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Ranking routes in semiconductor 
wafer fabs
Shreya Gupta 1,2*, John J. Hasenbein 1,2* & Byeongdong Kim 1,2*

We develop a method to estimate the quality of processing routes in a wafer fabrication process. 
Ranking such routes can be useful for identifying the “best” and “worst” routes when making 
adjustments to recipes. Route categorization is also useful in developing efficient scheduling 
algorithms. In particular, we propose a method for ranking routes based on count-based metrics such 
as the number of defects on a wafer. We start with a statistical model to produce a “local” ranking of a 
tool and then build a “global” ranking via a heuristic procedure. Creating a fully statistical procedure 
for ranking routes in semiconductor fabrication plants is virtually impossible, given the number of 
possible routes and the limited data available. Nonetheless, our discussions with working engineers 
indicate that even approximate rankings are useful for making better operational decisions.

In this paper, we develop a method to estimate the quality of processing routes in a manufacturing process. This 
work was inspired by the situation in a typical semiconductor wafer fab, but the method could be used in any 
sector. However, some of our terminology and focus is driven by the application area we have in mind.

A semiconductor manufacturing facility is know as a fab. Typically a semiconductor manufacturing process 
constitutes semiconductor wafers (the entities being manufactured) moving through a sequence of tools (or 
equipment or machines) in a pre-specified order such that they can be appropriately processed by each tool. This 
pre-specified order of tools is referred to in the semi-conductor manufacturing industry as a route. Each tool in 
the route also has a pre-specified setting to get wafers of a certain quality. Together the route and the pre-specified 
setting for each tool in that route is referred to as a recipe.

In a semiconductor fab, there are typically several tools that can be chosen to complete a given step in the 
production process. A recipe, as described earlier, consists of a specific ordering of manufacturing steps plus 
the tool settings at each step. Ranking such routes can be useful for various reasons. First, identification of the 
“best” and “worst” routes is helpful in recipe probing. Specifically, when adjustments are made to tool settings, 
it is useful to identify the best and worst routes in the existing process as these are likely to provide good bounds 
on performance for the adjusted recipe. Second, route categorization may be used to aid efficient scheduling. 
For example, the route ranking can be used as one factor in dispatching jobs as they progress through the 
manufacturing process.

We develop a method for ranking routes for count-based metrics, in which the metric takes values that are 
non-negative integers and for which lower values are better. In particular, 0 is the best possible value of the metric. 
The computational example considered in this paper relates to defect counts on a wafer.

In general, our method starts by developing a “local” ranking of a tool and then builds a “global” ranking via 
a heuristic procedure. Note that it is not always possible to rank the tools directly from, say, defect data, because 
this data is often not collected until a product has undergone several processing steps. Hence, we must estimate 
the correlation between the defects and the tool choices. Similarly, creating a a detailed statistical procedure for 
ranking routes in semiconductor is virtually impossible, given the number of possible routes and the limited 
data available. Nonetheless, our discussions with working engineers indicate that even an approximate ranking 
is useful for making better operational decisions in the fab.

The rest of the paper is organized as follows. In  “Literature review”, we briefly review the previous related 
work. In “Count-based route ranking”, we propose two ranking algorithms for count data: count regression based 
ranking and binary probability based ranking. In “Computational examples”, we illustrate the algorithms using 
some computational examples and compare the results of the two ranking algorithms. Finally, we wrap up the 
paper in “Conclusion” with suggestions on when to use one ranking algorithm versus the other.
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Literature review
There seems to be relatively little previous work on ranking routes in manufacturing. Chang et al.1 use the ana-
lytic hierarchy process (AHP) to rank three cutting tools based on precision. They further analyze how sensi-
tive this ranking is to the weights of the criteria selected by the decision maker. Similarly, Chang et al.2 build a 
modified fuzzy AHP (FAHP) to rank tools based on the weights of selected criteria and analyze the sensitivity 
of these priorities to the criteria. Chang et al.3 examine three diamond cutting tools using the analytic network 
process (ANP), a generalization of AHP. They rank these tools in increasing order of the time required for tool 
examination and monitoring. The objective of the three aforementioned papers is to find the machine with 
highest precision that increases yield and reduces manufacturing cost. They do so by attempting to identify the 
characteristics and criteria affecting manufacturing quality. A strength of their analysis is that they use AHP, 
which can combine qualitative and quantitative factors in the ranking.

A similar problem is tackled in Rao and  Patel4 which addresses ranking alternative manufacturing tool options 
using the preference ranking organisation method for enrichment evaluations (PROMETHEE) integrated with 
AHP and fuzzy logic. The paper proposes the use of an improved PROMTHEE method that uses AHP to calculate 
the relative importance of different criteria. Thus, these weights are based on the decision makers’ preferences. 
Further, PROMTHEE also involves the use of a preference function for the decision maker. A benefit of using 
PROMTHEE is that it allows as many qualitative and quantitative criteria as desired, and computationally feasible. 
Furthermore, it takes the relative importance of these criteria into consideration.  Chakraborty5 ranks advanced 
manufacturing systems using data envelopment analysis to identify a homogeneous group of “good” systems 
and then uses their technical differences to further distinguish them. It also weighs these technical attributes 
based on their importance and then proposes a final rank. This methodology provides a complete ranking of the 
alternatives from the best to the worst and also takes user preference into account.

Chien et al.6 use the Kruskal–Wallis and multiple comparison tests to differentiate and recognize problematic 
and normal tools based on yield-loss. They then perform ANOVA and regression analysis on the extracted yield-
loss data to identify the causal relationship between yield and problematic tools (levels) across different process 
stages (factors). The recommended process does not directly involve the decision maker’s preference anywhere, 
which has both advantages and disadvantages. They recommend that the decision maker should at all times 
evaluate the results by reviewing the identified yield-loss data and key processes to ensure nothing is missing.

Hessinger et al.7 suggests methods to select which tools to use for analyzing the source of defects based on 
inspection tool sensitivity. The methods suggested revolve around yield loss. It also suggests methods to improve 
inspection effectiveness via defect type filtering and classification. However, the focus of this paper is not to 
explicitly rank or compare tools.

Madic et al.8 propose the use of range of value (ROV) multi-criteria decision making (MCDM) technique 
to rank cutting fluids. Though ROV is largely unexplored, the authors make the case about its computational 
simplicity as compared to other MCDM methods. Wang et al. propose an evaluation index for ranking alternative 
reconfiguration schemes such that it reflects both the advantages and disadvantages of the configurations. The 
index system is developed using PROMTHEE I and PROMTHEE II and used to rank the various configurations.

Nestic et al.9 propose a fuzzy decision-making model to rank manufacturing processes from a quality man-
agement perspective in the automotive industry, akin to ranking based on number of defects in this paper. The 
goal of their model is different however, and is to improve quality management through a fuzzy extension of 
Elimination and Choice Translating Reality III (ELECTRE III, a family of MCDM). This model assesses and 
ranks manufacturing sub-processes with respect to key performance indicators.

Khaira and  Dwivedi10, like in this paper, highlight the importance of identifying the best and worst perform-
ing tools. However, their focus is mostly on worst performing, which they refer to as “critical” as they are moti-
vated to assist in maintenance with their models. They propose a two-step decision making for identifying critical 
section and then critical equipment in that section at an electrode graphite manufacturing plant, a methodology 
of normalization for the Analytic Hierarchy Process (AHP), and a PROMETHEE based method for validation.

Lyu et al.11 propose using the chi-square test of independence, the Apriori algorithm, and the decision tree 
method identify the sub-process causing defective products and extract rules to identify the lot identification 
of product defects and their associated manufacturing process parameters. For the analysis they use Internet of 
Things (IoT) technology to collect manufacturing data.

Elvis et al.12 uses MCDM by applying the Delphi method to decide where to place a place a new tool or tech-
nology in the automotive manufacturing process.

The aforementioned papers focus on analyzing the source of defects, assist in management, and weed out 
under performing tools. Our objectives differ from these in that the primary goal of this paper is to rank routes 
in a system with many tools and hence many potential routes, but when a comparatively much smaller amount 
of data is available.

We aim to enable an engineer to pick one the potential best routes for testing new recipes. The algorithms 
we propose do not integrate the decision maker’s preference until the very end, and even then this is optional. 
Thus, our method is more flexible than many previously developed methods because the decision maker has the 
option of not tampering with the model at all and utilizing a fully algorithmic ranking produced by our model. 
Further, the preferences of the decision maker are not taken for the tools being ranked or the steps involved in 
the process but for the relative importance of the defects with respect to each other. In fact, we incorporate the 
preference of the decision maker as a weight for a particular defect. This is done separately for each defect and 
then all the weighted scores are added up.
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Count-based route ranking
As mentioned above, a recipe is a specific set of steps and tool settings required to produce a device. In most 
cases, each step can be performed by different tools within a tool group. These tools often have slightly differ-
ent capabilities and performance characteristics. Here, and in subsequent sections, we assume that a number 
of wafers with known routes have been analyzed. Note that for practical purposes, a route is usually just a small 
portion of the complete recipe for a wafer.

In this section, we develop ranking algorithms when the metric of interest is a count (i.e., a non-negative 
integer). Throughout the analysis we assume that a lower count is better. Hence, these techniques make sense 
when examining the number of defects on a wafer, where a zero count is ideal. For concreteness, we assume that 
the given data consists of the route taken by a wafer, along with the number of different types of defects incurred 
per wafer after the wafer has completed the production steps included in the route. We develop two count-based 
ranking algorithms: (1) the count regression algorithm and (2) the binary ranking algorithm.

It should also be noted that in many processes there are a large number of products with “excessive zeros” 
from the viewpoint of basic Poisson-based models. This dispersion can be hard to capture using techniques such 
as adding interaction variables, additional variables and even removing outliers. Count regression methods, as 
we will see in the next section, allow us to effectively capture this overdispersion and produce better models.

Count regression algorithm. We regress each defect type separately against each tool according to 
the regression model described below. Suppose the data set has m steps. Let nj be the number of tools in step 
j ∈ {1, 2, . . . ,m} , l ∈ {1, 2, . . . , nj} be the lth tool of step j, and suppose there are d different types of defects. For 
the lth tool of the jth step, let njl be the number of corresponding sample points from our data set and let Ijl be the 
index set of these sample points (where a “sample point” refers to a route taken by one of wafers and the associ-
ated defect data in the data set). For the sth sample point in our data, let yis denote the number of defects of type 
i in sample point (or route) s of the data set, i.e., yis ∈ Z

+ , where Z+ denotes the set of non-negative integers. Let 
µijl ∈ R

+ denote the average number of defects of type i detected on wafers that were processed on tool l of step 
j, where R+ denotes the set of non-negative reals. Then,

We also define µij ∈ R
+ as the follows:

Let the dummy variables Xjl be defined as follows:

Then the count regression model for predicting the average number defects of type i associated with step j 
is given by:

where g(·) is the link function for the count regression and the βijl ’s are the regression coefficients of the dummy 
variables Xjl . The link function can vary depending on the particular model being used. Each βijl is estimated 
using its corresponding maximum likelihood estimate β̂ijl . The intercept βij1 indicates the effect of the first tool 
of the jth step ( j ∈ {1, 2, . . . ,m}).

The aim of this model is to help us determine the relative effect of the different tools and corresponding steps 
on defects. To determine the relative contribution of an individual tool within a particular step on the number 
of defects, we set the dummy variable corresponding to that tool to 1 and dummy variables corresponding to all 
other tools in that step to 0. Thus, if X

jl̃
= 1 for some tool l̃  of step j and Xjl = 0 ∀ l �= l̃ then Eq. (4) reduces to:

Having described how to interpret our model, we now proceed to development of the algorithm. The first 
step is to find a regression model that best describes the defect count data. The algorithm developed to achieve 
this (represented in Fig. 1) begins with a Poisson regression, which models the logarithm of the expected value 
of the counts. A general Poisson regression model with a log link is:

Again using (5), for a particular tool l we have:

(1)µijl =

∑
s∈Ijl

yis

njl
∀ i ∈ 1, . . . , d; j ∈ 1, . . . ,m; l ∈ 1, . . . , nj .

(2)µij =

∑nj
l=1 µijl

nj
∀ i ∈ 1, . . . , d; j ∈ 1, . . . ,m.

(3)Xjl =

{
1, if tool l is used in step j
0, otherwise

.

(4)g(µij) = βij1 + βij2Xj2 + βij3Xj3 + · · · + βijnjXjnj

(5)g(µijl̃) = βij1 + βijl̃ .

(6)ln(µij) = βij1 + βij2Xj2 + βij3Xj3 + · · · + βijnjXjnj .

(7)ln(µijl) = βij1 + βijl .
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Thus, the marginal probability of incurring y defects of type i as an effect of tool l of step j (note: this does not 
mean as a direct result of tool l) can be determined using the rate µijl obtained above via a Poisson probability 
mass function (pmf):

(8)fijl(y) =

{
e
−µijlµ

y
ijl

y! , y ∈ Z
+

0, otherwise
.

Figure 1.  Procedure for ranking routes based on defect count data using count regression.
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In this model we need to check for overdispersion in the defect data because the mean and variance of a 
count model with a Poisson link should be the same. We estimate overdispersion using the sample mean and 
variance, µ̂ and σ̂ 2 , respectively, of the entire defect data set. The defect data is categorized as overdispersed if 
σ̂ 2 > µ̂ or σ̂

2

µ̂
> 1 . The latter expression is called the dispersion statistic. The analysis of overdispersion depends 

on three things: (1) the value of the dispersion statistic, (2) the number of observations in the model, and (3) 
the structure of the data.

For the size of the data set we worked with ( ≈ 1000 sample points) and based on the recommendations in 
the literature, slight overdispersion is permissible as long is it does not exceed 1.2513.

If the dispersion is larger than 1.25, we start by first modifying the Poisson regression model using a quasi-
likelihood adjustment.

If the model is not overdispersed, then the Pearson χ2 statistic for a sample of size n is:

If the data is not overly sparse and the model is correct then Pχ
2

ij ∼ χ2
n−np

 , where np is the number of param-
eters being estimated. If Pχ

2

ij  indicates lack of fit but the estimated number of defects, µijl , is sufficiently close 
to the true defect value, yis,s∈Ijl , i.e., the model has a low mean squared error or high adjusted R-squared value, 
then the sample variance might not be correctly capturing the true population variance of the data (assuming 
the data follows a Poisson distribution)14. It is also typical in such a case that the model is overdispersed, i.e.:

In this case, a reasonable remedy is to assume that the variance is a multiplicative factor of the assumed 
population variance for a Poisson distribution, i.e., var(ys) = φ · µ for some constant φ ∈ R . The model with 
this adjustment is called a quasi-Poisson model and it involves the following small adjustment to the Pearson 
chi-square statistic:

where P̃χ
2

ij  is the modified Pearson chi-square statistic.
Since a χ2

n−np
 random variable has expected value n− np , one simple way to estimate dispersion is to find a 

φ̂ij that makes Pearson chi-square statistic equal to the mean of the distribution it follows. Thus we set:

Now, in order to see how this adjustment affects the model and the associated estimates, we note that the 
Poisson distribution belongs to the exponential family of distributions given by:

where θ = log(µ) , ψ = µ , b(θ) = µ , φ = 1 , α(φ) = 1 and C(y;φ) = − log(y!) . The variance adjustment φ given 
by (12) is the dispersion parameter φ in (13). This variance adjustment consequently modifies (13) to the expo-
nential family f (y; θ , φ̂) , which may no longer integrate to unity and should be simply considered a useful 
modification of the likelihood function l(·) = log(f (·))(see14). However, the main question is: how does this 
transformation affect our parameter estimates in the count regression model given by (4)? The estimates for 
the original Poisson regression model given by (4) are obtained via the maximum likelihood estimation (MLE) 
method. Thus, they are called the MLE estimates and it can shown that they are obtained by setting the following 
partial derivatives to zero for each tool l in each step j for each defect:

where βijl and yijl are vectors of the parameter set and all the data points, respectively. Therefore, when only 
the variance changes with an adjustment factor of φ̂  given by (12), the MLE estimates above are just scaled by 
a factor of φ̂  as follows:

Thus, the MLE estimates for β̂ijl remain unchanged.

(9)P
χ2

ij =

nj∑

l=1

∑

s∈Ijl

(yis − µijl)
2

σ̂ 2
=

nj∑

l=1

∑

s∈Ijl

(yis − µijl)
2

µ̂
.

(10)σ̂ 2 > µ̂ =⇒ P
χ2

ij =

nj∑

l=1

∑

s∈Ijl

(yis − µijl)
2

σ̂ 2
<

nj∑

l=1

∑

s∈Ijl

(yis − µijl)
2

µ̂
.

(11)P̃
χ2

ij =

nj∑

l=1

∑

s∈Ijl

(yis − µijl)
2

φij · σ̂ 2
=

P
χ2

ij

φij
,

(12)P̃
χ2

ij = n− np =⇒ φ̂ij =
P
χ2

ij

n− np
.

(13)f (y; θ ,φ) = exp

{
yθ − b(θ)

α(φ)
+ C(y;φ)

}
= exp

{
y log(µ)− µ− log(y!)

}
,

(14)∂ l(βijl; y)

∂βijl
=

n∑

s=1

∂µjs

∂βijl
(yis − µjs)

var(yis)
=

n∑

s=1

∂µjs

∂βijl
(yis − µjs)

σ

(15)∂ l(βijl; y)

∂βijl
=

n∑

s=1

∂µjs

∂βijl
(yis − µjs)

φ̂ · σ
=

1

φ̂

n∑

s=1

∂µjs

∂βijl
(yis − µjs)

σ
.
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This implies that the parameter estimates of the count regression model (4) remain unchanged but the likeli-
hood test statistics and differences in deviation (such as the Pearson chi-squared test statistic) must be divided 
by φ̂  before evaluating the goodness of fit using “an appropriate χ2 distribution”  (see14). After the quasipoisson 
adjustment, we build a negative binomial regression model that can account for even larger overdispersion in 
count data. Between the quasipoisson adjusted and negative binomial regression models, we choose the better 
model using the information criteria statistics described below.

For the negative binomial regression we use the most popular parameterization which is a Poisson-gamma 
mixture model that leads to a variance function which is quadratic in the mean. This is known as the NB-2 model, 
the derivation and motivation of which are outlined  in15. The NB-2 pmf with mean µ and variance µ+ αµ2 is:

The corresponding count regression model with a log link is the same as in (6). However, this model also 
may not turn out to be a good fit (i.e., it may have p value ≥ 0.05 ). One of the reasons for a bad fit may be that 
the negative binomial (NB-2) overdispersion (which also implies Poisson overdispersion) of the estimated vari-
ance of the predicted defect rates (while modeling each individual defect of type i and each individual step j) is 
greater than µ+ αµ213,15. If the model variations we have considered so far fail to provide a good fit to the data, 
we may need to consider another issue: overdispersion may be due to excess zeros. As such, we proceed to work 
with hurdle models as a final step. The hurdle model is a two part model. The first part is a Bernoulli process 
which models the probability of getting a zero defects versus getting a positive number of defects (irrespective of 
the magnitude of this number). This can be achieved using a probit, logit or complementary log-log model. The 
second part involves modeling count data as a zero-truncated Poisson, geometric or negative binomial model. In 
our framework we used a probit link for the Bernoulli model, and a Poisson or negative binomial distribution for 
the positive counts. Thus we have two types of hurdle models, one with a Bernoulli hurdle and a Poisson count 
process, and the other with a Bernoulli hurdle and a negative binomial count process. For the Poisson distribu-
tion, given by (8), the probability of a zero count ( e−µijl ) is subtracted from one and the remaining probabilities 
are rescaled using this difference. So a zero-truncated Poisson (ZTP) distribution has the pmf:

A similar process is followed for a zero-truncated negative binomial count process. We chose hurdle models 
over other models such as pure ZTP, a zero-inflated Poisson, or a negative binomial process (ZIP or ZINB). The 
pure ZTP model is not useful because it completely disregards zero counts. However, zero counts are important 
to us because a high-zero count indicates a better process. Like the hurdle models, ZIP and ZINB are two-part 
models consisting of both a Bernoulli process and count process. However, unlike hurdle models, these models 
assume that the zero counts result from both the binary and the count process. Hurdle models, on the other 
hand, separate the modeling of zeros from that of counts because it assumes that only one process generates 
zeros. Hence, we prefer hurdle models and do not pursue the ZTP, ZIP and ZINB models. When determining 
model fit, hurdle models can be compared with each other and the other models in this section using the Alkaike 
Information Criterion (AIC) statistic, if the sample size, n, is less than 8. Otherwise, the Bayesian Information 
Criterion (BIC) is recommended. This is because the BIC imposes a stronger penalty on model complexity than 
the AIC for n ≥ 8 , i.e., when the sample size is  large16. The AIC and BIC are defined as follows:

where np is the number of model parameters, θ̂  is a vector of MLE parameter estimates obtained by maximizing 
l(θ̂) , which is the log-likelihood. Thus, the AIC is a conservative statistic for measuring the model fit, as quanti-
fied by l(θ̂) , and model complexity, as quantified by s. It should be noted that the quasipoisson model does not 
generate the AIC statistic because it is not derived using the MLE method. Rather, the quasi-likelihood correction 
(see (11)–(15)) to the AIC model-selection criterion is given by the quasi-AIC (QAIC):

where φ̂  is the estimated dispersion parameter for the quasi-likelihood. However, using QAIC is useful only when 
all the models being compared to the quasipoisson model use a common value of φ̂  . For simplicity, we continue 
to use the p value as a metric for determining the significance of the quasipoisson model. The procedure for 
conducting a count regression analysis for defect count data is shown in Fig. 1. More detailed explanations of 
each of these models can be found in  Hilbe13.

We made some assumptions in the algorithm to avoid complexity in model selection:

• If the p value was greater than or equal to 0.05 an alternate model was used even when the dispersion was 
approximately 1.25.

(16)fij(y|µ,α) =
Ŵ(y + α−1)

Ŵ(y + 1)Ŵ(α−1)

(
α−1

α−1 + µ

)α−1(
µ

α−1 + µ

)y

.

(17)fijl(y) =






e
−µijlµ

y
ijl

y!·(1−e
−µijl )

, y ∈ N

0, otherwise
.

(18)AIC = −2l(θ̂)+ 2np,

(19)BIC = −2l(θ̂)+ np log n,

(20)QAIC = −2
l(θ̂)

φ̂
+ 2np,
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• If the dispersion was not approximately 1.25, an alternate model was used even when the p value was < 0.05.
• To compare models that do not generate a p value, if n < 8 the AIC is used, otherwise the BIC is used. For 

example, in our procedure we use these criteria to compare hurdle models with Poisson and NB-2 count 
models.

Once we identify the count regression model that is most appropriate, we obtain the coefficients describing the 
effect of the various tools at every step from the following logistic regression equation:

After determining the coefficients, we transform the equation as follows to obtain the average defect rates 
for the various tools:

Thus, average number of defects of type i for tool l of step j is given by:

For hurdle models we have two sets of coefficients for each tool: (1) the binary model coefficients (Bernoulli 
with a logistic link represented by (24)), and (2) the zero-truncated count model (Poisson or negative binomial 
with a logistic link represented by (21)). In (24) below, pij

1−pij
 is the odds ratio of incurring defect i when a tool of 

the jth step is present in the route:

After determining the α coefficients we transform (24) as follows to obtain the average defect rates for vari-
ous tools:

Thus, the odds ratio of defects of type i for tool l of step j is:

Finally, the probability of incurring a defect i if tool l is used in the jth step is:

We can then use the law of iterated expectation to obtain the expected number of defects of type i generated by 
the lth tool representing the jth step from the zero-truncated count regression coefficients generated using (23), 
and the Bernoulli logistic regression coefficients from (27). The expected number of defects of type i generated 
by the lth tool at the jth step is the sum of the probability of incurring a positive number of defects multiplied 
by the average number of positive defects generated by the corresponding tool, and the probability of incurring 
no defects multiplied by 0. In summary, we have

Once we obtain the expected number of defects produced by each tool for every step-defect combination, we 
proceed to ranking routes using the algorithm described in “Global route ranking”.

Binary rank algorithm. In this subsection, we consider an alternative way to perform the local scoring of 
tools to produce a rank for each unique tool at each step. In this framework, the metric is whether a tool pro-
duces defects or not. Hence, the precise number of defects is immaterial but the probability of a route causing a 
wafer it processes to have a defect of a particular type is important.

Instead of the complex regression algorithm to obtain the expected number of defects produced by each tool 
under each every step-defect combination outlined in previous sections, we develop a simpler algorithm. We 
calculate the probability qijl , which here has a different definition from pijl described in the previous section on 
the count-regression algorithm. It is the probability of incurring zero defects of type i if tool l is used in step j. 
We calculate this quantity below:

(21)ln(yij) = β1 + βi,2Xj,2 + βi,3Xj,3 + · · · + βi,njXj,nj .

(22)yij = e
β1+βi,2Xj,2+βi,3Xj,3+···+βi,nj Xj,nj .

(23)yijl =

{
eβ1 , for tool l = 1 of the jth step

eβ1+βil , for all other tools (l �= 1) of the jth step.

(24)log

(
pij

1− pij

)
= α1 + αi,2Xj,2 + αi,3Xj,3 + · · · + αi,njXj,nj .

(25)
pij

1− pij
= e

α1+αi,2Xj,2+αi,3Xj,3+···+αi,nj Xj,nj .

(26)
pijl

1− pijl
=

{
eα1 , for tool l = 1 of the jth step

eα1+αil , for other tools (l �= 1) of the jth step.

(27)pijl =

{
eα1

1+eα1 , for tool l = 1 of the jth step
eα1+αil

eα1+αil
, for other tools (l �= 1) of the jth step.

(28)
E[yijl] = pijl · yijl + (1− pijl) · 0

= pijl · yijl
,

(29)⇒ E[yijl] =

{
pij,1 · e

β1 , for tool l = 1 of the jth step of the routes
pijl · e

β1+βil , for other tools (l �= 1) of the jth step of the routes
.
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The rest of the terms s, Ijl ,Z+, yis , njl , d,m and nj have the same meanings in the previous section.
Finally, just like in the precious section, we use these probabilities (let’s call them tool scores for uniformity 

across the two algorithms) obtained for each step and and calculate the route ranks using the procedure described 
in “Global route ranking”. The flowchart in Fig. 2 depicts the algorithm.

Global route ranking. For each defect and each route we first produce a local score by further averaging 
the average defects (in the case of count regression ranking), or average probability of defects (in the case of 
binary ranking), for every tool on the given route and the given defect. We call this the local score because it is 
specific to a defect type. Thus, for each defect i, we obtain a score sit of the R routes, where i ∈ {1, 2, . . . , d} and 
t ∈ {1, 2, . . . ,R}.

Finally, we calculate the global rank rt , t ∈ {1, 2, . . . ,R} , of the routes by taking a weighted average of the local 
scores for the routes (let’s call this average the global score) and ranking them from 1 through N ( N ≤ R because 
there is a possibility of tied ranks for some routes). Here rank 1 corresponds to the route(s) associated with the 
smallest number (or probability) of average defects and rank N corresponds to the route(s) associated with the 
maximum number (or probability) of average defects. Using the local scores in place of local ranks helps drive 
more uniqueness in global route ranks as simply ranking the sum of the local ranks may cause many more routes 
to have the same rank, whereas summing local scores allows more uniqueness in the global scores, and thus, in 
global ranks. Selecting the weights wi , i ∈ {1, 2, . . . , d} for each defect in order to calculate the weighted average 
is up to the stake holders and decision makers. Our formulation is encapsulated in the equations below:

where sijlt is the local score of the lth tool at the jth step in the tth route obtained for the ith defect. An example 
of weighted global route ranks using the count regression and binary rankings method are shown in Tables 4 
and 5, respectively.

Computational examples
The semiconductor data set we worked with had four defect types. Wafers on which no defects were observed 
were also recorded. The routes in the data set all had eleven steps, and each step had its own set of tools. Steps 
1 through 11 had 5, 14, 5, 14, 11, 5, 11, 9, 4, 10 and 13 distinct tools, respectively. All possible combinations of 

(30)qijl =

∑
s∈Ijl

(1− yis)
+

njl
∀ i ∈ 1, . . . , d; j ∈ 1, . . . ,m; l ∈ 1, . . . , nj .

(31)sit =

m∑

j=1

nj∑

l=1

sijlt ∀ defects i = 1, . . . , d;

(32)rt = Rank

�
1

d

d�

i=1

wi · sit

�
= Rank



 1

d

d�

i=1

wi

m�

j=1

nj�

l=1

sijlt



 ∀ routes t = 1, . . . ,m;

Figure 2.  The binary ranking algorithm for ranking routes using defect count data.
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these distinct tools under each of the eleven steps generated approximately 1.4× 1010 possible routes, while only 
652 of these were actually represented in our data set containing 2 months of fab data.

Following the steps of count regression as outlined in the flowchart in Fig. 1, we compute metrics for the 
various models used, including the dispersion, p value and AIC statistics. An example can be seen in Table 1. 
Once the best model is obtained, the tools under each step are scored separately using the best count regression 
algorithm for each defect-step combination (cf. Table 2 for sample results). We also re-derive all the tool scores 
using the binary ranking algorithm. A sample of these results are in Table 2. We then obtain the local and global 
route scores and ranks as shown in Tables 3, 4 and 5. More detailed computational results on this data set are 
available  in17. Further, the ranks obtained by the two different algorithms are compared using rank correlations 
which is described and discussed in the next section.

Rank correlations. In this section, we review common methods for comparing two rankings for a set of 
objects. We then use these metrics to compare different route ranking approaches. Suppose there are t items, 
which are assigned rankings in the set {1, . . . , t} . For a fixed item i, let µ(i) and ν(i) be the ranks obtained by two 
different methods.

Table 1.  Sample output obtained using the count regression algorithm. This output displays the count 
regression models that were a best fit to the different step-defect data slices. ∗This value could not be extracted 
for the model using R. ∗∗This model was not considered as the best fit in spite of producing a significant 
p-value > α(= 0.5) , the dispersion was  ≈ 1.25 and because another model (Hurdle-Binomial, Negative 
Binomial) yielded a lower AIC statistic. This depicts the robustness of our algorithm.

Defect Step Regression type p value Dispersion AIC Best fit

def1 Step1 Poisson 0 3.7297 6601.7436 No**

def1 Step1 Quasipoisson 0 3.7297 1e+07 No**

def1 Step1 Negative binomial 0.0243 1.0894 5058.6243 Yes

def1 Step1 Hurdle-binomial, Poisson NA in R* NA in R* 6368.3306 No

def1 Step1 Hurdle-binomial, negative binomial NA in R* NA in R* 5066.7132 No

def1 Step2 Poisson 0 3.6935 6594.0904 No**

def1 Step2 Quasipoisson 0 3.6935 1e+07 No**

def1 Step2 Negative binomial 0.0164 1.0976 5100.3177 Yes

def2 Step3 Poisson 0 2.5180 3487.7709 No**

def2 Step3 Quasipoisson 0 2.5180 1e+07 No**

def2 Step3 Negative binomial 0.9999 0.7743 2466.1977 No

def2 Step3 Hurdle-binomial, Poisson NA in R* NA in R* 3040.5102 No

def2 Step3 Hurdle-binomial, negative Binomial NA in R* NA in R* 2439.6879 Yes

def2 Step4 Poisson 0 2.5110 3520.4343 No**

def2 Step4 Quasipoisson 0 2.5110 1e+07 No**

def3 Step3 Poisson 0 1.6522 2192.9523 No**

def3 Step3 Quasipoisson 0 1.6522 1e+07 No**

def3 Step3 Negative binomial 1 0.4831 1606.0632 No**

def3 Step3 Hurdle-binomial, Poisson NA in R* NA in R* 1708.7439 No

def3 Step3 Hurdle-binomial, negative binomial NA in R* NA in R* 1636.4713 Yes

Table 2.  A sample of the ranks of different tools for the various defects using the count regression ranking 
algorithm.

Defect Step1 Equipment Average defects per tool per step via count regression

def1 Step1 EQP_31 48.79

def1 Step1 EQP_32 62.26

def1 Step1 EQP_35 45.84

def1 Step1 EQP_36 63.71
· · · ·

· · · ·

· · · ·

def1 Step11 EQP_60 48.23

def1 Step11 EQP_61 79.25

def1 Step11 EQP_62 77.98

def1 Step11 EQP_50 56.00
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Spearman metric. We first consider the Spearman distance. In form, it is similar to a Euclidean distance and 
is given by:

Note that it is not a proper distance metric because it does not satisfy the triangle inequality. This leads us to 
the Spearman correlation given by:

where

cS is known as the average Spearman distance and MS as the maximum Spearman distance.

Kendall metric. The Kendall distance distance counts the number of discordant pairs, i.e., the number of times 
the ranks of two items are reversed. It is given by:

(33)dS(µ, ν) =
1

2

t∑

i=1

(µ(i)− ν(i))2

(34)αS(µ, ν) =
2dS(µ, ν)

MS
,

(35)cS =
t(t2 − 1)

12
,

(36)MS = 2cS .

Table 3.  Sample local route ranks obtained for defect 1 using the count regression algorithm. For brevity, we 
are restricting a route to only three steps in this example.

Route Count regression ranks

Step 1 Step 2 Step 3 Step 1 Step2 Step 3 Local score Local rank

EQP_35 EQP_16 EQP_49 45.84 1.61 4.65 17.37 1

EQP_38 EQP_16 EQP_48 61.47 1.61 3.50 22.20 3

EQP_32 EQP_10 EQP_48 62.26 2.00 3.50 22.59 4

EQP_31 EQP_16 EQP_49 48.79 1.61 4.65 18.35 2

Table 4.  This table is shows sample weighted global ranks for routes obtained using the count regression 
ranking algorithm. For brevity, we are restricting a route to only three steps in this example and only consider 
two defects (defects 1 and 2). Global score is calculated using equal weights of 1.

Route Defect-1 ranks Defect-2 ranks Local scores Route statistics

Step1 Step2 Step3 Step1 Step2 Step3 Step1 Step2 Step3 Def 1 Def 2 Weighted global scores Ranks

EQP35 EQP16 EQP49 45.84 1.61 4.65 0.46 0.50 0.53 17.37 0.50 8.93 1

EQP38 EQP16 EQP48 61.47 1.61 3.50 0.40 0.50 0.71 22.20 0.54 11.37 3

EQP32 EQP10 EQP48 62.26 2.00 3.50 0.42 2.00 0.71 22.59 1.04 11.82 4

EQP31 EQP16 EQP49 48.79 1.61 4.65 0.47 0.50 0.53 18.35 0.50 9.43 2

Table 5.  This table is shows sample ranks for routes obtained using the binary ranking algorithm. For brevity, 
we are restricting a route to only three steps in this example and only consider two defects (defects 1 and 2). 
Global score is calculated using equal weights of 1.

Route Defect-1 ranks Defect-2 ranks Local scores Route statistics

Step1 Step2 Step3 Step1 Step2 Step3 Step1 Step2 Step3 Def 1 Def 2 Weighted global scores Ranks

EQP35 EQP16 EQP49 0.126 0.050 0.094 0.660 0.583 0.599 0.090 0.614 0.352 2

EQP38 EQP16 EQP48 0.109 0.050 0.109 0.661 0.583 0.632 0.089 0.625 0.357 3

EQP32 EQP10 EQP48 0.088 0.171 0.109 0.588 0.585 0.632 0.123 0.602 0.362 4

EQP31 EQP16 EQP49 0.138 0.050 0.094 0.581 0.583 0.599 0.094 0.588 0.341 1
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The Kendall correlation is given by:

where

cK is the average Kendall distance and MK is the maximum Kendall distance.
The Spearman and Kendall rank correlations between the two ranking methods discussed in this paper are 

listed in Table 6. We can see that both correlations are statistically significant and very low, Spearman rank at 
27.2% and Kendall tau at 18.49%. This implies that ranking by mere probability (binary ranking) is very dif-
ferent from ranking by taking both probability and magnitude of a defect (count regression based ranking). 
Since the ground truth ranking is not known, it’s hard to say which ranking is better but we recommend that 
the stakeholder decide what they are interested in. We cover the different use cases of interest for stakeholders 
in the conclusion.

Conclusion
Our approach and modeling has several limitations which also create ample opportunities for future work. First 
and foremost, we do not compare our algorithms with past algorithms in the literature review for the following 
reasons. Methods such as AHP and PROMTHEE use a lot of qualitative features which we did not have access to 
in our data set. Hence, we could not reproduce these results. Many authors have also not made their algorithms 
open source, making comparisons difficult due to lack of reproducibility. In the literature as well authors are 
seen comparing their algorithms to their own past work but not with other models. Further, pretty much all 
past work focuses explicitly on ranking only tools and their goal is to identify the worst performing tools. We 
have made our code public on github (removed link for review process to preserve anonymity of authors, will 
add back after review process) in case authors going forward want to benchmark their algorithms against ours.

Secondly, the models we tested did not account for the statistical interaction between different tools. The 
reason for this was an explosion in the number of parameters and compute limitations since we developed and 
tested in R. However, this should be possible to test in more advanced statistical softwares and with ample com-
pute power. There is definitely interaction between tools, thus, their could be pairs of tools that are superior. One 
way to reduce the number of parameters would be to only consider consecutive pairs of tools.

Thirdly, we do not compare the count-based and binary algorithms directly because they serve different 
purposes. While the count regression algorithm is more complex than the binary ranking algorithm, for the data 
set we tested, the algorithm can produce rankings within minutes and thus it should still be suitable for use in 
actual fab environments. In fact, the computation time for our data set was roughly the same for both ranking 
methods. Thus, the choice of method depends on the particular use case. If the decision maker’s goal is to produce 
the lowest total number of defects, then the count regression algorithm is more appropriate. However, if the goal 
is to produce the highest number of defect-free wafers, then the binary algorithm is preferable.

As for future research, an important step is to test the algorithms on larger data sets. With the advances in 
machine learning, as and when more data is available, more complex ranking algorithms like RankNet, Lamb-
daRank or LambdaMART could be also  employed18–20. When using regression or machine learning models, 
explainability models like Local Interpretable Model-Agnostic Explanations (LIME)21 and SHapley Additive 
exPlanations (SHAP)22 can be used to understand which tools are driving the rank of a route up or down. Coun-
terfactual analysis using these explanation methods could also be useful in extending the purpose of this work 
to recognize which tools could be worked on so their throughput is of higher quality. Furthermore, it would be 
useful to create a methodology to do rolling, or online, updates to rankings perhaps using some sort of smooth-
ing or Bayesian approach.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

(37)dK (µ, ν) =
∑

i<j

[
1− sgn(µ(j)− µ(i)) · sgn(ν(j)− ν(i))

]
.

(38)αK (µ, ν) =
2dK (µ, ν)

MK
,

(39)cK =
t(t − 1)

2
,

(40)MK = 2cK .

Table 6.  Spearman and Kendall correlations between the different ranking methodologies when applied over 
the dummy data.

Correlation method Rank correlation (%) p value

Spearman rank αS(µ, ν) 27.20 1.9e−36

Kendall tau αK (µ, ν) 18.49 2.7e−36
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