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Machine learning prediction 
and classification of behavioral 
selection in a canine olfactory 
detection program
Alexander W. Eyre 1, Isain Zapata 2, Elizabeth Hare 3,4, James A. Serpell 5, Cynthia M. Otto 4 & 
Carlos E. Alvarez 6*

There is growing interest in canine behavioral research specifically for working dogs. Here we take 
advantage of a dataset of a Transportation Safety Administration olfactory detection cohort of 
628 Labrador Retrievers to perform Machine Learning (ML) prediction and classification studies of 
behavioral traits and environmental effects. Data were available for four time points over a 12 month 
foster period after which dogs were accepted into a training program or eliminated. Three supervised 
ML algorithms had robust performance in correctly predicting which dogs would be accepted into 
the training program, but poor performance in distinguishing those that were eliminated (~ 25% of 
the cohort). The 12 month testing time point yielded the best ability to distinguish accepted and 
eliminated dogs (AUC = 0.68). Classification studies using Principal Components Analysis and Recursive 
Feature Elimination using Cross-Validation revealed the importance of olfaction and possession-
related traits for an airport terminal search and retrieve test, and possession, confidence, and 
initiative traits for an environmental test. Our findings suggest which tests, environments, behavioral 
traits, and time course are most important for olfactory detection dog selection. We discuss how 
this approach can guide further research that encompasses cognitive and emotional, and social and 
environmental effects.

Machine learning (ML) is a subfield of Artificial Intelligence (AI) that uses a combination of algorithms and 
statistics to perform a variety of analytical functions on a wide range of data types. ML is split into two algo-
rithm classes: supervised learning for labeled training data, and unsupervised for unlabeled data. Supervised 
methods allow learning from known inputs and outputs for purposes of prediction of unknown outputs from 
known inputs (regression analysis), or to determine which data categories are the most important for predicting 
outcomes (classification analysis). Supervised ML applications in dog behavior have used dog-mounted inertial 
sensors to create automated dog ethograms sensitive to individual differences1,2, and video to classify ADHD-
like behavior3. Canine unsupervised ML studies have used video and C-BARQ behavioral questionnaire data 
for exploratory analysis4, and sensor data to predict guide dog success5. In humans, supervised ML using non-
sensor-based, task-relevant testing data has been applied to predicting success in work performance6, but we are 
unaware of such studies in dogs. Here we use supervised methods to predict which dogs will succeed during an 
odor detection pre-training program or fail for behavioral reasons. While this research has applied use in working 
dogs, it is also likely to contribute new understandings of learning and work performance in mammals in general, 
including in humans. However, human behavioral genetics tend to be marked by high levels of heterogeneity, 
polygenicity, and—due to negative evolutionary selection of even weakly deleterious variations—minute effect 
sizes of individual variations. Thus, human studies would require vastly greater power and the variations identi-
fied would lack direct utility. In contrast, dogs have greatly reduced heterogeneity, polygenicity, and negative 
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selection, and strong positive selection for diverse traits7. The ultimate effect is that dogs present dramatically 
higher power to genetically map all kinds of traits. The downside is that linkage disequilibrium is several-fold 
more extensive in dogs, resulting in large mapping intervals. However, that can be mitigated by interbreed genetic 
mapping of variations that are common across breeds8–10.

Olfactory detector dogs have long been employed to sniff out explosives, controlled substances, other regu-
lated materials (e.g., insects, food, and plants), and human odor for public safety and security11,12. More recently, 
canine odor detection functions include medical conditions (e.g., low-blood glucose marker in diabetes, and 
SARS-CoV-2 infection13). In the United States, most military and law enforcement dogs are trained as dual-
purpose canines, performing both odor detection and protection. The other main groups of working dogs are 
guide dogs for people with blindness or low vision and service dogs to assist people with other disabilities. The 
range of costs for most pre-trained working dogs is $40,000–80,00014, and prices continue to rise because demand 
exceeds supply. Those costs can be approximately doubled when training is factored in. As a result of those facts 
and that the overall successful training rate is under 50%, there is a huge impetus to produce and train working 
dogs more efficiently11,15. While there have been exploratory and prospective studies of new testing schemes 
in detection and assistance working dogs, they have not been deployed widely yet16. However, there are large 
working dog datasets of training, performance and health data from federal and private institutions that have not 
been thoroughly analyzed yet15,17. It thus remains possible that existing standardized datasets, which continue 
to be collected and are already large and thus ideal for ML, could be the most efficient and productive route to 
improve the understanding of behavioral traits required for working dogs.

The present work is a study of pre-training success and elimination for behavioral reasons in the Transporta-
tion Security Administration (TSA) canine olfactory detection breeding and training program. The data were 
collected from dogs fostered and tested in the period from 2002 to 2013. During their 15-month fostering period, 
the dogs were taken to the TSA program facility every 3 months, beginning at the age of 3 months, to be evalu-
ated on a series of tests. The tests evaluated olfaction-dependent traits like the ability to find objects based on 
odor and other relevant traits such as motivation to possess toys or to play tug of war. At those same times, the 
handlers also scored the dogs on a variety of other traits, including cooperation with handlers and performance 
during tasks. At the end of the 12-month testing period, dogs were either accepted into the training program 
(58.9%) or eliminated for medical (17.2%) or behavioral (23.9%) reasons.

Similar odor detection pre-training and training testing have been used for several decades18. The behavioral 
rating methods used in those have been studied and validated in different ways, including by showing compa-
rable effects of rating and coding approaches in TSA olfactory detection dogs19–23. A study similar to ours20, of 
which 106 dogs overlapped our dog population during the same time period, cannot be directly compared to 
ours because of the many differences. Among those, that study had a priori exclusion criteria that removed dogs 
likely to be eliminated for behavioral reasons, had sixfold fewer dogs in total, included three breeds vs. one in 
ours, and the cohort was non-arbitrarily split into two groups of 50% (one used for developing ethograms for 
behavioral codings and the other for comparing rating vs. coding approaches). A major finding of that work—and 
the primary question of the study—was to show that the rating methods/data used in that study and ours are 
comparable to coding methods in predictive validity. That is also important because their coding tests required 
two- to several-fold more time to perform.

We recently genetically mapped the trait of pre-training elimination for behavioral reasons in the same 
TSA cohort17. The actual reason for elimination in that and the present work is not clearly defined, except that 
behavioral and medical elimination were distinguished. In the study mentioned above—of 106 dogs of the same 
working dog population that overlapped the period of ours—the reason for elimination of two dogs was that 
they “exhibited signs of extreme stress during testing on multiple occasions”20. Other behavioral traits that are 
incompatible with olfactory detection dog selection include poor human or canine socialization, low energy, and 
elevated levels of excitability, distractibility, aggression, and diverse types of anxiety or fear. Thus, the challenge 
is that the effects we are trying to identify may be subtle and complex.

In this study, we applied supervised ML algorithms to test how well success or elimination for behavioral 
reasons can be predicted, and to identify the most important traits at each time or location of testing. Our study 
of feature classification aims to reveal behavioral test differences that resulted in major temporal or environmental 
effects on behavioral elimination. This work is part of an ongoing effort to use analytical methods and genomics 
to improve selection of dogs during their pre-training phase. Our findings suggest developmental and biological 
effects, and new approaches.

Results
2013 TSA cohort traits.  The traits scored in the cohort represent measures of confidence/fear, quality of 
hunting related behaviors, and dog-trainer interaction characteristics19,20. The traits Chase/Retrieve, Physical 
Possession, and Independent Possession were measured in both the Airport Terminal and Environmental tests 
whereas five and seven other traits were specific to each test, respectively (Table 1). The Airport Terminal tests 
include the search for a scented towel placed in a mock terminal and observation of a dog’s responsiveness to 
the handler. This represents the actual odor detection work expected of fully trained and deployed dogs. Because 
the tasks were consistent between the time periods, the Airport Terminal tests demonstrate improvements of the 
dogs with age. All trait scores except for Physical and Independent Possession increased over time, with the larg-
est increase between the 6- and 9-month tests (Fig. 1a). This may be due to puppies having increased possessive-
ness and lack of training at younger ages. The general improvement over time could be due to the increased age 
of the dogs or to the testing experience gained. Compared to accepted dogs, those eliminated from the program 
for behavioral reasons had lower mean scores across all traits.
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Environmental tests involved taking dogs on a walk, a search, and playing with toys in a noisy location that 
changed for each time point. The traits measured a variety of dog behaviors as they moved through the loca-
tions, and their performance while engaging with toys. Accepted dogs had both higher and more consistent 
scores across the tests (Fig. 1b). The largest separation of scores between accepted dogs and those eliminated for 
behavior occurred at 6-months, at the Woodshop. That suggests this test and environment combination might 
best predict which dogs will be accepted into the training program. Among the traits that showed the greatest 
separation between the two outcomes were Physical and Independent Possession, and Confidence.

Prediction of pre‑training success.  Three different classification Machine Learning algorithms were 
employed to predict acceptance based on their ability to handle binary classifiers: Logistic Regression, Support 
Vector Machines, and Random Forest. Data were split into training (70%) and testing (30%) datasets with equiv-
alent ratios of success and behavioral elimination status as the parent dataset. Following training of the model, 
metrics were reported for the quality of the model as described in the Methods. Prediction of success for the 
Airport Terminal tests yielded consistently high accuracies between 70 and 87% (Table 2). The ability to predict 
successful dogs improved over time, with the best corresponding to 12-months based on F1 and AUC scores. 
Notably, this pattern occurred with an overall reduction in both the number of dogs and the ratio of successful 
to eliminated dogs (Supplemental Table 1). The top performance observed was for the Random Forest model 
at 12-months: accuracy of 87%, AUC of 0.68, and harmonic mean of recall and precision “F1” of 0.92 and 0.53 
for accepted and eliminated dogs, respectively. The Logistic Regression model performed marginally worse at 
12-months. Taking the mean of the four time points for accuracy, AUC, and accepted and eliminated F1, Logistic 
Regression was slightly better than Random Forest for the first three elements and vice versa for the fourth. The 
Support Vector Machines model had uneven results largely due to poor recall for eliminated dogs (0.09 vs. 0.32 
and 0.36 for the other models).

Prediction of success from the Environmental tests yielded worse and more variable results (Table 2). A 
contributing factor for the poorer performance may have been the smaller mean number of dogs with testing 
data compared to the Airport Terminal test (56% vs. 73% of the cohort). Overall, the Logistic Regression model 
was most effective at predicting success based on F1 and AUC scores. That model showed a pattern of improv-
ing performance with advancing months. At 12-months, accuracy was 80%, the AUC was 0.60, and F1 were 
0.88 and 0.36 for accepted and eliminated dogs, respectively. The best scores, seen at 12-months, coincided with 
the lowest presence of dogs eliminated for behavioral reasons. Support Vector Machines had extremely low or 
zero F1 for eliminated dogs at all time points. All three models had their highest accuracy (0.82–0.84) and the 
highest or second highest F1 for accepted dogs (0.90–0.91) at 3-months. However, all three models had deficient 
performance in predicting elimination at 3-months (F1 ≤ 0.10).

To maximize predictive performance, a forward sequential predictive analysis was employed with the com-
bined data. This analysis combined data from both the Airport Terminal and Environmental at the 3-month 
timepoint and ran the three ML models, then added the 6-month timepoint and so on. The analysis was designed 
to use all available data to determine the earliest timepoint for prediction of a dog’s success (Table 3). Overall, 
the combined datasets did not perform much better than the individual datasets when considering their F1 and 
AUC values. The only instances where the combined datasets performed slightly better were M03 RF over the 
Environmental M03, M03 + M06 + M09 LR over both Environmental and Airport Terminal M09, all data SVM 
over Airport Terminal M12, and all data LR over Environmental M12. The F1 and AUC scores for the instances 

Table 1.   Traits measured by the handlers and the description of what the handlers scored; AT = Airport 
Terminal, E = Environmental, B = Both.

Trait Test Description

MP (Mental Possession) AT Ability to focus on a towel, even after being hidden

H1 (Hidden 1) AT Concentration, willingness, and ability to move purposefully down a line of upside-down flower-
pots, one which contains a hidden scented towel

H2 (Hidden 2) AT Second hunt, tester at different location

HG (Hidden Grass) AT Enthusiasm and ability to use smell to find a hidden towel

ACT (Activity) AT Ability to use his/her energy effectively

CR (Chase/Retrieve) B Speed and desire at which the dog runs for a thrown toy

PP (Physical Possession) B Desire, force, and determination to play tug-of-war

IP (Independent Possession) B Willingness to interact and possess the toy independently of the handler

Confidence E Environmentally conditioned acceptance of safety, measure of lack of fear

Concentration E Focus during searches, lack of distraction

Responsiveness E Ability to react to corrections or encouragement

Initiative E Willingness to walk at the end of leash and investigate the environment without being asked

Excitability E Enthusiasm during a walk

Hearing Sensitivity E Reactivity to noise stimulus during environmental testing

Body Sensitivity E Physical reactivity to touch, praise, or correction
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where the combined sequential tests did not perform better showed that the ML models were worse at distin-
guishing successful and eliminated dogs when the datasets were combined.

Feature selection of traits.  Two feature selection methods were employed to identify the most important 
traits for predicting success at each time point: Principal Components Analysis (PCA) and Recursive Feature 
Elimination using Cross-Validation (RFECV). The PCA was performed on the trait data for each test and no 
separation was readily apparent between accepted and eliminated dogs in the plot of Principal Components 1 
and 2 (PC1/2). Scree plots were generated to show the percent variance explained by each PC, and heatmaps of 
the top 2 PCs were generated to visualize the impact of the traits within those. Within the heatmaps, the top- or 
bottom-most traits were those that explained the most variance within the respective component. RFECV was 
used with Random Forest classification for each test with 250 replicates, identifying at least one feature per repli-
cate. In addition, 2500 replicates of a Naïve Bayes Classifier (NB) and Random Forest Model (RF) were generated 
to identify instances where RF performed better than a naïve classification.

Scree plots of the Airport Terminal tests showed a steep drop at PC2, indicating most of the trait variance is 
explained by PC1. The variance explained by the top two PCs ranged from 55.2 to 58.2%. The heatmaps (Fig. 2a) 
showed the PC1/2 vectors with the strongest effects were H1/2 at 3- and 6- months, and PP at 9- and 12-months, 
both of which appeared in the upper left quadrant (i.e., negative in PC1 and positive in PC2). Several traits 
showed temporal effects within PCs: (i) at 3-months, PC1 had lower H1 than H2 scores, but that reversed and 
its effect increased at the other time points; (ii) at 3- and 6-months, PC2 had positive signal for H1/2, but both 
became negative at 9- and 12-months; (iii) at 3-months, HG was negative, but that effect was absent at other 

Figure 1.   (a) Radar plots of the mean scores for each of the traits for the airport terminal tests. (b) Radar plots 
of the mean scores for each of the traits in the environmental tests; M03 = BX (gift shop), M06 = Woodshop, 
M09 = Airport Cargo, M12 = Airport Terminal.
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time points; (iv) at 3- and 6- months, PC2 had negative signal for PP, but it changed to strongly positive at 9- and 
12-months. When the RFECV was run on the same Airport Test data, a similar pattern of increasing number of 
selected traits with advancing time points was observed as in the PCA (Table 4). Like the PCA results, H2 was 
among the strongest at all time points except for the 6-month, although it first appeared among the replicates 
at 9-months. Means of the NB and RF models were compared (Supplemental Table 2) and showed the M06 and 
M12 results were the most promising for classification. This suggested that shared traits such as all possession 
traits (MP, IP, and PP) and the second hunt test (H2) are the most important in identifying successful dogs dur-
ing these tests, however the distinct nature of the assessment in each time point does not allow for a longitudinal 
interpretation.

Table 2.   Metrics for the quality of Machine Learning prediction tasks for the airport terminal (A) and 
environmental (B) tests. Accuracy is the percentage of correctly identified dogs. Precision is the ratio of true 
positives to the sum of true and false positives. Recall is the ratio of true positives to the sum of true positives 
and false negatives. F1 is the harmonic mean of precision and recall. For precision, recall, and F1, the values are 
reported for accepted/behavioral eliminated dogs. Area Under the Curve (AUC) is the area under the Receiver 
Operating Characteristics (ROC) curve.

A

M03 M06 M09 M12

Logistic Regression

 Accuracy 0.78 0.76 0.78 0.85

 Precision 0.80/0.58 0.77/0.73 0.80/0.58 0.85/0.88

 Recall 0.96/0.18 0.97/0.24 0.95/0.22 0.99/0.32

 F1 0.87/0.27 0.85/0.36 0.87/0.32 0.91/0.47

 AUC​ 0.571 0.603 0.585 0.653

Support Vector Machine

 Accuracy 0.78 0.74 0.78 0.81

 Precision 0.79/0.62 0.74/0.75 0.79/0.67 0.81/1.00

 Recall 0.98/0.13 0.98/0.13 0.97/0.19 1.00/0.09

 F1 0.87/0.21 0.85/0.22 0.87/0.29 0.89/0.17

 AUC​ 0.553 0.557 0.579 0.545

Random Forest

 Accuracy 0.75 0.70 0.77 0.87

 Precision 0.79/0.42 0.75/0.44 0.80/0.53 0.86/1.00

 Recall 0.92/0.21 0.87/0.26 0.92/0.28 1.00/0.36

 F1 0.85/0.28 0.81/0.33 0.86/0.37 0.92/0.53

 AUC​ 0.561 0.567 0.574 0.681

 ML Model M03 M06 M09 M12

B

M03 M06 M09 M12

Logistic Regression

 Accuracy 0.83 0.79 0.80 0.80

 Precision 0.84/0.33 0.83/0.46 0.83/0.50 0.82/0.56

 Recall 0.98/0.05 0.93/0.24 0.94/0.24 0.94/0.26

 F1 0.91/0.09 0.87/0.32 0.88/0.32 0.88/0.36

 AUC​ 0.516 0.584 0.590 0.603

Support Vector Machine

 Accuracy 0.84 0.80 0.81 0.78

 Precision 0.84/0.50 0.80/1.00 0.82/0.60 0.78/0.00

 Recall 0.99/0.05 1.00/0.04 0.98/0.14 1.00/0.00

 F1 0.91/0.10 0.89/0.08 0.89/0.23 0.88/0.00

 AUC​ 0.521 0.520 0.560 0.500

Random Forest

 Accuracy 0.82 0.72 0.78 0.80

 Precision 0.84/0.25 0.82/0.30 0.82/0.38 0.81/0.60

 Recall 0.97/0.05 0.84/0.28 0.94/0.14 0.97/0.16

 F1 0.90/0.09 0.83/0.29 0.87/0.21 0.88/0.25

 AUC​ 0.511 0.558 0.542 0.564
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Table 3.   Forward Sequential Predictive Analysis for Combined Data. This analysis started with combining 
both Airport Terminal and Environmental data for M03, then added M06, M09, and M12.

M03  + M06  + M09  + M12

Logistic Regression

 Accuracy 0.83 0.79 0.84 0.88

 Precision 0.84/0.00 0.84/0.00 0.89/0.38 0.91/0.50

 Recall 0.98/0.00 0.92/0.00 0.94/0.25 0.97/0.25

 F1 0.90/0.00 0.88/0.00 0.91/0.30 0.94/0.33

 AUC​ 0.490 0.462 0.593 0.608

Support Vector Machine

 Accuracy 0.84 0.85 0.87 0.88

 Precision 0.84/0.00 0.85/0.00 0.87/0.00 0.91/0.50

 Recall 1.00/0.00 1.00/0.00 1.00/0.00 0.97/0.25

 F1 0.92/0.00 0.92/0.00 0.93/0.00 0.94/0.33

 AUC​ 0.500 0.500 0.500 0.609

Random Forest

 Accuracy 0.84 0.85 0.87 0.87

 Precision 0.86/0.50 0.86/0.50 0.87/0.50 0.87/0.50

 Recall 0.98/0.11 0.99/0.06 0.99/0.08 0.99/0.08

 F1 0.91/0.18 0.92/0.11 0.93/0.14 0.93/0.14

 AUC​ 0.545 0.526 0.535 0.535

Figure 2.   Principal Component Analysis (PCA) results for airport terminal (a) and environmental (b) tests. 
Each time point displays a heatmap displaying the relative amount of variance captured by each trait within the 
top 2 components.
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The PCA results for the Environmental tests yielded scree plots that had a sharp drop at PC2 for all time 
points except 9-months (Fig. 2b). The amount of variation explained by the top two components decreased with 
the increasing time points from 62.7 to 49.8. The heatmaps showed the PC1/2 vector with the strongest effect 
was for the toy possession trait IP, which appeared in the upper left quadrant at all time points (CR and PP had 
a similar effect at reduced magnitudes). Within PC observations included the following: (i) in PC1, Confidence 
and Initiative were negative at all time points, and (ii) in PC2, Concentration and Excitability were positive at 
3-months, and increased at 6- and at 9- and 12-months. When the RFECV was run on the Environmental test 
scores (Table 4), all traits for both 9- and 12- months were represented in the results. At 3-months, only Confi-
dence and Initiative were represented and at 6-months, only those and Responsiveness. Means of the NB and RF 
models were also compared (Supplemental Table 2) and demonstrated M03 and M12 were the most significant 
for classification. These tests correspond to the earliest test at the gift shop and the last test at an active airport 
terminal. Primary shared traits include confidence and initiative, with possession-related and concentration 
traits being most important at the latest time point.

Discussion
This exploratory study tested the feasibility of using supervised Machine Learning approaches to extract useful 
knowledge from an existing, large dataset of pretraining tests, behavioral traits, and environmental contexts for 
Labrador Retriever working dogs. We used 70% of the dogs for learning and 30% to test the prediction of which 
dogs were successful in a pre-training program or eliminated for behavioral reasons. We saw the best performance 
for the Random Forest model at 12-months in the Airport Terminal test, with accuracy of 87% and an AUC—the 
ability to distinguish between accepted and eliminated dogs—of 0.68. In general, AUCs of 0.5–0.7 are considered 
poor and 0.7–0.8 acceptable. The weakest metric for that model, test, and time point was for recall—the ability 
to find all positive instances—for eliminated dogs of 0.36 (vs. 1.0 for accepted dogs). This resulted in an F1—the 
harmonic mean of recall and precision—of 0.53 (vs. 0.92 for accepted dogs). One consideration for this result is 
that the Airport Terminal test had a mean of 73% of the total 628 dogs with data across all traits (and only 56% 
for the Environmental test). A second factor is the breeding selection exerted on our cohort and the broader 
Labrador Retriever populations it was derived from.

We previously reported genetic mapping of elimination for behavioral reasons in the same cohort17. There we 
referenced the behavioral selection related to this cohort and the general population of “hunting line” Labrador 
Retrievers. The findings in that work showed variations that are associated with problem behaviors, and which 
are common in pet Labrador Retrievers, are rare or absent in the present cohort. For instance, an X chromo-
some allele associated with fear, anxiety, and aggression, (likely due to a coding variant in IGSF18,10) has an allele 
frequency of 18% in pet Labrador Retrievers but was not detected in ~ 300 dogs in this cohort. Similarly, our 
mapped haplotypes with strongest effects on elimination for behavioral reasons tended to only be present in 
the heterozygous state. In this way, breeding selection results in depletion of alleles associated with moderate to 
large-effect problem behaviors observed in the general pet population; therefore, a reduction of both behavioral 
variance and rates of elimination makes their discovery more challenging in specialized cohorts8–10.

The predictive performances of the models for the Environmental test were more variable and poorer. The 
accuracy for the top performing Logistic Regression model was 80% at 12-months. The AUC was 0.60 and the 
F1s 0.88/0.36 for accepted and eliminated dogs, respectively (mainly resulting from recall rates of 0.94/0.26). 
An important caveat for the Logistic Regression model is that some traits exhibited a biased distribution toward 
higher scoring values, which may bias the reported metrics. The pattern of metrics was different in the two 
tests. In the Airport Terminal test, all top metrics were for Random Forest at 12-months, and all second-best for 
Logistic Regression at 12-months. In contrast, the Environmental test had the top or second highest metrics for 
accuracy and accepted dog precision and recall (and thus F1) at 3-months. However, all three models had a recall 
rate for eliminated dogs of 0.05 (and F1 of 0.09–0.10). This suggests the dogs most likely to be accepted (~ 60% 
of cohort) can be recognized through features in our data for 3-months. That is not the case for identification 

Table 4.   Recursive Feature Elimination with Cross-Validation using Random Forest Classification results for 
airport terminal (A) and environmental (B) tests. Values indicate the percentage of 250 bootstrap runs the 
respective traits appeared in, ranging from 0 to 100.

MP H1 H2 HG ACT​ CR PP IP

A

3 MO 4.7 – 30.7 86.7 – – – –

6 MO 24.7 – 10.7 – – – 100.0 47.3

9 MO – 12.7 53.3 – – – 64.0 19.3

12 MO 48.7 38.7 77.3 28.7 0.0 6.0 51.3 76.0

Conf Conc Respon Init Excit Hear Sens Body Sens CR PP IP

B

3 MO 100.0 – – 0.4 – – – – – –

6 MO 88.7 – 4.7 13.3 – – – – – –

9 MO 20.7 16.0 23.3 30.7 16.7 0.8 12.0 14.0 23.3 93.3

12 MO 63.3 48.9 32.0 32.7 46.7 21.3 22.7 28.7 80.7 47.3
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of dogs likely to be eliminated (~ 25% of the cohort; the remainder eliminated for medical reasons). Since the 
recall rate of eliminated dogs is over five-fold higher at later time points for both the Logistic Regression and 
Random Forest models, it may be possible to determine the developmental timing of the traits responsible for 
pre-training success.

The PCA of the Environmental test was less variable across time points than the Airport Terminal test. This 
seems surprising given the more variable results observed in the predictive modeling of the Environmental test. 
It is also unexpected considering the Environmental test was given at different types of location chosen to present 
different types of stimuli. The first two PCs explained a decreasing proportion of the variance with advancing time 
points, from 62.7 to 49.8%. The strongest effect present for the PC1/2 combination was for the toy possession 
trait IP, which plots to the top left quadrant at all time points. Chase/Retrieve and the PP had similar but smaller 
effects. Single PC observations included that Confidence and Initiative were moderately to strongly negative in 
PC1 at all time points. Among the temporal effects in PC2, Concentration and Excitability were weakly positive 
at 3-months and increased slightly at 6- and again at 9- and 12-months. Running the RFECV showed all traits at 
9- and 12-months were positive in the results. Confidence and Initiative were represented at all time points, and 
Confidence had the most consistently high classification values (100, 88.7, 20.7, and 63.3% in order of increasing 
time points. At 3- and 6-months, Confidence was highest (100 and 88.7%); at 9-months, IP was (93.3%); and at 
12-months, PP was (80.7%).

Overall, our Machine Learning algorithms were not effective in predicting success during a explosives-
detection pretraining program. They also displayed a poor ability to properly distinguish between the successful 
dogs and those eliminated, rendering the application of these models unsuitable for unsupervised use. This may 
be due in part to our data lacking thorough documentation of the basis for graduating or removing dogs. This 
could help explain the improved performance of the algorithm over time; however, the separation could also be 
due to the dogs’ behavioral development and learning. While the AUC scores were not strong, the classification 
results shed light on the most robust traits that are important for success. These results are consistent with previ-
ous studies that primarily used PCA and Factor Analysis to identify important traits in an overlapping cohort 
that contained multiple breeds and combined all time points in some cases22. Those studies demonstrated that 
Responsiveness, Initiative, Confidence, and Concentration (with PC1 loading values of 0.92, 0.86, 0.81, and 0.67, 
respectively) contributed the most to dog success in the Environmental Tests. Also, Mental Possession, Independ-
ent Possession, Hidden 1, Hidden 2, and Physical Possession (with PC1 loading values of 0.74, 0.66, 0.64, 0.60, 
and 0.55) contributed the most to dog success in the Airport Terminal test20,22. Those results were consistent 
with both our PCA and ML Classification tasks. Another study showed a similar phenomenon of shifts in the 
consistencies of scores (e.g., with environmental sureness and possession-related traits) between time points23 
using PCA. This trend may capture the development of dog behavior as they age from 3 to 12 months of age, 
although this likely also captures experience with the tasks and some change due to the bit of training expected 
of handlers during this pre-training period.

Conclusions.  This study provided a preliminary look into the predictive power of ML algorithms to select 
successful Labrador Retrievers in a canine olfactory detection pretraining program. The results demonstrated a 
subset of the traits that may be more important than the others for the selection of successful dogs, which has 
the potential to simplify trait assessments in the program. While the ability to distinguish between successful 
and behaviorally eliminated dogs was poor, our data only represent a small cohort of dogs with few traits. Our 
findings indicate there are great opportunities to expand upon the program by including additional behavioral 
traits, medical information, and other longitudinal data.

Materials and methods
2002–2013 TSA cohort and data.  Data for the study was obtained from an olfactory detection dog 
breeding and training program run by the TSA in the period from 2002 to 2013. This data contained scores for 
628 Labrador Retrievers that were brought in for testing every 3 months beginning at the age of 3 months during 
a 15 month foster period. These testing periods correspond to a 3-, 6-, 9-, and 12-month time period when two 
separate tests were performed. The first test, called the Airport Terminal (AT) test, was performed in an empty 
mock airport terminal and was meant to simulate the intensive training the dogs would perform if they passed 
the pre-training program. This test involved the handlers walking the dogs through the mock airport terminal, 
two separate hunts for a scented towel in vessels scattered throughout the terminal, and engagement with a toy. 
The traits measured the dogs’ performance while identifying the scented towel, qualities of the dog during the 
tasks, and level of engagement with the handler, towel, and toy. This test was meant to demonstrate how trainable 
the dog would be if it were successful.

The second test, called the Environmental (Env) test, was performed in different locations around the base 
at each time point. The test involved the dog walking with the handlers on a leash, attempting a search, and 
engagement with a toy and the handler while in a noisy and crowded environment. The locations included a 
busy base exchange gift shop (BX), a woodshop with loud noises and dark enclosed spaces (Woodshop), a cargo 
area with moving traffic and noise (Airport Cargo), and various airport passenger locations (Airport Terminal), 
respectively to the four time points. This test complemented the airport terminal test as there were no other 
people in the mock airport terminal to distract the dogs from the task at hand. The Environmental test captured 
traits that measured various characteristics of the dogs when in these stimulating locations and their ability to 
still focus on the various aspects of training.

Of the 628 dogs included, a fraction was scored at each time point. That ranged from 351 to 564 for the Air-
port Terminal tests and 291 to 410 for the Environmental Tests. All the dogs had accepted or eliminated status for 
medical or behavioral reasons (otherwise unspecified), and their overall counts are summarized in Supplemental 
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Table 1. Dogs eliminated for medical reasons were included in this behavioral study as their medical conditions 
were not described, and for those that were found, were mainly issues that would limit a dog’s longevity in the 
program (eg. Hip dysplasia) and not necessarily effect behavior.

Data preparation and visualization.  Data for the dogs were split based upon the type of test and time 
period, and dogs with substantial (> 25%) missing scores were dropped for those tests. The distributions of trait 
scores were visualized by first splitting the datasets based on whether the dogs were accepted or eliminated for 
behavioral reasons (see code). The mean score for each trait was calculated and plotted on a radar plot using 
matplotlib v3.4.2 and plotly v5.3.1, packages of Python 3.8.12. Data and Jupyter Notebook code are available at 
https://​github.​com/​AWEyr​e7147/​2013T​SA-​Trait-​ML-​Proje​ct.

Machine learning prediction and classification.  All Machine Learning was performed using the cor-
responding toolkits in scikit-learn v0.24.2 with random state of 101 unless otherwise noted24. Predictive Machine 
Learning models were selected for their ability to handle binary classifiers and unique means of making predic-
tions. For predictive tasks, the data were split into training/test sets using a test size of 30%. A Logistic Regression 
model was run using default settings. A Support Vector Machine model was run using default settings, then an 
attempt to refine the model was performed using a grid search with a range of C and gamma values (see code). 
A Random Forest model was run using 100 estimators. Quality of all models was assessed using classification 
reports and calculation of the AUC statistic. Accuracy is the percentage of correctly classified dogs ((true posi-
tives + true negatives)/(true positives + false negatives + true negatives + false positives). Recall is the is the ability 
of a classifier to find all positive instances (true positives / (false negatives + true positives)). Precision is the 
proportion of positives predictions that are correct (true positives/(false positives + true positives)). F1 is the 
harmonic mean of recall and precision (F1 Score = (2 * Precision Score * Recall Score)/(Precision Score + Recall 
Score)). The receiver operating characteristics (ROC) curve was also created, and the AUC was calculated, which 
is the ability of a model to distinguish between positive and negative classes.

For classification Machine Learning tasks, principal components analysis (PCA) was performed, and scree 
plots were generated to visualize the percentage of variance explained by the components. The first two compo-
nents were selected because they lie before the inflection point of the scree plot curve; and a heatmap was gener-
ated to visualize which traits most impacted each component. To identify which features are most important, 
recursive feature elimination with cross-validation (RFECV) was performed using a random forest classifier 
model. RFECV chooses the optimal number of features by using cross-validation (CV). We employed this method 
to demonstrate that the number and importance of each trait increases as the dogs become more trained. It was 
run searching for a minimum of 1 feature and replacement scoring based on accuracy, then bootstrapping was 
run 250 times with random states ranging from 1 to 250. Traits that were selected after each run were collected, 
then the % of runs each trait occurred in was reported for each test and time period. To provide a baseline to 
compare the RF predictive accuracies and provide validity to the RFECV results, 250 replicate Naïve Bayes Clas-
sifier and Random Forest runs were calculated for each time point and test with the mean and standard deviation 
reported with Z-tests calculated for each pair.

Data availability
Data and computer code are available at https://​github.​com/​AWEyr​e7147/​2013T​SA-​Trait-​ML-​Proje​ct.
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