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A novel approach to finding 
conserved features 
in low‑variability gene alignments 
characterises RNA motifs 
in SARS‑CoV and SARS‑CoV‑2
Jordan P. Skittrall 1*, Nerea Irigoyen 1, Ian Brierley 1 & Julia R. Gog 2

Collections of genetic sequences belonging to related organisms contain information on the 
evolutionary constraints to which the organisms have been subjected. Heavily constrained regions 
can be investigated to understand their roles in an organism’s life cycle, and drugs can be sought to 
disrupt these roles. In organisms with low genetic diversity, such as newly‑emerged pathogens, it 
is key to obtain this information early to develop new treatments. Here, we present methods that 
ensure we can leverage all the information available in a low‑signal, low‑noise set of sequences, to 
find contiguous regions of relatively conserved nucleic acid. We demonstrate the application of these 
methods by analysing over 5 million genome sequences of the recently‑emerged RNA virus SARS‑
CoV‑2 and correlating these results with an analysis of 119 genome sequences of SARS‑CoV. We 
propose the precise location of a previously described packaging signal, and discuss explanations for 
other regions of high conservation.

A key challenge in the development of antivirals is the relative lack of targets that are sufficiently conserved across 
multiple families of viruses for drugs to exhibit a broad spectrum of activity. Coupled with the need to avoid 
host toxicity from drug cross-reactivity with host molecules, the identification of drug targets that control key 
lifecycle features of viruses, but that do not have close analogues in the host or in unrelated viruses, becomes an 
important goal. The identification and functional characterisation of such targets is a difficult informatic and 
biological problem, precisely because of the lack of analogues for comparison.

One class of approaches to this problem seeks to find regions of high conservation in viral nucleic acid that 
cannot be explained by conservation in resultant amino acids. The idea of these approaches is that such nucleic 
acid conservation may correlate with previously uncharacterised lifecycle features. Such approaches have, for 
example, found packaging signals and previously undescribed proteins in influenza A  virus1–3, noted a previ-
ously undescribed open reading frame in  enteroviruses4, and identified conserved structural elements in group A 
 rotaviruses5. Many such approaches have used a sliding window technique to find conserved regions in sequences: 
such a technique is often adequate, as demonstrated by its successes, and is particularly appropriate when the 
length scale of the expected regions is known, but otherwise it imposes a length scale on the problem that may 
make it more difficult to discover regions differing from this scale. The difficulty may be overcome by repeating 
analyses with different window sizes, at a cost of increased computational and analytical time and increased risk 
of false-positive signals.

We have previously described a scale-agnostic approach to this  problem6, showing that this approach could 
find previously discovered conserved regions of nucleic acid in influenza A virus and group A rotaviruses, and 
successfully applied this approach to a new analysis of HIV-17. Such an approach is more efficient at finding 
conserved regions of unexpected length scales, potentially at the cost of being less efficient at finding conserved 
regions at tuned length scales.

All the approaches described so far work in RNA virus genome datasets in which relatively high variability 
is seen between different sequenced samples. This means that both “signal” (conserved) and “background” 
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(variable) regions are seen to exhibit variability, but the lower variability in signal regions can be detected. 
However, even amongst RNA virus genome datasets there may be found examples where the overall variability 
between samples is low and so it is more challenging to distinguish signal from background. There are two 
important classes of such datasets. The first class contains datasets of truly newly emerged viruses, such as SARS-
CoV-2, where the dataset available represents well the evolutionary space the human-tropic virus has explored 
but variability is still low because limited time means the overall explored region is small. The second class con-
tains datasets of highly adapted viruses, such as the flaviviruses, which have likely co-evolved with more than 
one host species for timescales around 100 million  years8. In this example it is likely that viruses have explored 
accessible evolutionary space in the past, reaching a high reproductive fitness niche from which little deviation 
is observed in recently sequenced samples. In both cases, we need to use all the information available in a low 
noise, low signal context to discover conserved regions: in the first case, because we wish to develop therapeu-
tics for an emerging disease as early as possible; in the second case, because waiting will not yield substantially 
more information and so any attempts to develop therapeutics can only use the information already available.

Here, we present three key ideas, aimed at improving detection of conserved regions in viral genome data 
that has low variability. We benchmark these ideas where appropriate. We then apply the ideas to the example 
of SARS-CoV-2. The first key idea, of weighting analysed sequence by the information it yields, is only possible 
following development of our previous scale-agnostic approach. The second key idea, of ranking loci by variability 
rather than using a raw variability measure when variability is low, is the natural extension to this scenario of a 
number of non-parametric tests in basic statistical theory. Whilst it does not rely upon the first idea of weight-
ing, the second idea functions much more robustly in its presence. The third key idea, of attempting to remove 
interfering signal, functions independently from the first two ideas, but is of particular importance when there 
is low variability in all observed signals.

Results
Improving the signal‑to‑noise ratio: weighting data by information content, ranking skewed 
data, and accounting for interfering signals. When investigating sequences at the nucleic acid level, a 
major cause for sequence conservation in coding regions is the need for amino acid conservation. To detect other 
causes of nucleic acid conservation, any method used must account for amino acid conservation. Our method is 
based upon such a  method1. That underlying method starts with an alignment of viral sequences, and for each 
codon within a gene allocates a score equal to the sum of the Hamming distances at that codon between every 
possible pairing of sequences in the alignment. To take amino acid conservation into account, that score is then 
normalised by dividing by the score that would have been given for a set of codons encoding the same amino 
acids, but with codon usage equal to the overall codon usage of the genome. To evaluate for regions of sequence 
conservation, this original method simply considered moving averages across a sliding window of contiguous 
codon loci. We previously improved upon the use of moving averages, by instead taking the normalised distance 
sums, further normalising them to have mean zero and standard deviation one, and then considering the prob-
lem as equivalent to finding the “steepest” descent in a random walk, where “steepest” means the most extreme 
Z-statistic, and tends towards finding contiguous regions of codons with higher-than-average  conservation6.

These previous methods, plus related methods, still all suffer from the implicit assumption that each codon 
yields the same amount of information on nucleic acid conservation (as opposed to amino acid conservation). 
This assumption is untrue: for example, where amino acid conservation requires that a single codon be used at a 
locus (as is seen at methionine loci, for example), all the conservation can be explained at the amino acid level, 
and so no extra RNA conservation independently of the amino acid conservation can be distinguished. Varying 
levels of information on nucleic acid conservation may be obtained from other loci, depending upon the degree 
of amino acid constraint, the number of codons that generate the amino acid(s) seen, and bias in codon usage. 
An example of the extent to which the information content of individual loci may vary is given for the SARS-
CoV-2 E gene, in Fig. 1A.

The first of the key methodological improvements that allow us to find regions of nucleic acid conservation 
is to apply a weighting to each locus, with weights proportional to the information that locus gives us on nucleo-
tide conservation beyond what is required for amino acid conservation (Fig. 1D,F; see “Methods” for details of 
approach). For organisms with high inter-sequence variability, useful results can be gained without this weight-
ing, because there is sufficient overall information in the data. However, in organisms where our data have low 
overall inter-sequence variability, such as SARS-CoV and SARS-CoV-2, this step is key to minimising artefact 
from loci where amino acid conservation accounts for all possible nucleic acid conservation and so the apparent 
additional nucleic acid conservation is reported as zero.

The second of the key methodological improvements arises from recognising that although the steepest 
descent in our random walk framework tends towards being normally distributed, this central limit is not always 
closely approached in data from emerging or highly adapted organisms. The data from such organisms appears 
highly skewed, because at most loci there is high nucleotide conservation, making the few loci where variation 
has occurred (by chance or by selection for individual locus variability) into outliers (Fig. 1A,B). These outliers 
consequently disproportionately affect any analysis.

The solution to this issue of skewness is to move from a parametric test to the appropriate non-parametric 
equivalent, that is, by using ranked data (see “Methods” for details of approach). The effects of applying such a 
ranking scheme can be seen in Fig. 1E,F.

The third of the key methodological improvements deals with the situation where a gene contains more than 
one significantly conserved region. Our analysis implicitly uses a hypothesis testing framework, comparing a null 
hypothesis that the most conserved region observed occurs by random variation, versus an alternative hypothesis 
that the most conserved region observed is significantly more conserved than the background. The potential 
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Figure 1.  Example of how our gene alignment analysis works, applied to the E gene of SARS-CoV-2. (A) Information on nucleotide 
conservation (separately from amino acid conservation) obtained per codon in the alignment, versus the apparent nucleotide-level 
codon conservation measure, actual/expected pairwise distance (low is more conserved: see text for details). Each dot contains the 
results for one codon in the alignment. In this case, one locus with apparently low nucleotide conservation contains low information 
(green arrow), because all the information on conservation is explained by amino acid conservation (in fact this is the initiation 
codon for the gene). Another locus (pink arrow) has relatively low apparent nucleotide conservation, and moderate information 
content. (B) Apparent nucleotide-level codon conservation measure versus position of codon in the gene alignment. The dots 
corresponding to the codons discussed in panel (A) are marked with corresponding colour arrows. The orange highlighted region is 
deemed significantly conserved by the algorithm. (C) As (B), but with results normalised to have mean 0 and standard deviation 1, 
and a cumulative sum taken. This allows evaluation of the data using a random walk  model6, where the steepest descent by Z-statistic 
corresponds to the most conserved region in the gene. Significance of the steepest descent can be evaluated by bootstrap resampling; 
any region with a bootstrap p-value exceeding 0.05 is highlighted in orange. However, the artefact created by having two outlier values 
means there is a single steepest descent covering almost the entire gene. (D) Effect of weighting the contributions from individual 
codons by information content. The first codon in the gene now has weight zero, and its artefactual contribution to the appearance 
of conservation in the rest of the gene is removed. The second locus with low conservation still has an artefactual contribution that 
makes the run of loci after it appear conserved. (E) Effect of ranking the conservation measures so that the descent statistic approaches 
a normal statistic faster. The artefact from the two outlier values is removed, and a more accurately delineated conserved region is 
identified. (F) Effect of combining weighting and ranking of conservation measures. A second conserved region, visible in (E) but 
not deemed significant there, is identified. (G) Effect of the procedure that accounts for potentially interfering signals in the data 
(see text), applied to the ranked (but not weighted) data. The second region identified in (F) can be identified at low confidence. For 
more information on the biological relevance of the identified regions, see “Application to SARS-CoV-2, to SARS-CoV, and biological 
implications”.
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issue with this framework is that in a gene with more than one significantly conserved region, the “background” 
to the first significantly conserved region includes the signal from subsequent conserved regions. This means 
that where there is more than one signal, there is a slight reduction in ability to find those  signals6.

To deal with this potential issue, we implement an addition to our search algorithm that, when the most 
conserved region in a sequence is determined not to be significantly conserved, re-runs the analysis with the 
next most conserved region removed, in case the next region is causing interference (see “Methods” for details 
of approach). Regions found to be significant after such a re-analysis are marked as such, as a caution that the 
false positive rate in such regions may be slightly higher. An example of the output from this procedure can be 
seen in Fig. 1G.

We have benchmarked the weighting and ranking processes using well-characterised housekeeping genes 
from Escherichia coli9. We have benchmarked the procedure for dealing with interfering signals using simulated 
data, and by applying the procedure to the same E. coli housekeeping genes. All results from benchmarking may 
be found in the Supplementary Information S1.

Application to SARS‑CoV‑2, to SARS‑CoV, and biological implications. The advantages of the 
refinements we describe above are especially visible in the very low genetic variability setting seen in the still-
emerging virus SARS-CoV-2. Using our newly developed techniques, we undertook an analysis of 5,121,523 
SARS-CoV-2 genomes downloaded from the GISAID  database10. Because our method analyses sequence vari-
ability at individual loci rather than e.g. attempting to work with the phylogenetic structure, it is ideally suited 
to analyses of the full variability in such a large dataset. We analysed each of the main open reading frames, plus 
the sequences encoding the individual protein products of the 1a/1ab frames (Figs. S21–S28). We were moti-
vated to examine the individual 1a/1ab protein product sequences because the relative non-conservation within 
the first 4100 nucleotides of the large open reading frames (corresponding to the nsp1 and nsp2 regions plus 
part of the nsp3 region) led to much of the remainder of those frames being marked as significantly conserved 
by the algorithm (a true, but unhelpful, positive result). In order to see smaller regions of relative conservation 
within other regions, it was therefore more informative to consider the individual protein sequences separately 
(Figs. S25–S28).

After analysing SARS-CoV-2 sequences, we then proceeded to analyse 119 sequences of SARS-CoV, as a 
cross-check in a related virus to find analogous conserved regions. Analysing SARS-CoV alone represents an 
extremely challenging scenario in terms of information, because a small number of sequences from human 
infections were obtained over a short evolutionary time, before the SARS outbreak was terminated. Although 
SARS-CoV sequences can be aligned and analysed alongside SARS-CoV-2 sequences (and such analysis has 
been performed  successfully11), the risk of such an approach is that conserved features unique to one virus, or 
found in different genomic locations between the viruses, may be obscured.

A summary of the characteristics of regions found to be significantly conserved in SARS-CoV-2 may be 
found in Tables 1 and 2, and a summary of the characteristics of regions found to be significantly conserved in 
SARS-CoV may be found in Tables S2 and S3. We discuss salient findings and issues below; additional findings 
are discussed in the Supplementary text S1.

Characterisation of previously described putative packaging signals in SARS‑CoV‑2 nsp16 and SARS‑CoV nsp15 
regions. The second region our algorithm identifies as significantly conserved within the nsp16 sequence of 
SARS-CoV-2 (NC_045512.2 nucleotide reference 20,845–20,928) lies within a region previously shown to be 
associated with packaging RNAs into virus-like  particles14. When we folded representative sequences from our 
region with  RNAalifold15,16, we found a set of conserved stem-loops (Fig. 2).

We note that regions identified by our algorithm can be slightly longer or slightly shorter than regions with 
biological significance owing to low information content at extreme loci and/or random variability. Manual 
inspection of the reference genome (NC_045512.2) close to the region identified demonstrates a set of nine 
complementary base pairs (nucleotides 20,835–20,843 and 20,899–20,907) with some similarity to the base of 
the stem-loop previously reported as associated with a packaging signal in Murine Hepatitis Virus (MHV)18,19. 
Motivated by this, we produced folds of a series of regions with slightly different lengths from our predicted 
region, as a sensitivity analysis of the predicted structures. Similarly to a previously reported discrepancy for 
minimum free energy folding of the MHV  region20, most of the predictions for a larger region have more than 
one stem-loop; one stem-loop in the middle of the region remains consistently predicted (Fig. S58). We postu-
late that this stem-loop (or possibly one of the two adjacent stem-loops) is a candidate for the packaging signal 
thought to exist in the region.

The region our algorithm identifies as significantly conserved in the SARS-CoV nsp15 sequence (AY291451 
nucleotide reference 19,920–20,195) also overlaps with a region shown to be associated with viral RNA 
 packaging17,21. The more recent  work17 provides experimental evidence to constrain the key packaging signal to 
the region containing nucleotides 19,881–20,031. Our fold of our predicted conserved region (Fig. S95) predicts 
a series of conserved stem-loops, and the predicted fold of the region 19,920–20,031 within this larger fold again 
contains a three stem-loop structure. This prediction provides mutual corroboration between SARS-CoV and 
SARS-CoV-2 that we have improved the characterisation of these viruses’ packaging signals and their structural 
basis. However, when as a sensitivity analysis a fold is attempted of a more truncated region, the three stem-
loop structure in SARS-CoV is lost and only one of the stem-loops is consistent (Fig. S96). The resulting lower 
confidence in the structural prediction arises both from the lower confidence in the predicted boundaries of the 
region to fold, and because the lack of covariation in the few available SARS-CoV sequences makes it harder for 
the folding algorithm to select which base pairs occur in nature.
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A larger region containing the conserved region identified in SARS-CoV-2 by our algorithm has been postu-
lated as a negative-sense open reading  frame22. Such a possibility would be a plausible alternative explanation for 
the conservation we find, although the boundaries of the conserved region we find combined with the biological 
corroboration above seem more consistent with a packaging signal.

Transcription‑regulatory sequences leading to alternate subgenomic RNAs. Some of the smaller regions iden-
tified by our algorithm with high confidence in SARS-CoV-2 have been identified as forming the 5′ regions 
of “body” sequences, or as forming the 3′ regions of non-canonical “leader” sequences, in subgenomic RNAs 
(sgRNAs)12. These regions that are identified as conserved are therefore correctly placed to function, respec-
tively, as the transcription-regulatory sequences-body (TRS-B) leading to RdRp pausing and switching to the 5′ 
TRS-leader during negative-strand synthesis, or as non-canonical mid-genome leader sites (TRS-L-dependent 
noncanonical).

Table 1.  Summary of regions of significant conservation found in SARS-CoV-2 genes. The list is presented in 
gene order, then 5′ to 3′ within the gene. Within each gene, the order in which the algorithm identifies regions 
(starting with most highly conserved by our criteria) is listed in the table. Genes not listed do not contain 
regions found by our algorithm to have significant conservation. sgRNA subgenomic RNA, TRS transcription-
regulatory sequence (-B=body). ∗ Denotes a region only found by excluding a potentially interfering signal. Z- 
and p-values in parentheses denote values prior to removal of the next most significant signal. If parenthetical 
values are absent, then such a signal was removed in an earlier step only.

Gene Order found NC_045512.2 nt location Z p Comment

1a
2 4355–6247 2.92 0.0001 See main text

1 7127–13,480 3.53 < 0.0001 See main text

1ab

3 4355–6247 2.80 < 0.0001 See main text

2 7127–21,546 3.25 < 0.0001 Nests around 1st identified; see main text

1 7493–17,984 4.21 < 0.0001 See main text

S

2 23,087–23,395 2.54 0.0037
Adjacent to receptor-binding motif;
conserved structure possibly required to
stabilise variable adjacent region

3 23,735–23,866 2.20 0.0394 Region overlaps with various ARTIC primers

4 24,242–24,313 2.24 0.0191
Analogous region amongst conserved
regions identified in SARS-CoV. 5′ region
overlaps with v4/4.1 ARTIC primer

1 24,446–24,690 3.74 < 0.0001
Analogous region amongst conserved regions
identified in SARS-CoV. Region overlaps with
v4/4.1 ARTIC primer

3a
1 25,732–26,052 2.38 0.0013 Reason for conservation unclear

2 26,119–26,148 1.79 0.0065 Reason for conservation unclear

3b 1 26,234–26,254 1.95 0.028
Likely TRS-B for forming E sgRNA. Likely TRS-L
dependent noncanonical for a high-efficiency
non-canonical  sgRNA12.
Region overlaps with v4.1 ARTIC primer

E
2 26,278–26,301 1.54 0.0253

Likely TRS-B for a high-efficiency non-canonical
sgRNA. Possible TRS-B for forming alternate M
sgRNA12. Incomplete overlap at 3′ end with
a conserved region identified in SARS-CoV.
Region overlaps with v1/2 ARTIC primer

1 26,341–26,355 1.68 0.0272 Region overlaps with v4/4.1 ARTIC primer

M 1 27,159–27,191 2.18 0.0059
Out-of-frame internal open reading frame previ-
ously
identified by ribosomal  profiling13. Region
overlaps with v4/4.1 ARTIC primer

7b

2 27,771–27,788 1.40 0.0191
Possible TRS-B for forming alternate 7b
sgRNA12. Overlap with regions identified in
SARS-CoV but see note in SARS-CoV table

1 27,813–27,830 1.47 0.0492
Region contains first AUG for alternate 7b
sgRNA after possible TRS-B above. Overlap
with regions identified in SARS-CoV but see
note in SARS-CoV table

N 1 28,463–28,594 1.65 < 0.0001 Overlaps region found in 9a; region overlaps
with v4.1 ARTIC primer

9a

2∗ 28,410–28,457 1.63 0.0121 Reason for conservation unclear

1∗ 28,488–28,577 1.83 (1.57) 0.0018 (0.1304)
Overlaps region found in N; region overlaps
with v4.1 ARTIC primer. Reason for
conservation unclear

9b 1∗ 28,917–28,955 1.52 (1.24) 0.0316 (0.5678) Reason for conservation unclear
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The region we identify within 3b, nucleotides 26,234–26,254, is likely the canonical TRS-B for forming E 
sgRNA (Kim et al.12 recorded 149,744 sgRNAs corresponding to this TRS-B in their experiments). However, it 
is also likely to be the TRS-L-dependent noncanonical for a non-canonical sgRNA produced with higher effi-
ciency than the E sgRNA (Kim et al.12 recorded 800,532 sgRNAs missing genomic nucleotides 26,257–26,282). 
This non-canonical sgRNA would result in a frameshift in the E protein, leading to a truncation. The functions 
of both sgRNAs may be important.

The region identified second within E, nucleotides 26278–26301, is likely the TRS-B for the non-canonical 
sgRNA mentioned above. In addition, it is a candidate low-efficiency TRS-B for M sgRNA (Kim et al.12 recorded 
just over 900 sgRNAs corresponding to this TRS-B), and an analogous conserved region is identified within 
SARS-CoV.

The two regions we identify within 7b, nucleotides 27,771–27,788 and 27,813–27,830, reflect a low-efficiency 
TRS-B that appears to yield a truncated form of 7b (Kim et al.12 recorded around 15,000 sgRNAs corresponding 
to this TRS-B) and the region containing the corresponding initiation codon, respectively.

False-positive results from our algorithm tend to be seen more commonly in shorter sequences in our bench-
marking (consistent with what one would expect from random variation in the null setting), and so care must 
be taken when making inferences about conserved functions of the short sequences identified above. However, 
the number of sgRNAs observed corresponding to the likely canonical E, non-canonical E, and truncated-7b 
TRSs noted above give strong corroborative evidence for our observed conservation and for the conservation at 
the additional truncated-7b initiation site.

Overlapping alternate open reading frame. The region we identify within M, nucleotides 27,159–27,191, has 
been identified as an overlapping alternate open reading frame in ribosomal profiling experiments by Finkel et 
al.13. Where there are overlapping alternate open reading frames, the higher conservation in the wobble posi-
tions in the frame being analysed can lead to the region being identified as conserved. The previously identified 
alternate open reading frame terminates 3′ of the M termination codon; the region we identify terminates with M 
because our analysis is limited to the region within the gene. We do not identify the other alternate open reading 
frames identified by Finkel et al. The region we do identify is the one with the greatest number of reads in these 

Table 2.  Summary of regions of significant conservation found in individual proteins of SARS-CoV-2 
1a/1ab. The list is presented 5′ to 3′ . Within each protein, the order in which the algorithm identifies regions 
(starting with most highly conserved by our criteria) is listed in the table. Proteins not listed do not contain 
regions found by our algorithm to have significant conservation. ∗ Denotes a region only found by excluding 
a potentially interfering signal. Z- and p-values in parentheses denote values prior to removal of the next most 
significant signal. If parenthetical values are absent, then such a signal was removed in an earlier step only.

Region Order found NC_045512.2 nt location Z p Comment

NSP2
1 974–1042 2.36 0.0099 3

′ region overlaps with ARTIC primers

2 1688–1720 2.19 0.0306 Reason for conservation unclear

NSP3

3∗ 4598–4750 2.26
(2.24)

0.0446
(0.0589)

3
′ region of SARS-unique domain (SUD). Region

overlaps with ARTIC primers

2 7127–7726 2.42 0.0237 Region contains transmembrane domain 2.
Reason for conservation unclear

1 8396–8545 3.12 0.0002 Near C-terminus of Y domain. Reason for
conservation unclear

NSP4 1∗ 9812–9847 2.06 (2.02) 0.0412 (0.0778) Region overlaps with v1–3 ARTIC primer

NSP6
2 11,174–11,194 2.06 0.0234

N-terminal region of 3rd transmembrane
domain. Analogous region amongst conserved
regions identified in SARS-CoV

1 11,675–11,740 2.11 0.0271 C-terminal region of protein. Region overlaps
with ARTIC primers

NSP7

1∗ 11,843–11,914 1.76
(1.60) 0.0098 (0.0796)

Putative negative-sense ORF; see
Supplementary text S1. 3′ end analogous
to part of a conserved region identified in
SARS-CoV. Region overlaps with
v1–3 ARTIC primer

2∗ 11,987–12,019 1.37
(1.33) 0.0487 (0.1185)

Stem-loop structure predicted, more stable
in negative-sense via non-canonical GU pairs.
Analogous to part of a conserved region
identified in SARS-CoV.

NSP9 1∗ 12,977–13,003 1.76 (1.70) 0.0203 (0.1061)
Possible pseudoknot with this region and
region in nsp10; frameshift candidate; see
Supplementary text S1

NSP14
2∗ 18,190–18,237 2.01 (1.99) 0.0456 (0.0762) Reason for conservation unclear.

1 19,189–19,485 2.56 0.0014 Reason for conservation unclear

NSP16
2 20,845–20,928 1.94 0.0404 Putative packaging  signal14; see main text.

Region overlaps with v1–3 ARTIC primer

1 21,469–21,507 2.16 0.0146 Reason for conservation unclear
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ribosomal profiling experiments, and it would be reasonable to infer that it is therefore the region under greatest 
conservation pressure and hence easiest to find.

Primers commonly used in sequencing. Our algorithm can identify any conservation seen in a dataset, even 
when that conservation is artefactual. One of the potential risks in the SARS-CoV-2 dataset is inadvertent iden-
tification of binding regions for primers used in common sequencing workflows (that is, conservation is arte-
factual because less conserved sequences do not make it through the sequencing pipeline). We have highlighted 
in our summary where identified conserved regions overlap with primer binding sites in the commonly-used 
ARTIC sequencing  protocol23. As the protocol uses overlapping amplicons of around 400 nucleotides, any con-
served region greater than 400 nucleotides long, and many just shorter than this, will contain a primer site, so we 
only highlight the presence of primer sites fully contained within regions shorter than 250 nucleotides that are 
identified as conserved. The frequency of such primer-binding sites is high and not all such sites are identified as 
conserved: furthermore, primers are designed to avoid variable regions, so are more likely to be found in regions 
that are truly conserved, especially in later versions of the ARTIC protocol. In consequence, where a conserved 
region is identified as overlapping a primer binding site, this should be viewed as a possible contribution to 
observed conservation, but not as the only explanation.

Figure 2.  (A) Output from analysis of SARS-CoV-2 nsp16 region, with regions deemed significant highlighted 
in orange: the region coincident with the packaging-associated region of  reference14 is the left-hand highlighted 
region. More detail may be found in Table 2. (B) Output from analysis of SARS-CoV nsp15 region, with region 
deemed significant highlighted in blue. Note how, because there is substantially less information from sequence 
data available for SARS-CoV versus SARS-CoV-2, that despite the use of weighting and ranking pairwise 
distance ratios, there is much less granularity in delineating the extent of the conserved region. (C) Output of 
RNAalifold analysis of the conserved region of SARS-CoV-2 coincident with the packaging-associated region 
of  reference14. As the memory requirements for including every sequence as input to the folding algorithm are 
too great, just one representative of each sequence seen in the region is included. Base pairs are highlighted in 
deep/mid/light red as all/all but one/all but two sequences are capable of forming the pairs shown. Base pairs 
are highlighted in deep/mid/light yellow as all/all but one/all but two sequences are capable of forming the 
pair shown or one other base pair (including GU pairs). A set of conserved stem-loops is visible. RNAalifold 
was used with input options disallowing lonely pairs, allowing G-quadruplexes, and with the ribosum scoring 
matrix enabled. Nucleotide numbering follows the reference genome (NC_045512.2). (D) Output of RNAalifold 
analysis of the conserved region of SARS-CoV coincident with the packaging-associated region of  reference17. 
All available sequences are used as input to the folding algorithm, although all are identical in the given region. 
The folded region includes all of a stabilising basal stem predicted from folding the entirety of the conserved 
region predicted by our algorithm (see Fig. S95 for detail). Nucleotide numbering follows the reference genome 
(AY274119).
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Discussion
We have presented, and demonstrated the application to biological sequences of, a new technique customised 
towards maximising the signal-to-noise ratio when analysing sequences with low signal and low noise. This 
technique can complement other techniques to investigate newly-emerged pathogens, as well as pathogens 
where the amount of information on sequence diversity will remain forever-limited. The application we have 
demonstrated focusses towards RNA conservation in coding regions; however, by altering the distance and 
weight measures used, it would be straightforward to amend the technique to apply to non-coding nucleic acid 
or to amino acid sequences. The packaging signal characterisation seen in SARS-CoV-2 demonstrates how this 
technique can assist in isolating key lifecycle features in RNA viruses; isolating such features is a precursor to 
developing drugs targeted against them.

Through our demonstration of our technique with both SARS-CoV and SARS-CoV-2, we have shown how 
our algorithm can work to analyse around a hundred sequences or several million sequences. Because the main 
input to the algorithm is a list of codon frequencies, the number of sequences involved does not substantially 
affect the performance of the algorithm. In fact, with more sequences the measure of conservation used varies 
more between loci. Greater variability means the algorithm can more easily limit which pairs of loci need to be 
analysed as possible start and end points for conserved  regions6. As a result, in practice the algorithm runs slightly 
faster when analysing data from more sequences. The main part of the algorithm itself takes a few hours to run 
on a desktop computer, and the main factor affecting complexity is the nucleotide length of the individual genes 
analysed. Pre-processing to generate codon frequencies of course takes longer in the case of larger datasets. In 
the case of very large datasets, such as SARS-CoV-2, careful memory management is required, and data must be 
stored in a way that minimises floating point errors. Overall, our algorithm has substantial speed and memory 
advantages over exhaustive tree-based approaches on large datasets, at the expense of removing the ability to 
investigate evolutionary history. Its main advantage over many approaches designed for use on desktop comput-
ers is that it still uses all of a large dataset for the main analysis, rather than attempting to select “representative” 
sequences to save memory and processor time.

Our algorithm retains the advantage of its  predecessor6 of being scale-agnostic in determining regions of 
conservation. This increases its ability to find truly unknown features of interest, which may lack analogues in 
host organisms and therefore have reduced risk of toxicity as drug targets. However, two limitations ensue. The 
first is that if the length scale of a feature of interest being sought is known, then this algorithm has reduced 
sensitivity in comparison with algorithms tuned to the length of the feature of interest. Secondly and more 
importantly, where the difference in conservation between signal and background is relatively small, random 
variation may lead to the inclusion or exclusion of some codons at the end of a feature of interest. This artefact 
most likely explains why the conserved features we identify in SARS-CoV are in general longer than those iden-
tified in SARS-CoV-2: because of the extremely low variability seen in the SARS-CoV dataset, it is likely that 
the algorithm has called as conserved some non-critical regions contiguous with regions whose conservation 
is critical to the virus’s lifecycle. What is surprising, given the low variability even of the SARS-CoV-2 dataset 
and the extremely low variability of the SARS-CoV dataset, is that our algorithm identifies conserved regions in 
SARS-CoV at all and that some of them have clear analogues in SARS-CoV-2.

In general, our algorithm most easily finds longer contiguous regions of conservation, because of the statistical 
properties of the algorithm used. Other methods may therefore be more suitable for investigating point muta-
tions. Our algorithm is particularly unsuited for detecting single amino acid variations that may be associated 
with fitness changes, as for example seen in SARS-CoV-2 variants, since in addition to being poorly suited for 
investigating nucleotide point mutations, our algorithm is implemented in a way that investigates nucleotide 
conservation/variation that cannot be explained by amino acid conservation/variation.

Our method retains the limitation seen in classical non-parametric tests that even using the non-parametric 
ranked test to overcome poor convergence to the central limit, our test statistics can still be far from normally dis-
tributed when ranks are tied. In most cases, presence of poor convergence can be diagnosed through inspection of 
graphical output, so that the method is useful notwithstanding this issue. To increase automation of the workflow 
and to give a more rigorous indication of whether the assumption of normality is valid, it will be necessary to 
develop a test for normality appropriate to this scenario. Such a test is likely to be analogous to existing tests for 
normality, in the same way that the non-parametric version of the analysis we have developed here is analogous 
to the non-parametric versions of classical statistical tests. The mathematics required to develop a test for nor-
mality should also allow formal demonstration of the rate at which the ranked test converges to a central limit.

What we have presented is a method for in silico analysis of biological sequences. In common with all such 
analysis techniques, its primary limitation for biological application is that it does not give the biological explana-
tion for observed conservation, but highlights regions for further investigation. When the biological relevance 
of an identified region is clear, the technique facilitates further investigation. When the biological relevance is 
less clear, the technique only gives a very broad guide towards possible ways to proceed.

Methods
Information‑scaled random walk. The idea underlying our work is that in an alignment of genetic 
sequences, the between-sequence diversity seen at a single locus i in the alignment can be represented by a num-
ber xi . In this paradigm, as in previous  work1 we consider as loci individual codons in coding regions of viral 
RNA, and at each locus generate a sum of all Hamming distances between pairs of codons for all possible pair-
ings of sequences in the alignment (“pairwise distance”). This sum is normalised by dividing by the pairwise dis-
tance that would be observed if the observed codons were replaced so as to give the same amino acid frequency, 
but with the codon usage per amino acid matching the average usage across the entire gene or genome (“normal-
ised pairwise distance”). In an earlier version of the method we present  here6, that normalised pairwise distance 
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was then taken to be the vertical deviation for that locus in a random walk where each codon was associated 
with unit horizontal deviation, following a method designed for assigning parentage to recombinant  genes24. 
The overall walk was normalised to give mean vertical deviation of zero and variance of the vertical deviation of 
one, and an appeal to the Central Limit Theorem made to argue that the steepest descent by Z-statistic should be 
evaluated for statistical significance.

The key idea of this present work is that the earlier random walk paradigm can be refined by moving from the 
unit of horizontal movement in the random walk being the number of loci, with each locus counting equally, to 
the unit of horizontal movement being the information gained from each locus. For example, at a locus where the 
amino acid usage is constrained to be methionine, no further information is gained by considering codon usage, 
since every sequence is constrained to use the codon AUG. Note that since the observed codon usage exactly 
matches the expected codon usage, the normalised pairwise distance here is 1. In contrast, at a locus where the 
amino acid usage is constrained to be glutamine (possible codons CAA, CAG), substantial extra information 
is conveyed by observing that the codons actually seen match the overall usage in the genome (say e.g. 1:1 ratio 
of each), despite the normalised pairwise distance being 1 as in the methionine case, since in the presence of 
strong nucleic acid constraint (say all observed codons being CAA) a normalised pairwise distance of 0 would 
be observed, which is not possible in the methionine case. Including the methionine case, where no informa-
tion is gained, in the random walk unnecessarily dilutes the information it is possible to obtain from analysing 
the walk. We note that our method does not depend upon the underlying biology explaining the overall codon 
usage in the genome (for example whether there are multiple tRNAs corresponding to one amino acid leading 
to abundance-related codon bias, avoidance of codons with CpGs), just the measured resultant usage.

The appropriate way to account for the variability in information gained from each locus is to construct a 
walk where the horizontal distance moved per locus is equal to the information gained from that locus, and the 
normalised pairwise distance now defines the gradient of the step, so that the vertical distance moved in the walk 
is (information gained × normalised pairwise distance). In our example, this would result in the uninformative 
methionine locus effectively being excluded from the walk, since it would result in moving distance zero in both 
horizontal and vertical directions.

More formally, for each locus in the gene being analysed, we calculate the Shannon information, − log p , 
where p is the probability of observing the given codon frequencies at that locus. Each amino acid seen at a given 
locus gives a contribution to p of

Here, s is the total number of sequences with the amino acid at this locus, k is the number of codons that trans-
late to the amino acid, yj is the observed number of sequences using codon j, and pj is the proportion across the 
gene (or genome) amongst loci coding for this amino acid that use codon j. That is, for each amino acid seen, a 
multinomial distribution of codon usage at the locus is assumed, with the multinomial probabilities being the 
observed frequencies at which the codons are used to encode the amino acid across the gene (or genome). For 
each amino acid seen at a locus in an alignment, the calculated probabilities are multiplied together to obtain p.

Next, we use the calculated Shannon information at each locus (indexed i) as a weight, which acts as a coef-
ficient of the diversity value xi . If the xi were drawn from independent, identically distributed (i.i.d.) standard 
normal distributions, with the weights independent of the sampled values, then weights could be applied directly 
as coefficients without further modification. However, motivated by our sequence diversity value, we note that 
not only have we not required that the xi be i.i.d. samples, but worse, the weight wi ( − log p from above) associ-
ated with xi may correlate with the value of xi . (We can illustrate the existence of a correlation by noting that the 
highest values of wi occur only at loci with highly conserved unusual codons, which implies a low value of xi .) It 
is obvious that uniformly translating the xi so that they have a different mean does not commute with applying 
weightings wi , meaning care is necessary if one wishes to weight the xi and translate them to have mean 0 and 
standard deviation 1. The appropriate translation to obtain a mean of 0 is

where n is the total number of loci, and hence the appropriate normalisation factor to obtain a standard devia-
tion of 1 (preserving orientation) is

We now construct a walk, in which for each increment i of the walk, the horizontal displacement is wi , and the 
vertical increment is
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As in our previous  work6, we are now in a position to treat the x̂i as step sizes in a random walk, but here with 
non-uniform step sizes in both dimensions, the weight of the step acting as a coefficient to the step size in each 
dimension. Let c0, . . . , cn and vo, . . . , vn be partial cumulative sums, formed as follows:

The difference between any two cumulative sums ci and cj gives (for i < j ) the weighted sum x̂i+1 + . . .+ x̂j , with 
sum of weights vj − vi . As long as the terms in the sums represent a random sample of the steps in the walk, then 
the central limit theorem guarantees that

will approach a normal statistic. We can then determine maxi,j:i<j Zij , which in our original problem will cor-
respond to the most highly conserved run of codons (compared to chance) in a coding sequence.

We have described algorithmic approaches to optimise finding maxi,j:i<j Zij in our previous  work6. We note 
that in contrast to this previous work, the walk we have now generated is closer in its characteristics to that of the 
standard Brownian bridge, which is better characterised analytically in the literature than is the walk we gener-
ated in our previous work. However, we retain the relatively fast bootstrap approach to calculating significance 
we have described previously.

We note that the weights wi are only defined up to a multiplicative constant (corresponding to the base of 
the logarithm in the definition of Shannon information), but that this is taken into account in the normalisation 
and in any case, multiplicative scaling of the Z-statistics by the same amount would not change their ordering.

Ranking of diversity measure. The weighting technique we have described above is especially important 
for samples of sequences that do not explore a large portion of evolutionary space, as it improves signal-to-noise 
ratio in sample sets with low amounts of signal. However, in such samples, the rate of convergence of the test 
statistic to a normal statistic will still be slow, and for short subsequences (statistics Zij with i close to j in the 
notation above) this may be particularly problematic, with most loci apparently conserved and walks dominated 
by a small number of variable loci. Ultimately, in this scenario the statistic risks simply picking out the longest 
run between observed random variation. The problem is a breakdown of the parametric assumption in the low 
variability scenario.

In the situation of a collection of conserved sequences, it is therefore appropriate to seek an appropriate 
non-parametric test. One obvious approach to take to generate such a test is to rank the diversity measures, and 
perform testing on the ranks rather than the measures from which they were generated.

When using rankings, the question of information content becomes even more important than for raw meas-
ures of diversity, because now, adding a collection of uninformative loci with intermediate ranked diversity will 
affect the relative ranks of all other loci. The most appropriate extension to our previous idea of weighting by 
information content is that for each diversity measurement, rather than allocating a ranking that is one greater 
than the next lowest diversity measurement, we instead allocate a ranking that is greater by the corresponding 
weight.

Formally, we begin by defining a function R−1 , which maps a sequence position i to its position in the order-
ing of all the xj . That is, R−1

(i) is the integer rank of xi amongst x1, . . . , xn , in the usual sense of the word “rank”. 
We define the lowest value to have rank 1 and the highest value to have rank n. At this stage we assume that no 
two xj share a rank (i.e. R−1 is bijective); we shall deal with relaxing this assumption later.

We have called the defined function R−1 because we wish primarily to work with its inverse, which we shall 
call R. R maps a position in an ordering to its corresponding sequence position. This definition allows us to 
construct a series of weighted ranks wR(1),wR(1) + wR(2), . . . ,

∑k
j=1 wR(j), . . . for each position in the ordering 
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position in the ordering of diversity measures xj . Where there is such a tie, we allocate all tied positions to have 
the same weighted rank, which is defined by setting the increment from the preceding weighted rank in the order 
to be the mean of the weights of the tied positions. The image of the tied sequence positions in the ordering can 
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be arbitrary within the ties, but so that it is well-defined, we may for example set R−1
(i) < R−1

(j) when i < j 
and xi = xj . Formally, when we have a degeneracy of the form xi1 = xi2 = . . . = xik , the weighted rank for each 
of sequence positions i1, . . . , ik is defined to be

and the corresponding walk increment for position il is

We note that, aside from replacing each diversity measurement xi with a rank R−1
(i) , the algorithmic handling 

of sequences using this modification is identical to previously (in essence, the diversity measure xi is simply 
replaced by a new measure x′i = R−1

(i)).
Where a very large number of tied ranks is present, we caution that the test statistic may not converge rapidly 

to its central limit. Similar limitations are seen in classical non-parametric tests, for example the Mann-Whitney 
U test, which assume that ranks are not tied to derive their  limits25.

Handling potentially interfering signals. We showed in our previous  work6 that when a sequence of 
real numbers contains two “signal” subsequences with positions that have similar deviations from the mean val-
ues of the background positions, then the two signals interfere with each other and less of each signal is found, 
on average. This is an unsurprising consequence of significance testing comparing a putative signal with back-
ground, such that if the background also contains signal, the signal-to-noise ratio will be lower and the chances 
of finding the signal will be lower.

A straightforward way of increasing the sensitivity of any algorithm for picking up signal regions in such 
circumstances is to attempt to re-run the analysis after identifying and removing a potentially interfering second 
signal region. Such an approach clearly has a specificity cost. However, one might expect the specificity cost to 
be relatively small for a number of reasons. Firstly, removing the next-identified putative signal region is more 
likely to have a large effect on a significance calculation for the first region when the second region is a large, 
contiguous region, as would be more expected from a second signal and less from a piece of randomly varied 
background. Secondly, it is possible to mark regions that have been identified following this procedure, meaning 
this can be taken into account when further analysis is performed.

Our algorithm modification to implement this procedure is that when the most extreme descent in a dataset 
has been identified but found not to be significant, then its location is recorded, but it is excised and the analysis 
continued to determine the location of the next most extreme descent. That descent is then removed and the 
analysis repeated with the first region present. If the analysis finds the same descent as in the first step and it now 
crosses a significance threshold, it is noted, and the analysis is continued with the sequence remaining after the 
most extreme descent has been removed, in the usual way (and with the next most extreme sequence replaced).

We note that there are two ways analysis can cease immediately following this procedure. The first, straight-
forward, way is if the originally identified most extreme descent still fails to cross a significance threshold. The 
second way is if the most extreme descent identified following excision of the second most extreme descent is 
no longer identical to the original. This can occur if, for example, excision of the second region leads to a new, 
more extreme region formed by the regions adjacent to the second region. In this case, we work on the basis 
that if there is a piece of original background that is now more extreme than the putative signal, then this is an 
indication that the original signal was not significantly different from the background and stop.

Benchmarking with E. coli housekeeping genes. To find appropriate E. coli sequences to analyse for 
benchmarking, we searched GenBank using the string ((“Escherichia coli”[Organism] OR escher-
ichia coli[All Fields]) AND rsma[All Fields]) AND “Escherichia coli”[porgn] 
AND (bacteria[filter] AND (“4500000”[SLEN] : “999999999999999999”[SLEN]) 
AND (“0001/01/01”[PDAT] : “2021/12/20”[PDAT])). We downloaded sequences in gene-anno-
tated format and then selected (into separate files) sequences corresponding to the housekeeping genes adk, 
icd, fumC, recA, mdh, gyrB, and purA (i.e. the genes of the Achtman multilocus sequence typing  schema9). 
Sequences that did not begin ATG and end with a termination codon, and sequences containing ambiguous 
nucleotide characters, were omitted from analysis. A list of accession numbers of sequences used in each gene 
may be found in Tables S4–S10.

Because sequences were highly conserved, it was possible for each gene to undertake manual curation and 
alignment of sequences. A list of the curation steps undertaken may be found in Table S11.

Aligned sequences corresponding to the individual genes were then analysed using the procedure detailed 
above, for each permutation of normalised pairwise distances being unweighted/weighted by information, using 
raw/ranked normalised pairwise distances, and including a check for potentially interfering signals. Output may 
be found in the Supplementary Information (Figs. S1–S3, S6, S8, and S11–S18).

Analysis of SARS‑CoV‑2 sequences. We downloaded sequences from the GISAID database for analy-
sis. Sequences downloaded were all those uploaded up to and including 17th March 2022, with the host set 
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to human and using the “Complete” and “High coverage” options. The rationale for these options is that our 
analysis aims to understand selection pressures on SARS-CoV-2 in human hosts, and to use our algorithm we 
ideally need entire genes (or regions for analysis) to have been sequenced unambiguously. A list of downloaded 
sequences, with submitter attributions, may be found in GISAID EPI_SET  20220720bs26.

Nucleotide sequences were aligned to the Wuhan-Hu-1 reference sequence (NCBI reference sequence 
NC_045512.2, identical to GenBank reference MN908947) using  MAFFT27 with the keeplength and add-
fragments options (and otherwise default options). Although aligning to a single reference sequence may 
generate less optimal alignments than a full alignment, and is done in a way that fails to account for nucleotide 
insertions, a full alignment was not computationally tractable and the level of conservation of the SARS-CoV-2 
genomes resulted in a reasonable alignment with minimal information loss.

Genes and subgenomic regions for analysis were extracted by nucleotide reference in the alignment, taking 
into account the −1 frameshift in the 1ab gene.

Alignments of extracted regions were further curated by removing sequences containing ambiguous nucleo-
tides, by removing sequences without stop codons in the final 30 nucleotide region of genes being analysed, 
by removing sequences with straightforward frameshifts (a number of gaps that is not a multiple of 3), and by 
removing sequences with > 5% gaps.

The counts of each codon represented in the alignment at each locus were recorded, and pairwise distances 
were calculated as described above. For each gene, these pairwise distances were then analysed for signifi-
cant regions using the procedure detailed above, for each permutation of normalised pairwise distances being 
unweighted/weighted by information, and using raw/ranked normalised pairwise distances. In each case, a 
check for potentially interfering signals was undertaken as described above and signals that were significant in 
the absence of a potentially interfering signal were recorded. Gaps in the alignments were handled as described 
in our previous  work7.

Review of significant regions for biological relevance was undertaken only for the analysis with information 
weighting and ranked normalised pairwise distances, since these options would be expected to produce the 
fewest spurious results.

For each significant region of length ≤ 5500 nucleotides, one example of each possible sequence observed 
for the region was placed into an alignment and the alignment folded using  RNAalifold15,16; a reverse comple-
ment of the alignment was similarly folded. To avoid exceeding RNAalifold’s memory limit, a single example of 
each possible sequence was used to reduce the memory required and folding was not attempted with regions of 
length > 5500 nucleotides.

Regions were manually reviewed for out-of-frame coding potential, and for known features of interest includ-
ing regions known to affect transcription or translation, packaging signals, and other cis-acting sequences, plus 
regions with possibly artefactual conservation resulting from properties of common sequencing protocols.

Graphical output from this analysis not included in the main text may be found in Figs. S19–S60.

Analysis of SARS‑CoV sequences. We downloaded sequences from GenBank for analysis. The search 
term used was (“Severe acute respiratory syndrome coronavirus”[Organism] OR 
sars-cov[All Fields] OR sars[All Fields]) AND (viruses[filter] AND is_
nuccore[filter] AND (“29000”[SLEN] : “30000”[SLEN]) AND (“0001/01/01”[PDAT] 
: “2018/12/31”[PDAT])). The date range in the search reflects the end of the SARS-CoV outbreak and 
the higher probability that sequences submitted after the end of 2018 are SARS-CoV sequences that have under-
gone multiple passages in culture, or that SARS-CoV-2 sequences would be included inadvertently. Output was 
reviewed manually. Animal-derived sequences, and sequences resulting from cell passage intended to generate 
genetic diversity, were removed. (Whilst the intention was to study genetic diversity, the diversity being studied 
is the diversity allowed within the constraints of infection of a human host, not the greater diversity seen in cell 
culture.) A complete list of accession numbers used may be found in Table S12.

Genes and subgenomic regions for analysis were extracted by nucleotide reference in the alignment, taking 
into account the −1 frameshift in the 1ab gene.

Alignments of extracted regions were further curated by removing sequences containing ambiguous nucleo-
tides, and by removing sequences without stop codons in genes being analysed. Amino acid sequences were 
aligned using  MUSCLE28 and back-translated to nucleotide sequences.

Codon counts, pairwise distance calculations, analyses for significant regions and review for biological sig-
nificance was undertaken as described for SARS-CoV-2 above, save that all sequences (rather than one example 
of each possible sequence observed) were used to produce RNAalifold output.

Graphical output from this analysis not included in the main text may be found in Figs. S61–S96.

Data availibility
The datasets analysed during the current study are available in the GenBank repository, https:// www. ncbi. nlm. 
nih. gov/ genba nk/, accession numbers detailed in the supplementary information files, and in the GISAID reposi-
tory, https:// gisaid. org, accession numbers detailed at https:// doi. org/ 10. 55876/ gis8. 22072 0bs.

Code availability
Code implementing the algorithms described in this study is available as a Mathematica notebook, from https:// 
github. com/ skitt rall/ RNAde scent.
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