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An algorithm for discovering vital 
nodes in regional networks based 
on stable path analysis
Yan Liu 1,2*, Yimin Liu 1,2, Fenlin Liu 1,2, Jiaxing Fan 1,2 & Zhiyuan Tao 1,2

Vital node discovery is a hotspot in network topology research. The key is using the Internet’s 
routing characteristics to remove noisy paths and accurately describe the network topology. In this 
manuscript, a vital regional routing nodes discovery algorithm based on routing characteristics is 
proposed. We analyze the stability of multiple rounds of measurement results to overcome the single 
vantage point’s path deviation. The unstable paths are eliminated from the regional network which is 
constructed through probing for target area, and the pruned topology is more in line with real routing 
rules. Finally, we weight the edge based on the actual network’s routing characteristics and discover 
vital nodes in combination with the weighting degree. Unlike existing algorithms, the proposed 
algorithm reconstructs the network topology based on communication and transforms unweighted 
network connections into weighted connections. We can evaluate the node importance in a more 
realistic network structure. Experiments on the Internet measurement data (275 million probing 
results collected in 107 days) demonstrate that: the proposed algorithm outperforms four existing 
typical algorithms. Among 15 groups of comparison in 3 cities, our algorithm found more (or the same 
number) backbone nodes in 10 groups and found more (or the same number) national backbone nodes 
in 13 groups.

The expansion of the Internet brings unprecedented pressure to network operation and maintenance (O &M). 
On account of limited resources, network O &M personnel would pay more attention to the vital nodes in the 
network to guarantee the network’s quality of service (QoS). Vital nodes discovery can mine out the important 
routing nodes in the network, help network O &M personnel optimize O &M strategies, improve efficiency, and 
prevent catastrophic failures. Besides, this work can also provide a reference for optimizing existing network 
protocols and help the network recover more quickly and efficiently after node  failure1. Although existing vital 
nodes discovery research has achieved rich results, the research seldom considers the actual routing situation 
of the Internet. The routing characteristics of the actual Internet greatly affect the characterization of the vital 
nodes of regional networks. How to obtain accurate regional network topology is of great practical significance 
for discovering vital nodes in target areas.

The research on vital nodes discovery originated from graph theory research based on complex networks. 
Although these methods do not consider the characteristics of the actual Internet, they still have guiding signifi-
cance for existing research. Methods in this category include Degree Centrality (DC)2, Clustering  Coefficient3, 
K-shell  Decomposition4, Closeness Centrality (CC)5, Betweenness Centrality (BC)6.In addition, some new 
methods have also been proposed recently. Xu et al.7 proposed a new node-centring method called unsigned 
Laplacian feature vector centring, considering the mutual influence between nodes and their incident edges. 
Ullah et al.8 provided a Local-and-Global-Centrality (LGC) measuring algorithm to identify the vital nodes 
through handling local as well as global topological aspects of a network simultaneously. To address the issues 
of low accuracy and high complexity in traditional online social networks(OSNs), Luo et al.9 built a relationship 
matrix resolving model to identify vital nodes by complying with community, which is capable of effectively 
identifying influential nodes in the network. Li et al.10 presented a novel local centrality to identify vital nodes 
by combining the influence of the node itself and neighbor as well as clustering coefficient information. Rezaei 
et al.11 proposed a data-driven vital node identification method based on machine learning to address the weak 
adaptability of heuristic methods based on mathematical expressions.

In recent years, some researchers have optimized the computational process based on such methods to deal 
with large-scale data. Matteo et al.12 presented two randomized algorithms. Michele et al.13 used an adaptive 
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sampling technique to sample the data in the topology graph to reduce the calculation cost of BC and approxi-
mated the BC of vital nodes in the original topology on this basic. Dong et al.14 proposed a localized strategy that 
can find vital nodes without global knowledge of the network.  Sunil15 provided a GNN-based (Graph Neural 
Network) inductive framework to approximate BC using the message passing mechanism. These methods are 
almost all based on the macro-statistical characteristics of  graphs16, and pay less attention to the routing char-
acteristics of the actual Internet.

Unlike the above methods, another research takes certain characteristics of the actual Internet into account. 
Ulrik et al.17 proposed Traffic Load Centrality (TLC). TLC simulates the transmission process of network data 
packets, and only uses the transmission on the shortest path to describe the load carried by the node, which is 
used to describe the node’s importance. Linton et al.18 proposed Flow Betweenness Centrality (FBC) by consid-
ering the shortest path and the non-shortest paths at the same time. FBC believes that the larger the proportion 
of paths passing through a node among all the non-repeated paths in the network, the more critical the node is. 
Shlomi et al.19 combined FBC and network routing and proposed the Routing Betweenness Centrality (RBC). 
They assumed that the routing table is known and mined vital nodes according to the number of paths connected 
by the target node. Leonardo et al.20 proposed the Load Centrality (LC), which mined vital nodes in the network 
by calculating the expected load on the routing nodes. Alain et al.21 considered the heterogeneity of edges between 
nodes in real-world networks and introduced the Weighted Degree Centrality to measure the importance of 
nodes. To address the issue of low-degree nodes tending to have higher clustering coefficients, Xuefei et al.22 
proposed the Weighted Clustering Coefficient to assess top-k key nodes by taking into account both the node’s 
clustering coefficient and its degree. This kind of methods regulate the characteristics of the network such as 
path, traffic and protocol to a certain extent, and mine the vital nodes on this basis. These methods solve some 
phenomena on the Internet, but they are still difficult to adapt to the actual network.

In view of the above problems and the difficulty of obtaining the Internet routing tables, this manuscript 
proposes an algorithm for discovering vital nodes in regional networks based on stable path analysis. The main 
idea is to obtain stable paths from the vantage points to the target based on a large number of repeated and 
long-term probing, and the vital nodes is discovered based on statistical theory. First, we deploy vantage points 
inside and outside the target area, and the path information between nodes of the target area is obtained through 
Internet measurement. On this basis, a preliminary topology graph is constructed. Second, we extract the stable 
paths of the target network from measured path information and eliminate the unstable paths to denoise the 
constructed preliminary network topology. Finally, we weight the edges according to the number of stable paths 
passing through adjacent nodes, and rank the nodes according to the weighting results. The main contributions 
of this manuscript are the following:

• We propose a network topology denoising method based on stable paths. This method can effectively reduce 
the data processing scale and reveal the role of stable paths in actual networks.

• We combine the edge-weighting method with stable paths, which can accurately describe the role of edges 
between nodes.

• Experiments on the Internet measurement data (275 million probing results collected in 107 days) of 
Chengdu, Zhengzhou, and Hangzhou in China demonstrate that: Compared with the classical algorithms 
(Degree Centrality, Betweenness Centrality, Weighted Degree Centrality, Routing Betweenness Centrality), 
the proposed algorithm can better describe the importance of nodes in the target area and can find more 
accurate backbone nodes.

The structure of this manuscript is organized as follows. In section Vital nodes discovery algorithm in regional 
networks based on stable path analysis, we give the details of the proposed algorithm and its main steps. In sec-
tion Algorithm analysis, we analyze the effect of the proposed algorithm in principle. In section Experiments, 
we perform experimental evaluations to quantify the benefits of our algorithm and discusses the results. Sec-
tion Conclusion concludes the whole manuscript.

Vital nodes discovery algorithm in regional networks based on stable path analysis
The communication among nodes on the Internet is determined by routing rules, which are difficult to obtain 
directly. However, these routing rules can be approximated by a large number of repeated probes and statistical 
analyses. In addition, there is a large amount of path information in the massive data measured. The path infor-
mation contains stable paths determined by the routing rules. This is similar to travel planning on the highway 
in real life, the planned route is fixed when there is no congestion. Therefore, it is possible to obtain a stable path 
from the vantage point to the target through Internet measurement and construct a network topology composed 
of only stable paths. Based on this idea, this section proposes an algorithm for discovering vital nodes in regional 
networks based on stable path analysis. The proposed algorithm is based on stability analysis of multi-round 
measurement results to overcome path deviation caused by a single measurement, eliminate unstable paths in the 
network, and obtain a regional network topology that is more in line with real routing rules. Unlike existing algo-
rithms, this algorithm reconstructs the network topology based on traffic, transforming the unweighted internet 
into a weighted connection, and studying node importance assessment in a structure closer to the actual internet. 
This can effectively overcome the inapplicability of traditional algorithms on non-cooperative networks whose 
size, node relationships and routing rules are almost unknown to us. Figure 1 illustrates its overall architecture.

The main steps of the algorithm are as follows.
Step 1: Deploy the vantage points. When only a single vantage point is used to probe the target IP, the measure-

ment results are prone to spatial offset and accidental. Therefore, a set of vantage points VV is selected, including 
nI vantage points located inside the target area A, and nO vantage points located outside the target area.
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Step 2: Acquire the preliminary topology of the target area. Firstly, retrieve the IP address segments SA assigned 
to target area A from databases D such as IPIP, WHOIS, and IP2location (detailed in section Experimental 
setup), and obtain more accurate IP address segments by intersecting the address segments from multiple data 
sources. Then, enumerate the IP address in each IP address segment to form the target IP set VT . Finally, use 
the vantage point set VV  to measure the target IP set VT with multi-rounds, continuous and high-frequency 
Internet measurement, and acquire the network topology information such as paths and delays. According to 
the measurement results, the node set VA and the edge set EA located in the target area are extracted, and the 
preliminary topology G is constructed.

Step 3: Optimize the network topology based on stable paths. Count the paths, and find the stable path PS in 
the network according to the routing rules. Then, eliminate the unstable path in the topology to optimize the 
topology, and obtain the topology GS that only retains stable paths after denoising.

Step 4: Weight edges based on routing characteristics. By applying formula (5) to weight the edges of the 
denoised topology, we can obtain a weighted topology of the target area. The weights represent the actual traffic 
carried by the edges.

Step 5: Identify the vital nodes in the regional network. Calculate the routing weighted degree centrality 
(RWDC) of each node in the topological graph, and rank the nodes according to RWDC, then identify the vital 
nodes in the regional network. The calculation of the Routing Weighted Degree Centrality for node v is shown 
in formula (1).

(1)RWDC(vi) =
∑

vj∈Vi

w(ei,j)

card(PG)
=

∑

vj∈Vi

∑

p∈PG
δ(p, i, j)

card(PG)

Figure 1.  Overall architecture of proposed algorithm.
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Vi is the neighbour set of node vi , PG is the set of stable paths obtained by measuring the topology graph G, 
card(PG) is the number of elements in set PG , w(ei,j) and δ(p, i, j) are defined in equations (5) and (6). The pro-
cess of the proposed algorithm is outlined in Algorithm 1. The algorithm first utilizes the probe source Vv to 
continuously and high-frequency measure the target area A and extracts the nodes and edges of target area A 
based on the measurement paths (a path from the probe source to the target node) to construct the initial topol-
ogy structure of target area A (lines 1-5). Then, count the number of occurrences of all measurement paths and 
retain the path with the highest number of occurrences as a stable path to construct a denoised graph Gs (lines 
6-16). Afterwards, the number of times each edge in Gs appears in the stable path is counted as the weight of the 
edge to obtain a weighted graph (lines 17-22). Finally, calculate the RWDC value of each node in Gw and sort 
them in descending order (lines 23-26). Our method is similar to BC, but it differs greatly from BC. Firstly, BC 
assumes a unit traffic flow between all node pairs, our method is based on actual traffic routing demand. It does 
not require traffic to only be transmitted on the shortest paths between nodes. Secondly, our method discards 
traffic between a node pair when that traffic follows a path that does not have the highest occurrence, achieving 
denoising of the topology and reducing the impact of path offset on evaluating the importance of nodes. Finally, 
BC applies a static calculation of traffic load per link based on the unit traffic flow between all node pairs, our 
method weights the edges by determining the traffic load per link based on measurements and converts the edge 
weight into node importance through formula (1). In our algorithm, the topology denoising method based on 
stable paths and the edge-weighting method based on routing characteristics are the most critical parts. We 
discuss the implementation processes in detail.

The topology denoising method based on stable paths. Among the paths between node vi and node 
vj (from vantage point to target IP), the path with the most occurrence times is regarded as the stable path. The 
path Pn between vi and vj is denoted as:

where vm represents a node in the path Pn.
The set of paths between vi and vj obtained by N times probing in time t is denoted as P(i, j):

The occurrence times of path p is denoted as Np . Then the stable path set PS(i, j) between vi and vj is:

For ease of understanding, this section describes the process of denoising network topology based on stable 
paths with the following example.

(2)Pn =
{

vi , ..., vm, ..., vj
}

(3)P(i, j) = {P1, P2, ..., Pn, ..., PN }, n ∈ [1,N]

(4)PS(i, j) = argmax
p

Np, p ∈ P(i, j)
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As shown in Fig.  2, 432 completed paths can be extracted from the measurement results of IP1 
(211.149.219.168) to IP11 (202.97.19.46), including 4 different types of paths:

Path 1: IP1 − IP2 − IP3 − IP5 − IP8 − IP9 − IP10 − IP15 , occurence_times = 4
Path 2: IP1 − IP2 − IP4 − IP5 − IP11 − IP12 − IP15 , occurence_times = 425
Path 3: IP1 − IP2 − IP6 − IP7 − IP11 − IP12 − IP15 , occurence_times = 2
Path 4: IP1 − IP2 − IP6 − IP7 − IP13 − IP14 − IP15 , occurence_times = 1
The path with the most occurrence times is Path 2, which accounted for 98.38% of the total number of paths. 

Therefore, Path 2 is the stable path from the vantage point to IP15 (202.97.19.46), and the stable path proportion 
is 0.9838. When denoising network topology, delete Path 1, Path 3, Path 4 and keep Path 2 only. Besides, if two 
paths have the same occurrence times and both are the most frequent paths, then both paths are regarded as 
stable paths.

The edge‑weighting method based on routing characteristics. The proposed method takes the 
number of stable paths passing through an edge as the weight of the edge. If all stable paths in the network are 
denoted as PS , the calculation formula for the weight w(eg ,k) of the edge eg ,k between two adjacent nodes vg and 
vk is as follows:

If the path p in PS passes the edge eg ,k , then δ(p, g , k) = 1 , otherwise δ(p, g , k) = 0 . The definition of δ(p, g , k) is:

where, Vp is the set of all nodes on path p.
For ease of understanding, this section describes the method of edge-weighting based on routing character-

istics with the example in Fig. 3.
As shown in Fig. 3, in actual communication, there are 3 stable paths passing the edge ( IP4-IP5):
Stable path 1: IP1 − IP2 − IP4 − IP5 − IP9 − IP10 − IP11
Stable path 2: IP12 − IP13 − IP4 − IP5 − IP6 − IP7 − IP8 − IP11
Stable path 3: IP1 − IP2 − IP4 − IP5 − IP6 − IP7 − IP8 − IP11
So the weight of edge ( IP4 − IP5 ) is w(e4,5) = 3.

Algorithm analysis
In the algorithm proposed, the topology denoising based on stable paths and the edge-weighting method based 
on routing characteristics are the most important steps, and its effectiveness will be analyzed in this section. 
Accurate topological characterization is significant to solve the problem of vital nodes discovery. The proposed 
algorithm can eliminate edges that have a negative impact on vital nodes discovery, and weight edges between 
nodes more accurately. Therefore, it can accurately reflect the topological characteristics of the regional network.

Analysis of the topology denoising method based on stable paths. When conducting research on 
vital nodes discovery, it is necessary to consider the amount of communication carried by nodes and the amount 
of transmission on edges between nodes. There are two kinds of edges: edges on fixed and non-fixed paths. On 
the one hand, communication protocols are often designed based on ideal conditions at the beginning, without 

(5)w(eg ,k) =
∑

p∈PS

δ(p, g , k)

(6)δ(p, g , k) =

{

1 vg ∈ Vp and vk ∈ Vp

0 vg /∈ Vp or vk /∈ Vp

Figure 2.  An example diagram for the proposed topology denoising method.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15395  | https://doi.org/10.1038/s41598-023-39174-7

www.nature.com/scientificreports/

considering the unstable path. On the other hand, the appearance of the unstable path is due to network conges-
tion, which is caused by many reasons, so it is difficult to consider the importance of nodes based on unstable 
path. Therefore, in the process of discovering vital nodes, the research should only be based on stable paths, and 
eliminate noise data such as unstable paths.

Existing research on vital nodes discovery usually add all existing nodes and edges to the network topology 
graph. By analyzing the measurement results, it comes to a conclusion: there exist stable paths for communica-
tion between nodes on the Internet. Therefore, the proposed algorithm denoises the topology graph based on the 
stable path and only the stable path in the actual communication is retained in the final network topology graph.

Among the results of 40-day Internet measurements in the three cities, there are 28,987,966 responses, includ-
ing 168,594 different paths, and 79,166 are stable paths. For the completed measurement results in the three 
cities, the path with the highest proportion of occurrence times in the total path occurrence times is counted 
respectively. The results are shown in Fig. 4.

In Fig. 4, the x-axis represents the ratio of the most frequent path’s occurrence times to the total number of 
paths to a single IP; the y-axis represents the number of paths in the interval. As shown in Fig. 4, in the measure-
ment results of Zhengzhou, Hangzhou and Chengdu, the proportion of major paths to the target node is basically 
more than 50%, and these paths are called stable paths. As shown in Table 1, the proportions of stable paths in 
the measurement results are 83.1%, 86.1%, and 85.5%, respectively. This indicates that there is indeed a stable 
path in actual network communication.

Due to the limited network resource, network O &M personnel need to conduct hierarchical management 
of router nodes to ensure the network’s QoS. From the perspective of routing characteristics, because of the 

Figure 3.  An example diagram for the proposed edge-weighting method.

Figure 4.  Path proportion statistics for target IP.
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existence of load balancing and other strategies, some communications will not pass through stable paths. The 
existence of these paths is the noise data in the process of vital nodes discovery. Taking the highway as an example 
for analogy, when the road conditions are good, the driver will choose the optimal one; but when congestion 
occurs, the driver will choose the sub-optimal way to avoid the congestion. Obviously, the nodes on the optimal 
path are the actual vital nodes. Routing rules determine the existence of stable paths. Therefore, the network 
topology denoising method based on stable paths proposed in this manuscript reduces the data size, enhances 
the ability to process data, reduces the interference caused by load balancing, improves the efficiency of vital 
nodes discovery, and can also obtain more accurate vital nodes discovery results.

Take the data of the first 40 days in Chengdu as an example to compare the network scale before and after 
denoising, as shown in Table 2.

As can be seen from Table 2, denoising the network can reduce about 3.8% of nodes, 55.4% of edges, and 
54.4% of paths. The reduction of a small number of nodes is caused by the deployment of vantage points and 
load balancing. These nodes are not on the stable path from the selected vantage point, so they will be removed 
during the topology optimization process. This process will have a certain impact on the coverage of vital nodes, 
but has no effect on the accuracy of vital nodes discovery. If we want to increase the coverage of vital nodes, we 
can select different combinations of vantage points to measure the target network separately.

The existing research object of vital nodes discovery is usually static network models which do not consider 
the transmission of traffic in the network, or simply assume that traffic is transmitted equally on the edges. 
However, due to the existence of routing rules, the number of paths passing the edges between different nodes-
in-pairs is significantly different. So these edges have great differences in the traffic they carry and the roles they 
play. Therefore, their influence on the connected nodes is also different. In this case, this manuscript weights 
edges based on stable paths in actual communication, and then combines the weights of edges to evaluate the 
importance of nodes to obtain more accurate results of vital nodes discovery.

Take Fig. 5 as an example to illustrate the necessity of constructing a weighted topology graph.
Suppose the paths existing in the communication from IP1 to IP9 , IP10 and IP11 are:
IP9 : [IP1 − IP2 − IP4 − IP6 − IP9] , [IP1 − IP2 − IP3 − IP6 − IP9] , [IP1 − IP2 − IP3 − IP9]
IP10 : [IP1 − IP2 − IP3 − IP10] , [IP1 − IP2 − IP3 − IP7 − IP10] , [IP1 − IP2 − IP3 − IP9 − IP10]

Table 1.  The ratio of occurrence times of stable paths in all paths.

City Number of stable paths Occurrence times of stable paths Occurrence times of all paths
Ratio of occurrence times of 
stable paths

Zhengzhou 14,048 4,557,929 5,484,648 83.1%

Hangzhou 45,108 12,911,231 14,977,107 86.1%

Chengdu 20,010 7,296,142 8,526,211 85.5%

Total 79,166 24,765,302 28,987,966 85.4%

Table 2.  Comparison of network scale before and after denoising.

Preliminary topology graph Denoised topology graph

Number of nodes 9710 9336

Number of edges 127,205 56,685

Number of paths 43,944 20,010

Figure 5.  Comparison of the unweighted and weighted topology graph.
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IP11 : [IP1 − IP2 − IP5 − IP11] , [IP1 − IP2 − IP5 − IP8 − IP11]
The unweighted topology graph can be constructed from the above paths, as shown in Fig. 5a. The proposed 

method weights edges according to the number of paths passing through an edge and the weighted topology 
graph is constructed, as shown in Fig. 5b.

Calculate the degree centrality (DC) of all nodes in Fig. 5a. The results are shown in Table 3.
Consider the weight of the edge and calculate the weighted degree centrality (WDC) of all nodes in Fig. 5b. 

The results are shown in the Table 4.
As can be seen from Tables 3 and 4, IP3 ranks higher than IP2 in the unweighted graph, that is to say, IP3 is 

more important than IP2 . However, in the weighted graph, IP2 ranks higher than IP3 ; that is to say, IP2 is more 
important than IP3 . In the internet communication process, the arrival of IP3 must go through IP2 . Use the nodes 
deletion method to evaluate their importance. After removing IP2 and IP3 , respectively, the topology graph of 
the network is shown in Fig. 6. Obviously, after removing IP3 , the remaining nodes in the network can still 
communicate with each other. However, after removing IP2 , many nodes cannot communicate with each other 
normally. So IP2 plays a more critical role in the network than IP3 . It can be seen that more accurate ranking 
results can be obtained by using weighted network topology.

In the existing research, the mining of vital nodes based on the weighting method are not based on the 
actual topology data, they are still the mining of the mathematical characteristics of the known topology. The 
proposed algorithm starts with the actual data, and the proposed weighting method is closer to actual network 
characteristics, which can better reflect the importance of different edges in the network.

Experiments
In order to verify the feasibility and effectiveness of the proposed algorithm, this section conducts the vital nodes 
discovery experiment. In the case of obtaining the actual communication paths between all nodes-in-pairs in 
the target area, we can get the most accurate results of vital nodes discovery. However, this requires deploying 
a probe at each node in the target network, which is difficult for a medium-sized city. Therefore, this section 
selects some vantage points to carry out continuous probing (last 107 days) on the IP addresses of the target 
area. The measurement results could approximate the communication of actual networks. The experimental 
results show that the performance of the proposed algorithm is better than existing algorithms, indicating that 
the approximation method is reasonable.

Experimental setup. Experimental setup in the data acquisition stage are shown in Table 5.
In Table 5, A represents the target areas, D represents the IP address databases, V represents vantage points, 

and T represents the cycle of probing.

Table 3.  Result of nodes ranking by DC in the unweighted graph.

Node IP3 IP2 IP5 IP6 IP9 IP10 IP4 IP7 IP8 IP11 IP1

Degree 5 4 3 3 3 3 2 2 2 2 1

Table 4.  Result of nodes ranking by WDC in the weighted graph.

Node IP2 IP3 IP1 IP9 IP5 IP6 IP10 IP4 IP7 IP8 IP11

Degree 16 10 8 5 4 4 3 2 2 2 2

Figure 6.  Comparison of the topology graph after removing IP2 and IP3.
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Considering the realistic conditions, this section chooses three cities in China, including Chengdu, Sichuan 
Province, Hangzhou, Zhejiang Province, and Zhengzhou, Henan Province as the target areas. Then, select the 
IP address blocks located in the target areas from 6 IP address databases, retain the IP blocks that have appeared 
in at least 3 IP address databases to form the IP block set SA of the target area.

The real subnet structure and division method are difficult to obtain directly, so this section extracts IP 
addresses from network segments for probing. IPes in the same network segment are often similar in routing 
strategy, geographical location and other settings, and often belong to the same  organization23–25. Based on this 
situation, this section selects one IP from each /24 IP block to construct the target set VT . Then, probe VT with 
vantage points at V (V is composed of three vantage points located in Zhengzhou, Hangzhou and Chengdu).

Internet measurement. This section uses  Scamper26 developed by CAIDA for Internet measurement. The 
IP address blocks of the three target cities were selected from 6 IP address databases, including IPIP, Whois, 
IPPlus, IP2location, Maxmind and IPcn released in November 2019.

There are 12,748,117 IP addresses in the three target cities, and the three target IP sets contain 60,337 target 
IP addresses in total. The number of IP addresses and target IP addresses of the three cities are shown in Table 6. 
In 2019-2020, we probed the target IP addresses in the three cities, obtaining 275,893,827 results in total. The 
number of /24 blocks covered by the measurement results, and the number of routing nodes and paths extracted 
from the results are shown in Table 6.

Due to the unique situation of the layered architecture of China’s Internet, the communication between Inter-
net Service Providers (ISP) without interconnection needs to be forwarded through Internet Exchange Points 
(IXP) deployed in specific cities. Therefore, in order to avoid the interference of cross-city data, this section only 
selects a single operator for experimentation. This manuscript uses the data of China Telecom in the above data 
set as an example to conduct the following vital nodes discovery experiments.

Results of vital nodes discovery experiment. After obtaining the topological data of target cities, the 
weighted network topology graph could be constructed and denoised based on the stable paths to obtain the 
routing weighted degree centrality (RWDC) of the nodes. This section conducted the following three experi-
ments: Experiment on the effect of different Internet measurement durations on the algorithm’s performance, 
comparison experiment of nodes discovery before and after denoising, and comparison experiment of the pro-
posed algorithm and baseline algorithms. The experimental results are validated according to the existing data-
base.

Notations used in this section are listed in Table 7.

Effect of different durations on the performance of the algorithm. This section compares the network size and 
ranking results on measurement results collected in 5 days (60 rounds), 40 days (360 rounds) and 107 days 
(1,284 rounds), respectively. Take Chengdu as an example to show the results, as shown in Tables 8 and 9.

As can be seen from Table 8, the number of nodes, edges and paths in the data of 107 days is 1.12, 2.41 and 
2.49 times of 40 days, 1.22, 4.47 and 4.03 times of 5 days, respectively. From Table 9, we can see that in the 5-day 
results, 10 national-level backbone nodes and 4 provincial-level backbone nodes are found; in the 40-day results, 
10 national-level backbone nodes and 7 provincial-level backbone nodes are found; in the 107-day results, 10 
national-level backbone nodes and 7 provincial-level backbone nodes are found.

This shows that in the case of a large difference in measurement duration, the number of paths, edges, and 
nodes have significant changes in the obtained topology graph. However, the data scale after denoising does not 
change much, as well as the vital nodes discovery results of the proposed algorithm. At the same time, when the 
measurement duration is short, it is impossible to find enough vital nodes because the number of stable paths 

Table 5.  Experimental setup for data acquisition. 1 http:// www. maxmi nd. com/ 2 http:// www. ip2lo cation. com/ 
3 http:// www. whois. com/ 4 http:// www. ipip. net/ 5 https:// www. ipplu s360. com/ 6 http:// www. ip. cn/.

Parameter Setup

A Zhengzhou, Hangzhou, Chengdu

D Maxmind1  , IP2location2 , Whois3 , IPIP4 , IPPlus5 , IPcn6

V 211.149.219.168, 47.110.233.88, 122.114.14.202

T 2 hours

Table 6.  Statistics of the dataset in Internet measurement.

Target City # IP addresses # Target IP addresses # /24 blocks # Routing nodes # Paths

Zhengzhou 2,725,327 11,598 5466 7331 76,014

Hangzhou 7,501,838 30,694 16,443 20,401 248,298

Chengdu 4,2747,36 18,045 7462 10,956 109,568

http://www.maxmind.com/
http://www.ip2location.com/
http://www.whois.com/
http://www.ipip.net/
https://www.ipplus360.com/
http://www.ip.cn/
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is insufficient. Therefore, it is necessary to mine the vital nodes after the data collection reaches a certain scale. 
When the number of stable paths is sufficient, the proposed algorithm can discover all the vital nodes that can 
be mined under this vantage point.

Comparison of experimental results before and after denoising. This section compares the scale of networks and 
ranking accuracy before and after denoising, and the results are shown in Table 10 and Fig. 7.

Table 10 shows the network scale before and after denoising, including the number of nodes, the number of 
edges, and the number of paths in the network topology. BN/BP/B respectively represent the number of national 
backbone node / provincial backbone node / backbone nodes among the top-k nodes in the ranking results. As 
can be seen from Table 10, denoising alternative paths can reduce about 7% of nodes, 80% of edges, and 80% of 
paths, which significantly reduces the scale of data processing. In addition, the bold number indicates the larger 
value in the comparison result before and after denoising. We can see that in a total of 15 groups of comparisons 
in 3 cities, the ranking metric after denoising (i.e., RWDC) performs better in 10 groups.

The green/orange/blue sectors in Fig. 7 respectively represent the number of national-level backbone nodes / 
provincial-level backbone nodes / backbone nodes among the top-k nodes in the ranking results. It can be seen 
that, in most cases, the results of the proposed algorithm have larger green area and smaller blue area, indicating 
that the proposed algorithm can find more (or the same) number of national-level backbone nodes than that 
of before denoising.

Combining the results in Table 10 and Fig. 7, it can be concluded that the proposed topology denoising 
method can significantly improve the accuracy of the ranking result and reduce the scale of data processing.

Table 7.  Symbol definition.

Notations Descriptions

# The number of tokens.

Top-k Backbone nodes covered by top k nodes in the node importance ranking result.

BN National-level backbone node.

BP Provincial-level backbone node.

B Backbone node, including national-level and provincial-level backbone node.

× Other node.

L The label of the routing node in public database, including BN , BP and B.

Table 8.  Comparison of the data scale collected in 5 days, 40 days and 107 days.

5 Days 40 Days 107 Days

Before denoising After denoising Before denoising After denoising Before denoising After denoising

# Nodes 9004 8872 9710 9336 10,956 9904

# Edges 68,683 53,815 127,205 56,685 306,062 60,757

# Paths 27,179 19,176 43,944 20,010 109,568 21,440

Table 9.  Comparison of the ranking results based on the data collected in 5 days, 40 days and 107 days.

5 Days 40 Days 107 Days

Nodes of Top-20

BN

202.97.21.49; 202.97.21.57 202.97.21.49; 202.97.21.57 202.97.21.49; 202.97.21.57

202.97.21.45; 202.97.21.53 202.97.21.45; 202.97.21.53 202.97.21.45; 202.97.21.53

202.97.33.110; 202.97.4.98 202.97.33.110; 202.97.4.98 202.97.33.110; 202.97.4.98

202.97.19.154; 202.97.23.114 202.97.19.154; 202.97.23.114 202.97.19.154; 202.97.23.114

202.97.23.118; 202.97.23.110 202.97.23.118; 202.97.23.110 202.97.23.118; 202.97.23.110

BP

118.123.230.113 118.123.230.113; 118.123.230.21 118.123.230.85; 118.123.230.37

118.123.230.85 118.123.230.121; 118.123.230.85 118.123.230.201; 118.123.230.121

118.123.230.201 118.123.230.201; 118.123.230.205 118.123.230.205; 118.123.230.21

118.123.230.205 118.123.230.37 118.123.230.113

Other nodes

118.112.255.49; 118.112.255.33 118.112.255.49 118.112.255.49

118.112.255.53; 110.188.6.6 118.112.255.33 118.112.255.33

118.112.255.37; 182.140.220.93 118.112.255.69 118.112.255.69
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Table 10.  Comparison of the network scale and ranking results before and after denoising. Significant values 
are in bold.

Zhengzhou Hangzhou Chengdu

Before denoising After denoising Before denoising After denoising Before denoising After denoising

Scale of network

# Nodes 7331 6785 20,401 19,317 10,956 9904

# Edges 208,971 38,604 670,050 134,954 306,062 60,757

# Paths 76,014 15,166 248,298 47,979 109,568 21,440

Top-10

BN 0 0 2 4 4 9

BP 0 0 0 0 6 1

B 0 0 2 4 10 10

Top-20

BN 0 3 2 7 9 11

BP 0 0 2 1 10 7

B 0 3 4 8 19 18

Top-30

BN 5 10 2 7 11 11

BP 0 0 2 3 11 8

B 5 10 4 10 22 19

Top-40

BN 6 18 2 11 11 11

BP 0 0 4 4 11 8

B 6 18 6 15 22 19

Top-50

BN 12 19 2 11 12 12

BP 0 0 5 4 13 8

B 12 19 7 15 25 20

Figure 7.  Results before and after denoising.
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Comparison of the proposed algorithm and baseline algorithms. To validate the effectiveness of the proposed 
algorithm, the result obtained by RWDC is compared with those of DC, BC and RBC. The corresponding rela-
tionship between RWDC and DC, BC, RBC are shown in Fig. 8.

The abscissa in Fig. 8 represents the node ranking result calculated by the proposed algorithm, and the ordi-
nate represents the node ranking result calculated by the baseline algorithms. It can be seen that the results of 
the 4 metrics are quite different. The vital nodes in the ranking results of DC, BC, and RBC do not always rank 
high in RWDC.

To compare the accuracy of the 4 metrics, this section uses existing public databases to verify the results. The 
comparison results are shown in Table 11 and Fig. 9.

Figure 8.  Corresponding relationships between RWDC and DC, BC, RBC.

Table 11.  Comparison between the proposed algorithm and baseline algorithms. Significant values are in 
bold.

Zhengzhou Hangzhou Chengdu

RWDC DC BC RBC RWDC DC BC RBC RWDC DC BC RBC

Top-10

BN 0 0 0 4 4 0 0 2 9 0 1 0

BP 0 0 0 0 0 1 1 0 1 0 2 9

B 0 0 0 4 4 1 1 2 10 0 3 9

Top-20

BN 3 0 0 9 7 0 0 2 11 0 1 5

BP 0 0 0 0 1 3 3 2 7 0 5 12

B 3 0 0 9 8 3 3 4 18 0 6 17

Top-30

BN 10 0 2 10 7 0 0 2 11 0 1 10

BP 0 0 0 0 3 4 4 2 8 0 7 12

B 10 0 2 10 10 4 5 4 19 0 8 22

Top-40

BN 18 3 3 11 11 0 0 2 11 0 3 11

BP 0 0 0 0 4 6 6 4 8 0 9 12

B 18 3 3 11 15 6 6 6 19 0 12 23

Top-50

BN 19 8 6 16 11 0 0 2 12 0 6 12

BP 0 0 0 0 4 8 10 8 8 0 9 12

B 19 8 6 16 15 8 10 10 20 0 15 24
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In Table 11, Top-k represents the number of backbone nodes in the top k nodes obtained by various algo-
rithms, and the value bolded in the table is the maximum value of the number of backbone nodes found by the 
4 algorithms. In Fig. 11, the green/orange/gray/blue cylindrical represents the experimental results of RBC/BC/
DC/RWDC, respectively; the light bars represent the number of provincial-level backbone nodes, and the dark 
bars represent the number of national-level backbone nodes.

Taking the results of Hangzhou as an example, it can be seen from Fig. 9 and Table 11 that among the top-
10/20/30/40/50 nodes obtained by various algorithms, the proposed algorithm can find the largest number of 
national-level and provincial-level backbone nodes. Besides, among 15 groups of comparison in 3 cities, the 
proposed algorithm finds more (or the same number) backbone nodes in 10 groups, and finds more (or the same 
number) national-level backbone nodes in 13 groups. It comes to a conclusion that the proposed algorithm can 
find more vital nodes than DC, BC and RBC.

Take the experimental results in Chengdu as an example, the top-10 nodes and validation results under the 
4 metrics are shown in Table 12.

According to Table 12, the proposed algorithm discovers 9 national-level backbone nodes and 1 provincial-
level backbone node in the top 10 nodes. While DC finds no backbone node in the top 10 nodes. BC discov-
ers 1 national-level backbone node and 4 provincial-level backbone nodes; RBC discovers none national-level 
backbone node and 10 provincial-level backbone nodes.

The experimental results demonstrate that the proposed algorithm can find more backbone nodes than DC, 
BC and RBC, and the results are more accurate.

Conclusion
This manuscript proposes an algorithm for discovering vital nodes in regional networks based on stable path 
analysis. The network topology denoising method based on stable paths proposed by this algorithm can effec-
tively reduce the scale of processed data, and the edge-weighting method based on routing characteristics can 
significantly distinguish the role of edges in actual communication. Experimental results show that, the proposed 
algorithm can find more vital nodes than existing algorithms. However, due to the impact of load balancing and 
the limitation of the deployment of vantage points, this algorithm cannot find all the vital nodes in the target 
area. This is determined by stable paths passed by the experimentally deployed vantage points. For this reason, 
we will study how to deploy vantage points to obtain a relatively complete regional network topology in future 
work, then improve the discovery ability of vital nodes in the target area.

Figure 9.  Comparison of the ranking results of the 4 metrics.

Table 12.  Comparison of top-10 nodes ranked by RWDC, DC, BC and RBC in Chengdu. Significant values 
are in bold.

Rank RWDC Label DC Label BC Label RBC Label

1 202.97.21.49 BN 171.208.199.254 × 118.123.230.121 BP 118.123.230.121 BP

2 202.97.21.57 BN 61.139.121.70 × 118.123.230.41 BP 118.123.230.41 BP

3 202.97.21.45 BN 171.208.196.14 × 182.140.220.241 × 118.123.230.205 BP

4 202.97.21.53 BN 61.139.121.74 × 118.112.255.37 × 118.123.230.25 BP

5 202.97.33.110 BN 110.188.6.86 × 202.97.21.45 BN 118.123.230.21 BP

6 202.97.4.98 BN 118.112.255.53 × 118.112.255.65 × 118.123.230.49 BP

7 202.97.19.154 BN 118.112.255.37 × 182.140.220.93 × 118.123.230.37 BP

8 118.123.230.85 BP 171.208.199.238 × 182.140.220.109 × 118.123.230.201 BP

9 202.97.23.114 BN 110.188.6.102 × 118.112.255.69 × 118.123.230.85 BP

10 202.97.23.118 BN 110.188.6.70 × 118.112.255.45 × 118.123.230.117 BP
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Data availability
The datasets generated and analyzed during the current study are not publicly available due to the security and 
privacy of network facilities, but are available from the corresponding author on reasonable request. Meanwhile, 
the six IP address databases used in this manuscript are available at: http:// www. maxmi nd. com/, http:// www. 
ip2lo cation. com/ , http:// www. whois. com/, http:// www. ipip. net/, https:// www. ipplu s360. com/, http:// www. ip. cn/.
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