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magnum.np: a PyTorch based 
GPU enhanced finite difference 
micromagnetic simulation 
framework for high level 
development and inverse design
Florian Bruckner *, Sabri Koraltan , Claas Abert  & Dieter Suess 

magnum.np is a micromagnetic finite-difference library completely based on the tensor library 
PyTorch. The use of such a high level library leads to a highly maintainable and extensible code base 
which is the ideal candidate for the investigation of novel algorithms and modeling approaches. 
On the other hand magnum.np benefits from the device abstraction and optimizations of PyTorch 
enabling the efficient execution of micromagnetic simulations on a number of computational 
platforms including graphics processing units and potentially Tensor processing unit systems. We 
demonstrate a competitive performance to state-of-the-art micromagnetic codes such as mumax3 
and show how our code enables the rapid implementation of new functionality. Furthermore, handling 
inverse problems becomes possible by using PyTorch’s autograd feature.

Micromagnetic simulations are widely used in a range of applications, from magnetic storage technologies and 
the design of hard and soft magnetic materials, to the modern fields of magnonics, spintronics, or even neuro-
morphic computing. A finite difference approximation has been proven useful for many applications due to its 
simplicity and its high performance, compared with the more flexible finite element approach.

Currently, there are already many open-source finite difference codes available, like OOMMF1, mumax32, 
magnum.af3, magnum.fd4, fidimag5, to mention just a few. However, for the development of new algorithms or for 
bleeding edge simulations one often needs to modify or extend the provided tools. For example post-processing 
of the created data often requires the setup of a seperate tool-chain. magnum.np provides a very flexible interface 
which allows the combination of many of these tasks into a single framework. It should bridge the gap between 
development codes, which are used for the testing of new methods, and production codes which are highly 
optimized for one specific task.

Complex algorithms can be easily built on top of the available core functions. Possible examples include an 
eigenmode solver for the calculation of small magnetization fluctuations, the calculation of the dispersion rela-
tion of magnonic devices, or the string-method for the calculation of energy barriers between different energy 
minima6–8.

Due to the use of PyTorch’s autograd method magnum.np is also well suited for solving inverse design prob-
lems. Inverse design refers to a design approach where the desired properties and functionalities of a system are 
specified first, and then the optimal structure or materials are determined to achieve those properties. It involves 
working backwards from the desired output to determine the necessary input parameters.

Recently, some inverse micromagnetic problems have been reported9–11, where the magnetic systems have 
been optimized for a specific task. Providing a gradient of the objective function with regard to the design varia-
bles allow to use very efficient gradient-based optimization methods. Using PyTorch’s autograd features, it is easily 
possible to define the design variables as differentiable and after the micromagnetic simulation (forward problem) 
has been performed the corresponding gradient can be computed using reverse-mode auto-differentiation.

Magnum.np is open-source under the GPL3 licence and can be found at https://​gitlab.​com/​magnum.​np/​
magnum.​np. Different demo scripts are part of the source code and can be tested online using Google Colab12, 
without the need for local installations or specialized hardware like GPUs. A list of demos can be found on the 
project gitlab page https://​gitlab.​com/​magnum.​np/​magnum.​np#​docum​ented-​demos.
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Design
In contrast to many available micromagnetic codes magnum.np follows a high-level approach for easy read-
ability, maintainance and development. The Python programming language combined with PyTorch offers a 
powerful environment, which allows to write high-level code, but still get competitive performance due to 
proper vectorization.

PyTorch13 has been chosen as backend since it allows transparently switching between CPU and GPU with-
out modification of the code. Also the use of single or double precision arithmethic can be switched easily (e.g. 
use torch.set_default_dtype). Furthermore, it offers a very flexible tensor interface, based on the the 
Numpy Array API. Directly using torch tensors for calculation avoids the need for custom vector classes and 
allows using pytorch functions without the need for any wrapping code.

As a nice benefit of using PyTorch, one can directly use inverse operations via the PyTorch’s autograd feature14. 
Even the utilization of deep neural networks in combination with classical micromagnetics would become 
feasable15.

One key philosophy of the magnum.np design is to utilize few well-known libraries in order to delegate work, 
but keep its own code clean and compact. On the other hand we try to keep the number of dependencies as small 
as possible, in order to improve maintainability. As an example pyvista is used for simple reading or writing 
VTK files, but also offers many additional capabilities (mesh formats, visualization, etc.).

Figure 1 summarizes the most important building blocks and features.
The state class contains the actual state of the simulation like time t, magnetization m or in case of an 

Oersted field the corresponding current density j . It also contains the information about mesh and materials. 
The finite difference method is based on an equidistant rectangular mesh consisting of nx × ny × nz cells, with 
a grid spacing (�x,�y,�z) and an origin (x0, y0, z0) . Thus the index set (i, j, k) is sufficient to identify an indi-
vidual cell center:

Internally, physical fields are stored as multi-dimensional PyTorch tensors, where one value is stored for each 
cell (e.g. scalar fields are stored as (nx , ny , nz , 1) tensors). Using Numpy Array API features like slicing or fancy 
indexing allows simple modification of the corresponding data. Furthermore, it allows the use of the same 
expression for constant and non-constant materials, which contains one material parameter for each cell of 
the mesh. This avoids additional storage in case of constant materials, without the need for independent code 
branches. By using overloading of the __call__ operator, it is even possible to allow time dependent material 
parameters in a transparent way.

It is often very useful to select sub-regions within the mesh, e.g. for defining location dependent material 
parameters, or evaluate the magnetization only in a part of the geometry. We call these sub-regions “domains” 
and they are easily represented by boolean tensors, which can be created by low-level tensor operation or by using 
SpatialCoordinate - a list of tensors (x, y, z) which store the physical location of each cell. Using these 
coordinate tensors allows to specify domains by simple analytic expressions (e.g. x2 + y2 < r2 for a circle with 
radius r). The same coordinate tensors can also be used to parametrize magnetic configurations like vortices or 
skyrmions (see e.g. Listing 1 with the corresponding magnetization visualized in Fig. 2).

(1)xi,j,k =





xi
xj
xk



 =

�

x0 + i �x
y0 + j �y
z0 + k �z

�

= x0 +�x with
i = 0...nx − 1
j = 0...ny − 1
k = 0...nz − 1

Figure 1.   Overview of the high-level interface of magnum.np.
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The actual state can be stored by means of loggers. The ScalarLogger is able to log arbitrary scalar func-
tions depending on the current state (e.g. average magnetization, field at a certain point, GMR signal, ...). The 
FieldLogger stores arbitrary field data using VTK.

Due to the very flexible interface it is also intendend to add utility function for various application cases 
to the magnum.np library. In many cases pre- and post-processing is already done in some high-level python 
scripts, which makes it possible to directly reuse those codes in magnum.np at least on CPU. In many cases 
time-critical routines can be easily translated into PyTorch code, which then also runs on the GPU, due to the 
common Numpy Array API. Examples of such utility functions which are already included within magnum.np 
are Voronoi mesh generators, several imaging tools for post-processing – like Lorentz Transmission Electron 
Microscopy(LTEM) or Magnetic Force Microscopy(MFM) – or the calculation of a dispersion relation from 
time-domain micromagnetic simulations.

Landau–Lifshitz–Gilbert equation
Dynamic micromagnetism is described by the Landau–Lifshitz–Gilbert equation

with the reduced magnetization m , the reduced gyromagnetic ratio γ = 2.21× 105m/As , the dimensionless 
damping constant α , and the effective field heff  . The effective field may contain several contributions like the 
magnetostatic strayfield, or the quantummechanical exchange interaction (see “Field terms” section for the 
detailed descriptions of possible field terms).

For the solution of the Eq. (2) in time-domain most finite difference codes use explicit Runge–Kutta (RK) 
methods of different order. Magnum.np by default uses the Runge–Kutta–Fehlberg Method (RKF45)16, which 
uses a 4th order approximation with a 5th order error control. Explicit RK methods, are very common, due to 
their simplicity and they are well suited for modern GPU computing. Additionally, third party solvers can be 
easily added, since many libraries already provide a proper python interface. For example wrappers for Scipy 
(CPU-only) and TorchDiffEq solvers are provided. Those solvers include more complicated solver methods like 
implicit BDF17, which are well suited for stiff problems.

Often one is only iterested in the magnetic groundstate, in which case the LLG can be integrated with a high 
damping constant (and optionally without the precession term). Alternatively, the micromagnetic energy18,19 can 
be minimized directly, which is often much more efficient. However, special care has to be taken since, standard 
conjugate gradient method may fail to produce correct results20.

(2)ṁ = −
γ

1+ α2

[

m× heff + αm×

(

m× heff
)]

,

state = State(mesh) # state summarizes all informations
x, y, z = state.SpatialCoordinate() # x, y, z are tensors which contain
disk = x**2 + y**2 < 20e-9**2 # boolean array (1:disk, 0:outside)

state.m = torch.stack([ y, -x, 1e-9*z], dim = -1) # parametrize vortex
state.m[~disk] = 0. # set m=0 outside disk
state.m.normalize() # normalize m

Listing 1:.   Parametrization of a vortex configuration within a disk with radiusr = 20nm using 
SpatialCoordinate 

Figure 2.   Resulting magnetization created using the parametrization in Listing 1. The color visualizes the 
x-component of the magnetization. The gray color outside of the disk shows that the magnetization is zero, 
outside of the magnetic domain.
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Field terms
The following section shows some implementation details of the effective field terms. Due to the flexible interface 
new field terms can easily be added even without modifying the core library.

All field terms which are linear in the magnetization m inherit from the LinearFieldTerm class, in order 
to allow a common calculation of the energy using

with the corresponding (continuous) field hlin , the saturation magnetization Ms , and the vacuum permeability µ0.
In the following several field contributions will be described including a continuous formulation as well as 

the used discretization. For example the discretized version of the linear field energy can be written as

with the cell volume V = �x�y�z . xi describes a discretized quantity x at the cell with index i . Some indices 
i will be omitted for sake of better readability (e.g. for the material parameter Ms).

Anisotropy field.  Spin orbit coupling gives rise to an anisotropy field which favors the alignment of the 
magnetization into certain axes. Depending on the crystal structure one or more of such easy axis may be 
observed. E.g. material with tetragonal or hexagonal structure show a uniaxial anisotropy which gives rise the 
the following interaction field

where Ku1 and Ku2 are the first and second order uniaxial anisotropy constants, respectively, and eu is the cor-
responding easy axis. Since the anisotropy is a local interaction, its discretization is straight forward and will be 
ommited. The corresponding source code is shown in Listing 2.

Since the uniaxial anistropy field is a linear field term, only the field needs to be implemented, whereas the 
energy is inherited from the LinearFieldTerm. Material parameters are accessed from state.material 
which returns the material for each cell at the time state.t. The actual field expression is very close to the 
mathematical formulation, which makes the code easy to ready and adapt for similar use cases.

For a cubic crystal structure the corresponding cubic anisotropy field is given by

where Ku1 and Ku2 are the corresponding first and second order cubic anisotropy constants. m1 , m2 and m3 are 
the magnetization components in three orthogonal principal axes.

Exchange field.  The quantum mechanical exchange interaction favours the parallel alignment of neigbor-
ing spins. Variation of the micromagnetic energy gives rise the the following exchange field

combined with a proper boundary condition21 for the magnetization m , which can be expressed as

The boundary condition is important for the correct treatment of the outer system boundaries, but also for 
interface between different materials. In general the jump of B over an interface Ŵ needs to vanish ( [[B]]Ŵ = 0 ). 

(3)E
lin = −

1

2
µ0

∫

Ms m · hlin dx,

(4)Elin = −
1

2
µ0V

∑

i

Ms mi · h
lin
i ,

(5)hu(x) =
2Ku1

µ0 Ms
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

 ,

(7)hex(x) =
2

µ0 Ms
∇ · (A∇m),

(8)B = 2A
∂m

∂n

class UniaxialAnisotropyField(LinearFieldTerm):
@timedmethod
def h(self, state):

Ku = state.material["Ku"]
Ku_axis = state.material["Ku_axis"]

h = 2.*Ku*Ku_axis / (constants.mu_0 * state.material["Ms"]) \
* torch.sum(Ku_axis * state.m, dim=3, keepdim=True)

return torch.nan_to_num(h, posinf=0, neginf=0)

Listing 2:.   Implementation of the first order uniaxial anisotropy field.
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In case of an outer boundary this leads to the well-known ∂m
∂n = 0 , if no further field contibutions (like e.g. DMI) 

are considered.
The discretized expression of the exchange field considering spacially varying material parameters22 is finally 

given by

where A is the exchange constant and �k is the grid-spacing in direction k. The index i = (i, j, k) indicates the 
cell for which the field should be evaluated, whereas the index i ± ek means the index of the next neighbor in the 
direction ±ek . Note that the harmonic mean of the exchange constants occurs in front of each next-neighbor dif-
ference, which makes it vanish if a cell is located on the boundary. This is important to fulfill the correct boundary 
conditions ∂m

∂n = 0 . In case of a homogeneous exchange constant this term simplifies to the well known expression

DMI field.  Due to the spin-orbit coupling some materials show an additional antisymmetric exchange inter-
action called Dzyaloshinskii–Moriya interaction23,24. A general DMI field can be written as

with the DMI strength D and the DMI vectors edmi
k  , which describe which components of the gradient of m 

contribute to which component of the corresponding field. It is assumed that edmi
−k = −edmi

k .
Different kinds of DMI can be simply implemented by specifying the corresponding DMI vectors. For example 

the continuous interface DMI field for interface normals in z direction and DMI strength Di is given by

Thus, the corresponding DMI vectors for interface DMI result in edmi = (ey ,−ex , 0) . See Table 1 for a sum-
mary of the most common DMI types.

Finally, Eq. (11) is discretized using central finite differences. For constant Di this results in

where D̃i,k is the effective DMI coupling strength between cell i and i + ek . Similar to the case of the exchange 
field, the harmonic mean is used for the avarage coupling strengths:

Note, that if DMI interactions are in place ∂m
∂n = 0 does no longer hold. Instead, inhomogeneous Neumann 

boundary conditions occur (see e.g. Eqs. 11–15 in2), which leads to a coupling of exchange and DMI interaction. 
The exchange field could no longer be calculated independent of the DMI interaction.

However, since the Neumann boundary conditions are only approximately fulfilled due to the finite difference 
approximation, magnum.np uses an alternative formulation of the discrete boundary conditions that simply 
ignores the non-existing values on the boundary, which is consistent with the effective coupling strengths in 
Eq. (14). Although, this approach seems less profound, it has been used in some well-known micromagnetic sim-
ulation packages, like fidimag5 or mumax3(openBC)2, and shows good agreements for many standard problems25.

(9)hexi =
2

µ0 Ms,i

∑

k=±x,±y,±z

2

�2
k

Ai+ek Ai

Ai+ek + Ai

(

mi+ek −mi

)

(10)hexi =
2A

µ0 Ms,i

∑

k=x,y,z

mi+ek − 2mi +mi−ek

�2
k

(11)hdmi(x) =
2D

µ0 Ms

∑

k=x,y,z

edmi
k ×

∂m

∂k
,

(12)
hdmi,i(x) = −

2Di

µ0 Ms
[∇(ez ·m)− (∇ ·m) ez]

=
2Di

µ0 Ms

[

ey ×
∂m

∂x
− ex ×

∂m

∂y

]

,

(13)hdmi
i =

2

µ0 Ms,i

∑

k=±x,±y,±z

D̃i,k
edmi
k ×mi+ek

2�k
,

(14)D̃i,k =
2Di Di+ek

Di + Di+ek

Table 1.   Most common DMI types with the corresponding symmetry class and DMI vectors.

DMI type Symmetry class Formula DMI vectors edmi

Interface Cnv h
dmi,i = − 2Di

µ0 Ms
[∇(ez ·m)− (∇ ·m) ez ] (ey ,−ex , 0)

Bulk T or O h
dmi,b = −

2Db
µ0 Ms

∇ ×m (ex , ey , ez )

D2d D2d (−ex , ey , 0)
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Demagnetization field.  The dipole-dipole interaction gives rise to a long-range interaction. The integral 
formulation of the corresponding Maxwell equations can be represented as convolution of the magnetization 
with a proper demagnetization kernel N

Discretization on equidistant grids results in a discrete convolution which can be efficiently solved by a 
Fourier method. The discrete convolution theorem combined with zero-padding of the magnetization allows 
to replace the convolution in real space, with a point-wise multiplication in Fourier space. The discrete version 
of Eq. (15) reads like

and is visualized in Fig. 3
The average interaction from one cell to another can be calculated analytically using Newell’s formula26. 

More information about the implementation details can be found in27, where the demagnetization field has been 
implemented using numpy.

As shown in Fig. 4 the Newell formula is prone to fluctuations if the distance of source and target cell is too 
large28. Thus, it is favourable to use Newell’s formula only for the p next neighbors of a cell. For the long-range 
interaction one uses a simple dipole field

with the magnetic moment M = V Ms m for a cell volume V.
The difference of Newell- and dipole-field is also visualized in Fig. 4. Choosing p = 20 as default gives accu-

rate results for the near-field, but avoid fluctuations to the long-range interactions. One further positive effect 

of using the dipole field for long-range interaction is that the setup of the demagnetization gets much faster and 
there is no need for caching the kernel to disk.

In case of multiple thin layers, which are not equi-distantly spaced, it is possible to only use the convolu-
tion theorem in the two lateral dimensions3. The asymptotic runtime in this case amounts to O(nxy log nxy n

2
z) , 

where nxy are the number of cells within the lateral dimensions and nz is the number of non-equidistant layers.
True periodic boundary conditions can be used to suppress the influence of the shape anisotropy due to the 

global demagnetization factor. This is crucial when simulating the microstructure of magnetic materials. The 
differential version of the corresponding Maxwell equations can be solved efficiently by means of the Fast Fourier 
Transfrom, which intrinsically fulfills the proper periodic boundary conditions29.

Oersted field.  For many applications like the optimization of spinwave excitation antennas30,31 or spin orbit 
torque enabled devices32,33 the Oersted field created by a given current density has an important influence. For 
continuous current density j it can be calculated by means of the Biot-Savart law

Most common finite difference micromagnetic codes offer the possibility to use arbitrary external fields, but 
lack the ability to calculate the Oersted field directly. Fortunately, the Oersted field has a similar structure to the 
demagnetization field and the occuring integral equations can be solved analytically34. This makes it possible to 
consider current densities which vary in space and time, since the corresponding field can be updated at each 
time-step.

(15)hdem(x) =

∫

�

N(x − x′)M(x′) dx′

(16)hdemi =
∑

j

Ni−j Mj ,

(17)hdipole(x) =
1

4π

3x (M · x)− |x|2 M

|x|5
,

(18)hoersted(x) =
1

4π

∫

j(x′)×
x − x′

|x − x′|3
dx′

Figure 3.   Discrete convolution of the magnetization M with the demagnetization kernel N . The color blocks 
in the result matrix represent the multiplications of the respective input values. Figure taken from21 with kind 
permission of The European Physical Journal (EPJ).
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As with the demagnetization field the far-field is approximated by the field of a singular current density, 
which avoids numerical fluctuations.

Spin‑torque fields.  Modern spintronic devices are based on different kinds of spin-torque fields35,36, which 
describe the interaction of the magnetization with the electron spin. An overview about models and numerical 
methods used to simulate spintronic devices can be found in21.

In general arbitrary spin torque contributions can be described by the following field

with the current density je , the reduced Planck constant � , the elementary charge e, and the polarization of the 
electrons p . ηdamp and ηfield are material parameters which describe the amplitude of damping- and field-like 
torque37.

In case of Spin–Orbit-Torqe (SOT) ηfield and ηdamp are constant material parameters, whereas for the Spin-
Transfer-Torque inside of magnetic multilayer structures those parameters additionally depend on ϑ—the 
angle between m and p . Expressions for the angular dependence are e.g. introduced in the original work of 
Slonczewski38 or more generally in39.

Spin-Transfer-Torque can also occur in bulk material inside regions with high magnetization gradients like 
domain walls, or vortex-like structures. The following field has been proposed by Zhang and Li40 for this case:

with the reduced gyromagnetic ratio γ , the degree of nonadiabacity ξ . b is the polarization rate of the conducting 
electrons and can be written as

with the Bohr magneton µB , and the dimensionless polarization rate β.
The muMAG Standard Problem #5 is included in the magnum.np source code for demonstration of the 

Zhang-Li spin-torque.

Interlayer‑exchange field.  The Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction41 gives rise to an 
exchange coupling of the magnetic layers in multilayer structures which are separated by a non-magnetic layer. 
The corresponding continuous interaction energy can be written as

where Ŵ is the interface between two layers with magnetizations m1 and m2 , respectively. Jrkky is the coupling 
constant which oscillates with respect to the spacer layer thickness.

When discretizing the RKKY field using finite difference in many cases the spacer layer is not discretized. 
Instead the interaction constant Jrkky is scaled by the spacer layer thickness. Additionally, one has to make sure 

(19)hst(x) = −
je�

2eµ0Ms

[

ηdamp m× p+ ηfield p
]

,

(20)hstt,zl(x) =
b

γ

[

m× (je · ∇)m+ ξ (je · ∇)m
]

,

(21)b =
βµB

eMs(1+ ξ 2)
,

(22)Erkky = −

∫

Ŵ

Jrkky m1 ·m2 dA,

Figure 4.   Comparison of the numerical strayfield caluclation using Newell’s equations26, the Dipole 
appoximation (17), and the differnce of both increasing cell distance.
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that the two layers are not coupled by the classical exchange interaction. In magnum.np the corresponding 
exchange field can be defined on subdomains, so there is no coupling via the interface.

The magnetizations m1 , m2 should be evaluated directly at the interface. Since the magnetization is only 
available at the cell centers, most finite difference codes use a lowest order approximation which directly uses 
those center values. magnum.np also allows to use higher order approximations, which show significantly better 
convergence if partial domain walls are formed at the interface42.

For m1 the following expression can be found:

where mi denotes the magnetization of the cell adjacent to the interface insided of layer 1, where the field should 
be evaluated. mi−1 and mi−2 are its first and second next neighbor, respectively. A similar expression is given for 
m2 , but indices i are replaced with the corresponding indices j of cells inside of layer 2.

Finally, the discretization of the RKKY field corresponding to the energy Eq. (22) yields

with the cell thickness �z and the indices i and j of two adjacent cells in layer i and j. Note that the second term 
stems from a modified boundary condition for the classical exchange field, if higher order approximations are 
used.

Thermal field.  Thermal fluctuation can be considered in micromagnetic simulations by adding a stochastic 
thermal field hth , which is characterized by

with the Boltzmann constant kB , the temperature T, the dimensionless damping parameter α , the cell volume V, 
and the timestep �t . 〈.〉 denotes the ensemble average. The two delta functions indicate that the thermal noise is 
spatially and temporally uncorrelated. The actual thermal field can then be calculated by

where ηi is a random vector drawn from a standard normal distribution for each time-step.
When numerically integrating stochastic differential equations, a drift term can occur if not using the correct 

statistics within the numerical methods. Although some higher-order Runge-Kutta schemes exist, they become 
increasingly complex. Fortunately, it has been proven that in case of the LLG the drift term only changes the 
length of the magnetization, which is fixed anyway. Thus, it is possible to straight forwardly use available adaptive 
higher order schemes for the solution of the stochastic LLG43.

Timings.  Benchmarks of the field terms are presented in Fig. 5. The results show that for systems larger than 
about N = 106 elements, the demagnetization field is the dominating field term and it is less than a factor 2 
slower than the mumax3 version. However, these timings have been performed without any low-level optimi-
zation. Instead magnum.np utilizes high-level optimization, that does not influence the simplicity of the code. 
For example just-in-time compilers (like PyTorch-compile, numba, nvidia-warp, etc.) are used to improve the 
performance of the code. For all local field contributions this works increadibly well and the resulting timings 
are even outperforming mumax3. Optimized timing using torch.compile of the recently published version 
2.0 of PyTorch are included in Fig. 5. Unfortunately, torch.compile does not yet support complex datatypes, 
which prevents it from being used to calculate the demagnetization field.

In case of the demagnetization field an optimized padding for the 3D FFT which is not yet provided by 
PyTorch, could give some further speedup.

Examples
The following section provides some examples which should demonstrate the ease of use and the power of the 
magnum.np interface. Due to the python/PyTorch interface pre- and post-processing can be done in a single 
script (or at least in the same scripting language) and allows to keep the complete simulation framework as simple 
as possible. The presented code focuses on complex examples which would be more elaborate to setup with other 
micromagnetic codes. In the magnum.np source code44 several other examples are included, such as hysteresis 
loop calculations, simulation of soft magnetic composites, an RKKY standard problem and the muMAG standard 
problems. Further examples will be continously added.

Spintronic devices.  The first example demonstrates the creation and manipulation of skyrmions in mag-
netic thin films, that can be patterned by means of ion radiation techniques to locally alter the magnetic materi-

(23)m1 =







mi if order = 0
3
2 mi −

1
2 mi−1 if order = 1

15
8 mi −

5
4 mi−1 +

3
8 mi−2 if order = 2

(24)h
rkky
i =

Jrkky

µ0 Ms �z
[m2 − (m1 ·m2)m1],
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�hthi � = 0

�hthi (t0) h
th
j (t1)� =
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√

2αkBT
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als of the system45. This simulation technique is also useful for the numerical modeling of structued Pt-layers 
on top of the thin-film that create a location-dependent DMI interaction as realized recently in an experimental 
work46.

Listing 3 shows the material definition for the spintronic demo, where the anisotropy constant is altered in 
the irradiated region. A rectangular mesh with n cells and a grid spacing dx is created and integer domain-ids 
are read from an unstructured mesh file by means of the mesh_reader. Boolean domain arrays can then 
be derived and in turn be used to set location dependent material parameters, which will influences the local 
skyrmion densities.

A random initial magnetization is set and the default RKF45 solver is used for time-integration. Several log-
ging capabilities allow to flexibly log scalar- and field-data to files. Custom python functions that return derived 
quantities, such as the Induction Map (IM) or the Lorentz Transmission Electron Microscopy (LTEM) image 
of the magnetization state, can simply be added as log entries. Listing 4 shows the corresponding code and the 
results are visualized in Fig. 6. One can see that the density of skyrmions in the irradiated region is increased 
significantly compared to the outside region. The lower anisotropy allows the nucleation of not only skyrmions, 
but also trivial type-II bubbles, and antiskyrmions47.

Inverse design.  Finding the optimal shape of magnetic components for certain applications is an essential, 
but quite challenging task. An automated topology optimization requires the efficient calculation of the so-called 
forward problem, as well as the corresponding gradients (compare e.g.48,49). The following example should dem-
onstrate how magnum.np can be used to solve inverse problems, by utilizing PyTorch’s autograd mechanism.

The field created by a magnetization at a certain location x0 should be maximized. The objective function 
J which should be minimized could thus be defined as J[m] = hy(x0) ). The forward problem is simply an 

Figure 5.   Benchmarking (a) demagnetization field and (b) exchange field for different system sizes N on an 
Intel(R) Xeon 6326 CPU @ 2.90 GHz using one NVIDIA A100 80GB GPU (CUDA Driver 11.8). An average 
of 10000 evaluations has been measured for each field term. Before measurent begins, 1000 warm-up loops are 
used to ensure that the GPU has reached its maximum performance state. Single precision arithmetics are used 
for comparison with mumax3.

mesh = Mesh(n = (1500, 300, 1), dx = (10e-9, 10e-9, 20e-9)) # mesh
domains = read_mesh(mesh, "mesh.msh", scale = 1e-9) # read domain-ids
state = State(mesh) # define state
irradiated = (domains == 1) # boolean array

state.material = { # set material everywhere
"Ms": 400e3, #
"A": 4e-12, #
"Ku": 100e3, #
"Ku_axis": (0,0,1), #
"alpha": 1.0} #

state.material["Ku"][irradiated] = 50e3 # reset material on sub-domain

write_vti(state.material, "material.vti") # store material parameters

Listing 3:.   Mesh creation and boolean domains read from an external unstructuredgrid file “mesh.msh”, which 
are used to define location dependent materialparameters.
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evaluation of the demagnetization field. The optimization requires the calculation of the gradient g = ∂J
∂m . The 

magnetization should always point in y direction, and its magnitude my saturates at Ms.
The optimal magnetization which leads to the maximum field at the evaluation point can be found by using 

an gradient-based optimization method (e.g. Conjugate Gradient). Since this simple example is linear, the opti-
mal solution is found after a single iteration. Depending on the sign of the gradient the optimal magnetization 
within each cell is 1, if the calculated gradient is positive and 0 otherwise. Listing 5 summarizes how the gradient 
calculation is performed. The optimized magnetization is visualized in Fig. 7 and shows perfect agreement with 
the analytical result.

Conclusion
An overview of the basic design ideas of magnum.np has been given. Equations and references for the most 
important field contributions as well as solving methods are included for clarification. Some typical applica-
tions are provided in order to demonstrate the ease of use and the power of the provided python-base interface. 
Furthermore the use of PyTorch extends magnum.np’s capabilities to inverse probems and allows seamlessly 
running applications on CPU and GPU without any modification of the code. The openness of the project should 
encourage other developers to contribute code and use magnum.np as a framework for the development and 
testing of new algorithms, while still getting reasonable performance and generality.

Figure 6.   Visualization of the created skyrmions at µ0Hz = 250mT using (a) an Induction Map, (b) an 
underfocus Lorentz Transmission Electron Microscopy image, or (c) the z-component of the magnetization.

state.m = RandomUnitSphere(state) # start with random magnetization

demag = DemagField() # define field contributions
aniso = UniaxialAnisotropyField() #
exchange = ExchangeField() #
external = ExternalField(Hext) #

llg = LLGSolver([demag, aniso, exchange, external]) # use RKF45 solver
logIM = ('IM', lambda state: IMImage(state)) # evaluate IM from state
logLTEM = ('LTEM', lambda state: LTEMImage(state)) # evaluate LTEM from state

logger = Logger("data", ['t','m'], ['m', logIM, logLTEM])
while state.t < 20e-9: # integrate until 20ns

logger << state # log [t,m] as scalars, and [m,IM,TEM] as VTI
llg.step(state, 1e-11) # perform time-integration for 10ps

Listing 4:.   Setup of time-integration for 20 ns and logging. Scalar data, like timet and avarage magnetization 
〈m〉, will be written to a column based text field.Field data, like the magnetization m as well as a corresponding 
LTEM image,will be written to .vti files utilizing pyvista.
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Data availability
magnum.np is Open Source Software published under the GPL3 Licence. Its complete source code, demos and 
unit tests can be found at https://​gitlab.​com/​magnum.​np/​magnum.​np.
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