as in Eq. (14).

(9)σc =kc ·
π2

· D

b2

(10)τc =ks ·
π2

· D

b2

(11)R2
s + Rc < 1

(12)CO2tot = CO2struct + CO2PV + CO2bat

(13)CO2struct =Mspar · CO2mat1 +Mskin · CO2mat2
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It can be seen in Eqs. (13) and (14), that the CO2 footprint of the processing of the materials is not taken into 
account. We made this choice because CO2 footprint of processing varies a lot depending on the process, and 
we have no information related to this stage. This choice is acceptable as the footprints of the most probable 
processes are much lower than the footprint of the material primary production, and this is especially true for 
the materials that were found to be optimal.

The CO2 emitted by the solar panels is computed as the product of the power needed on board the HALE 
( Pneeded detailed in section “OpenAeroStruct to Eco-HALE”) and the emissions per power ( CO2/W ), as in Eq. 
(15). The value of CO2/W is taken from29.

The CO2 emitted by the batteries is computed as the product of the size of the battery ( Pneeded · tnight as in section 
“OpenAeroStruct to Eco-HALE”) and the emissions per Wh ( CO2/Wh ), as in Eq. (16). The batteries are assumed 
to be similar to electric car Li-ion batteries, and the value of the emissions per Wh is taken equal to the mean of 
the three batteries studied in30.

Design variables.  We used eight geometric design variables and a material design variable which we discuss 
in detail in section “MDO framework summary”. B-splines parameterized using four control points each were 
adopted in order to vary wing geometric design variables along the semi-span. The only angle design variable 
we used was the vector of control points for the twist, because it also enabled us to control the angle of attack. 
Therefore, our variable twist represents the sum of geometric twist and angle of attack at cruise conditions.

We kept the wingbox design variables of OpenAeroStruct, which are the control points for the skin thick-
ness and the spar thickness. These are mainly determined by the buckling constraint and the mechanical failure 
constraint, respectively. We used the same thickness distribution for both the upper and lower skins, and the 
same thickness distribution for both the forward and rear spars.

In order to satisfy both the power constraint and the weight-equals-lift constraint, we kept the control points 
for wing geometry as thickness-to-chord ratio, span, chord and taper ratio as design variables. These variables 
can generate the particular geometries of HALE drones with very high aspect ratios.

Additionally, the motor spanwise location was added as a new design variable. Since we are considering a 
symmetrical twin-motor HALE, this new design variable is defined as the ratio of the distance between the plane 
of symmetry and the motor to the semi-span of the wing.

Some limitations must be imposed to the design space in order to compensate for some missing physics in 
the model. Wings cannot be too tapered because tip stall can happen otherwise. As stall is not modelled in our 
framework, we choose a lower limit of 0.3 for the taper ratio design variable. For the same reason, a lower and 
upper twist limits of − 15 and 15 degrees are considered. In this way, the critical or stalling angle of attack is taken 
into account. Furthermore, wings cannot be too narrow because 1−cosine gusts limit their aspect ratio. These 
gusts are not modelled, but the rule exists in the FAA (Federal Aviation Administration) regulation, so we also 
added a lower limit of 1.4 m for the root chord.

Material selection.  The battery and solar panel types are fixed in our case. Therefore, minimizing the CO2 emis-
sions due to the solar panels and batteries, consequently, minimizes the power needed, which means minimizing 
the mass of the drone to be thrusted. Similarly, minimizing the CO2 emissions due to the structural materials 
means minimizing the mass of materials used, if the choice of materials is not a variable. Therefore, if the struc-
tural materials were fixed, optimizing the CO2 impact of the drone would be equivalent to optimizing the mass 
of the drone. Therefore, we chose to add the choice of the structural materials as a design variable. This new 
additional design variable takes the form of a vector with two components: the density of the material used for 
the spars and the density of the material used for the skins. Distinguishing these two structural elements adds 
new interesting degrees of freedom to our problem.

One of the main simplifications of our approach, is the material selection through their density. For the sake 
of simplicity this choice is also linked to the MDO process that needs to select a unique material at the end. The 
material data we need (Young’s modulus, shear modulus, yield strength, and CO2 emissions) is therefore accessed 
as a function of the density design variable. This limitation was solved in one of our recent publications22.

In order to have only continuous variables, we decide to make the density design variable continuous. This 
is achieved by linearly interpolating each material property in the space between real materials. The resulting 
interpolation is shown on Fig. 6 for two isotropic homogenized materials: Carbon Fiber Reinforced Composite 
(CFRP), Glass Fiber Reinforced Composite (GFRP) and two homogeneous metals: aluminium and steel. This 
is one of the limits of our approach, always linked to the simplification of the MDO process. Of course, this will 
lead to sub-optimal composite materials compared to more detailed structural sizing process.

However, with this interpolation, it is possible to find an optimum in an interpolated material corresponding 
to no real material. In order to eliminate this possibility, the interpolation is penalized by the use of a power term 
in the interpolation, as in25. An example of this interpolation for Young’s modulus is given in Eq. (17), where E 
is the interpolated Young’s modulus at density ρ , ρi and ρi+1 are the densities of the real materials framing the 
one being interpolated, Ei and Ei+1 are the respective Young’s modulus of these real materials, and p is the power 
used for penalization.

(14)CO2mat =ηr · CO2r + (1− ηr) · CO2p

(15)CO2PV = Pneeded · CO2/W

(16)CO2bat = Pneeded · tnight · CO2/Wh
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with A =
Ei+1−Ei
ρ
p
i+1

−ρ
p
i

 and B = Ei − A · ρ
p
i

The resulting interpolation is shown on Fig. 7 for p = 5 , and for the same real materials as on Fig. 6.
To the left of a real material, a small decrease in density brings for example a great decrease in Young’s 

modulus. Therefore, the slight advantage due to a slightly lower density is compensated by the Young’s modulus 
evolution. To the right of a real material, even a big increase in density brings a very small increase in Young’s 
modulus. Therefore, the slight advantage due to a slightly higher Young’s modulus is compensated by the higher 
density. As a result, choosing a material that is not real (non-physical) is not beneficial, and the final optimum 
will be a real material.

In order to not advantage these non-physical materials, the penalization isn’t used in the case where a lower 
density leads to a better property. This appears for example in the left-hand part of Fig. 7, between CFRP and 
GFRP, where a decrease in density leads to an increase in Young’s modulus. For material properties for which a 
smaller value is better, such as CO2 emissions, the penalization is inverted, as in Fig. 8.

This penalization must be applied to the interpolation only at the end of the optimization. In fact, as we use 
a gradient optimization, once the penalization is given to the interpolation, the solution is stuck in the local 
minimum corresponding to the closest material. The optimal material being an easily identified angular point 
(for example in Fig. 8), it is often also the optimum found even without any penalization in the interpolation. 
However, adding the penalization is more robust. Table 2 summarizes the MDO framework.

It is important to highlight that the SLSQP (Sequential Least Squares Programming) optimization algorithm is 
used in this work. The chosen optimizer options (stopping criteria) are 10−3 for the convergence accuracy and 250 
for the maximum number of iterations. We checked the analytical derivatives using the complex step method34.

(17)E(ρ) = A · ρp
+ B

Figure 6.   Young’s modulus example of linear interpolation of materials.

Figure 7.   Young’s modulus example of penalized interpolation of materials.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11994  | https://doi.org/10.1038/s41598-023-39221-3

www.nature.com/scientificreports/

Results and discussion on CO
2
 footprint minimization

Once the framework was validated (see Supplementary materials), an optimization was run. It should be recalled 
that our goal was to optimize the CO2 footprint of the HALE, therefore, the objective function is now this total 
CO2 emitted. Nevertheless, gradient based solvers converge to a locally optimal point, so the search for a global 
optimum depends heavily on the starting point of the optimization. For this reason, the multi-start strategy 
described in Table 3 was used.

Every combination of values is used, meaning that a total of 2 · 3 · 3 · 3 · 4 = 216 optimizations are run. For 
each variable, the values are regularly spread between the highest and lowest. For example, for the skin thickness 
control points, the three values given at the start to that variable are [0.001 0.002 0.003 0.004], [0.0015 0.003 
0.0045 0.006], and [0.002 0.004 0.006 0.008].

The optimization was run with seven homogeneous materials integrated into the material design variable. 
Their properties are shown in Table 4.

Those named material 1, 2 and 3 are roughly homogenized sandwiched panels. Their skins are of the same 
carbon fibre reinforced polymer (CFRP) as the CFRP material in Table 4. The expanded polystyrene (PS) foam 
core of material 1 is replaced by a balsa core in material 2 and a cork core in material 3. Those cores are heavier 
than the one of material 1 but emit less CO2 per kilogram of material.

Two material indices are computed according to the method of19. Both indices correspond to minimizing 
the CO2 emitted by the structure CO2struct , (defined in Eq. 13), for a flat plate loaded with in-plane compression. 
The buckling index is useful in the case where the buckling constraint described in section “MDO framework 
summary” is active. In this case, the index to be maximized can simply be established in 18 as:

(18)E1/3/ρ/CO2mat

Figure 8.   CO2 emissions example of penalized interpolation.

Table 2.   Summary of multidisciplinary design optimization framework.

Objective function Dimension Bounds

CO2tot R

Design variables

 Density R
2 [400, 8000] kg/m3

 Twist control points R
4 [− 15, 15] deg

 Skin thickness ( tskin ) control points R
4 [0.001, 0.1] m

 Spar thickness control points R
4 [0.001, 0.1] m

 Thickness-to-chord ratio control points R
4 [0.01, 0.4]

 Span R [1, 1000] m

 Root chord R [1.4, 500] m

 Taper ratio R [0.3, 0.99]

 Motor location over semi-span ratio R [0, 1]

Constraints

 Mechanical failure σ < σmax R
7

 Buckling R2
s + Rc < 1 R

7

 Skin thickness 2tskin < twing R
4

 Power equilibrium Pneeded/APV < Swing R
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where E is the Young’s modulus of the material, ρ its density, and CO2mat , the CO2 footprint of the material 
(defined in Eq. 14). The strength index is useful in the case where the mechanical failure constraint is active. In 
this case, the index to be maximized is defined in (19):

where σf  is the failure strength (yield strength or tensile strength depending on the material). These material 
indices appear in Table 4.

The CO2 emissions and density convergence graphs obtained during optimization are shown on Figs. 9 and 
10, respectively.

The convergence graphs demonstrate that the lightest material is selected for both spars and skins.
Additionally, the CAD model of the resulting HALE is shown in Fig. 11 (with generic boom and tail shapes 

since only the wing structure is optimized). The optimization converges towards Material 1 for both spars and 
skins. This material is the one with the lowest density among those accessible through the material design vari-
able. However, it is not the one with the best CO2 emission indices. Indeed, the density indices for Materials 2 
and 3 are both higher than those of Material 1. The optimization was re-run with fixed-material (1, 2 or 3) and 
confirmed that Material 1 performs better. This material is also the optimal material in case the total weight of the 

(19)σf /ρ/CO2mat

Table 3.   Design variable starting values for multi-start strategy.

Design variable Lowest starting value Highest starting value Number of starting values Unit

Density [500 500] [600 600] 2 kg/m3

Twist control points [10 15 15 15] – 1 deg

Skin thickness control points 0.002 ·[0.5 1 1.5 2] 0.004 ·[0.5 1 1.5 2] 3 m

Spar thickness control points 0.001 ·  [1 1 1 1] 0.003 ·  [1 1 1 1] 3 m

Thickness-to-chord ratio control points 0.05 ·[0.75 1 1 1.25] 0.17 ·[0.75 1 1 1.25] 3 –

Span 25 100 4 m

Root chord 1.5 – 1 m

Taper ratio 0.3 – 1 –

Motor location over semi-span ratio 0.3 – 1 –

Table 4.   Material properties.

Property Material 1 Material 2 Material 3 CFRP GFRP Aluminum Steel Unit

Density 504.5 529 560.5 1565 1860 2800 7750 kg/m3

CO2 emissions 44.9 42.8 40.3 48.1 6.18 8.66 3.28 kgCO2
/kg

Young’s modulus 42.5 42.5 42.5 54.9 21.4 72.5 200 GPa

Shear modulus 16.3 16.3 16.3 21 8.14 27 78.5 GPa

Failure strength 587 237 587 670 255 445 562 MPa

Buckling index 0.1539 0.1543 0.1544 0.05049 0.24153 0.1720 0.2302 N
1

3 ·m
7

3/kgCO2
Strength index 25885 10484 25959 8901 22184 18331 22119 N ·m ·kgCO2

Figure 9.   Objective function: total CO2 emitted by the drone.
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drone is the objective function. This optimization clearly confirms that in our specific case of an electric HALE 
drone, minimizing the mass is equivalent to minimizing the CO2 footprint. As expected, a slight increase in the 
total weight of the drone leads to an increase in the weight of the battery and the solar panel in order to propel 
a heavier drone, and also to an increase in the weight of the wing structure that induces a more important lift 
to compensate. These weight increases contribute to a further increase in the overall weight of the drone. This 
is called the “snowball” effect.

This result can be explained by the fact that the CO2 emissions taken into account in the objective function 
are not only due to the structure (Eq. 12) explains this result. Although the structure composed of Material 3 
emits less CO2 than the one with Material 1, it is also heavier. The structure being heavier with Material 3, it needs 
more power to be thrusted, and thus, more CO2 is emitted by the batteries and solar panels. This compensates 
the lower emission due to the structure. As a result, material indices as in19 can’t be used in this case. A direct 
ratio between the weight of the structure and the CO2 emitted by the batteries and solar panels would be needed 
in order to have a truly useful material index. However, this ratio is not accessible as it evolves during optimiza-
tion. Therefore, a method such as the gradient optimization proposed in this work is necessary to choose the 
best material, if all material candidates can’t be tested individually.

An informal test was carried out to compare the relative influence of the density and the CO2 emissions of 
a material on its being optimal. For this test, the CO2 emissions of Material 3 are lowered until this material 
becomes optimal. In this test, Material 1 and Material 3 differ only by their densities and CO2 emissions. The 
density of Material 3 is 11% higher than that of Material 1. The results are presented in Fig. 12. We can note 
that the CO2 emissions of Material 3 must be approximately 20% lower than those of material 1, in order to 
compensate for its 11% higher density. It is reminded that Material 3 is the eco-material surrogate for Material 
1, the expanded PS foam core of Material 1 being replaced by a cork core in Material 3. Therefore, in this case, 
in order to lower the total CO2 emissions of the drone, an eco-material surrogate must also be almost as good as 
the initial material in terms of weight.

The code (see section Data Availability) is not optimized in terms of computational time. This will be 
addressed in future work. However, the speed of the optimization method presented in this article does not 
depend on the number of materials in the material catalogue. It is therefore particularly well-suited to large 
catalogs in comparison to a brute force method consisting in optimizing the structure for every material in the 
catalog. We also wish to emphasize that the results of our low fidelity tools are in very good agreement with the 
medium fidelity tools used for the design of FBhale14 as demonstrated in the mass minimization problem applied 
to FBhale (see Supplementary materials).

Figure 10.   Material density convergence graph.

Figure 11.   Rendering of the CAD model (using CATIA) for the optimal HALE wing.
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Conclusion
The authors have developed a low fidelity MDO framework for preliminary design of solar powered HALE. 
The code is opensource and available for the community. Material choice was successfully integrated in a con-
tinuous multidisciplinary design optimization regarding CO2 emissions. The simple HALE model developed 
showed acceptable agreement with more complex models such as FBhale, which was designed using much more 
sophisticated and costly tools.

Our modified version of OpenAeroStruct includes certain improvements with respect to the original version 
of the tool. For instance, it is adapted to HALE drones and contains more physics: material choice from among 
a discrete catalogue, batteries, solar panels, buckling constraint, etc.

A key result is that an optimal material in terms of drone total weight is also optimal in terms of drone total 
CO2 emissions, even for an electrical drone. In order to be competitive in terms of total CO2 emissions, an eco-
material substitute must be almost as good as the initial in terms of drone total weight. This is due to a “snowball” 
effect on weight. One solution for tackling this problem is to generate this eco-material substitutes by creating 
digital materials based on unit cell optimization and apply this multiscale topology scheme to ribs and spars23,35.

It is true that HALE are highly flexible aerostructures. Thus more extensive sizing such as aeroelastic analysis 
and gust response should be conducted in a near future.

Finally, a good feature that could be addressed in the future would be a multi-objective optimization between 
CO2 footprint and cost.

Data availability
The optimization presented in the results can be obtained by following the instruction of the file howToStart at: 
https://​github.​com/​mid2S​UPAERO/​ecoHA​LE/​tree/​downl​oadEc​ohale. The datasets used and/or analyzed during 
the current study are available from the corresponding author on reasonable request.
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