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Speed limit of quantum metrology
Yusef Maleki 1, Bahram Ahansaz 2* & Alireza Maleki 3

Quantum metrology employs nonclassical systems to improve the sensitivity of measurements. The 
ultimate limit of this sensitivity is dictated by the quantum Cramér–Rao bound. On the other hand, the 
quantum speed limit bounds the speed of dynamics of any quantum process. We show that the speed 
limit of quantum dynamics sets a fundamental bound on the minimum attainable phase estimation 
error through the quantum Cramér–Rao bound, relating the precision directly to the underlying 
dynamics of the system. In particular, various metrologically important states are considered, 
and their dynamical speeds are analyzed. We find that the bound could, in fact, be related to the 
nonclassicality of quantum states through the Mandel Q parameter.

Estimation of an unknown parameter is a central task in science and incorporates a broad class of applications, 
from gravitational wave  detection1,2 to nanoscale superresolving  microscopy3 and ultrasensitive  spectroscopy4. 
The essential procedure in the estimation of an unknown parameter includes an inference from a set of data 
about the parameter to which they are  attributed5–7. In parameter estimation procedures, the accuracy of esti-
mation can be improved by repeating the experiment and collecting more information on the parameter. More 
precisely, using N independent resources, for measuring the parameter ϕ , the optimal sensitivity of the parameter 
is determined by the central limit theorem scaling as �ϕ ∝ 1/

√
N 8–10. Quantum probes can beat the classical 

limit, enabling unprecedentedly enhanced accuracy with an extra 1/
√
N  improvement of precision, when using 

N  resources9,11–14. Interestingly, such improvements on the estimation and sensing are fundamentally restricted 
by the underlying physics of the probe systems, which dictates a bound on the ultimate attainable precision of 
the estimated parameter. This fundamental bound in the estimation process is usually given via the Cramér–Rao 
bound (CRB)15. For estimation of an unknown parameter ϕ , the unbiased quantum CRB is defined  as4

where FQ(ϕ) = Tr[ρ(ϕ)L2ϕ] is the quantum Fisher  information4,10. The symmetric logarithmic derivative Lϕ is 
defined as ∂ϕρ(ϕ) = (1/2)[ρ(ϕ)Lϕ + Lϕρ(ϕ)] , with ρ(ϕ) being the density matrix. If the pure state |�� is used 
as the quantum probe, the Fisher information of the quantum state |�ϕ�  gives7,10

On the other hand, determining the speed of the quantum dynamics of a system is a pivotal task in many physical 
 domains16,17. The faster dynamics in quantum gates can expedite  computation18–20. Also, in quantum control, 
more rapid evolution assists in suppressing decoherence by shortening the evolution  time20–22. In condensed 
matter physics, for determining how fast correlations can be spread in quantum many-body systems, under-
standing the dynamical speed is  required23–25. Quantum speed limit (QSL) dictates a fundamental bound on 
the speed of evolution of all such quantum  processes26–34. For a closed system, Mandelstam and Tamm derived 
the first expression π�/(2�H) for the QSL for the systems evolving between two orthogonal states, resulting 
in the modern interpretation of the time-energy uncertainty  principle35. Later, Margolus and Levitin proposed 
the alternative expression π�/2〈H〉 for such quantum  dynamics36. These two bounds, known as MT and ML 
bound respectively, determine the minimum time that a system needs to evolve from its initial state to its final 
orthogonal state through

where �H is the variance of the Hamiltonian of the system, and 〈H〉 is the expectation value of the Hamiltonian 
with respect to the initial state. For the evolution between two nonorthogonal states, a generalized form of the 
above formula was defined such  that37

(1)δϕCRB = 1/
√

FQ(ϕ),

(2)FQ(ϕ) = 4(�∂ϕ�ϕ |∂ϕ�ϕ� − |��ϕ |∂ϕ�ϕ�|2).

(3)τQSL = max

(

π

2�H
,

π

2�H�

)

.
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where TMT = �

�HL (ρ0, ρT ) and TML = 2�
π�H�L

2(ρ0, ρT ) are the generalized Mandelstam–Tamm and Margo-
lus–Levitin bounds, respectively. ρ0 and ρT are the density matrices of the initial (at time equal to 0) and the final 
state of the system (at time equal to T), respectively. Moreover, L (ρ0, ρT ) is the Bures angle which determines 
the generalized angle between two arbitrary density matrices L (ρ0, ρT ) = arccos(

√
F(ρ0, ρT))

38, with F(ρ0, ρT ) 
being the fidelity between the two density matrices ρ0 and ρT39,40

As we know quantum metrology involves building measuring devices which develop incredibly precise 
measuring devices. In addition, increasing the quantum speed limit of one such device would allow for faster 
measurements which could theoretically yield more accurate results. For this reason, it is an essential task to 
highlight the interplay of the quantum metrology and the speed of quantum evolution. For determining the 
underlying dynamical structure of quantum systems and their usefulness for quantum metrology, the relation-
ship between the quantum Fisher information (and therefore metrology) and quantum speed limits was clearly 
elucidated in Ref.41. Moreover, the relation between quantum metrology and different quantum speed limits has 
been further explored in several  works42–47. In this paper, by considering various metrologically important states, 
we show how the speed limit of quantum dynamics, given by the generalized Mandelstam–Tamm and Margo-
lus–Levitin bounds, provides a fundamental bound on the attainable phase estimation error bound dictated by 
the CRB through a quantum probe in interferometry. The result of this research could lead to devices with faster 
detection rates and improved accuracy.

Speed limit of quantum metrology
To understand the relation between phase estimation error bound and speed of the quantum dynamics of a 
system we start with the coherent state |α� = e−|α|/2 ∑∞

n=0
αn√
n! |n�

48, for illustration. The Hamiltonian of the 
system can be expressed as H = �ωa†a , where a and a† are the annihilation and creation operators acting on 
the Fock basis of the photons. For the system undergoing time evolution with respect to the Hamiltonian H, the 
unitary operator is given by U(t) = e−iω�ta†a , where �t = t − t0 is the time interval of the unitary evolution of 
the system. Thus, by defining the phase shift ϕ such that ω�t = ϕ , the time evolution operator degenerates to 
U(ϕ) = e−iϕa†a , which is identical to the unitary operator of the phase shift in the interferometry. Based on this 
Hamiltonian, the coherent state |α� evolves to another coherent state given by |e−iϕα� ; which is not orthogonal 
to its initial state |α� in general, for any nonzero ϕ . Therefore, by defining �ϕMT = ωTMT and �ϕML = ωTML 
the bounds in Eq. (4) are found to be

On the other hand, using quantum Fisher information formula in Eq. (2), the Cramér–Rao bound of the coherent 
state reads δϕCRB = 1/(2|α|) . Hence, considering Eq. (5), we arrive at

Thus, the phase estimation error with the coherent state is bounded though �ϕMT and �ϕML . From Eq. (6) we 
immediately find

Therefore, for a coherent state, the ultimate achievable error given by the CRB, is fundamentally bounded by the 
speed of the dynamical evolution of the quantum state.

Similarly, using Eqs. (4) and (5) the upper bound of the �ϕQSL is given by

Therefore, the lower bound on the CRB of the coherent state in terms of the QSL phase �ϕQSL is given by

(4)τQSL = max{TMT,TML},

F(ρ0, ρT ) =
[

tr
{
√√

ρ0ρT
√
ρ0

}]2

.

(5)
�ϕMT = 1

| α | arccos(e
−|α|2(1−cosϕ)),

�ϕML = 2

π | α |2 arccos
2(e−|α|2(1−cosϕ)).

(6)

δϕCRB �
�ϕMT

2arccos(e−2|α|2)
,

δϕCRB �

√

π

8

�ϕML

arccos2(e−2|α|2)
.

(7)
δϕCRB >

�ϕMT

π
,

δϕCRB >

√

�ϕML

2π
.

(8)�ϕQSL ≤ max{ π

2 | α | ,
π

2 | α |2 } = max{πδϕCRB, 2πδϕ2
CRB}.
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This relation directly shows that the QSL dictates a lower bound on the ultimate limit of precision attainable by 
a coherent state in the interferometric phase estimation.

In the example above, we have investigated a single-mode coherent state in interferometry. However, it is 
interesting to consider entangled states due to their significant role in quantum-enhanced phase estimation, and 
metrology in  general9,11,12. Thus, we investigate an entangled state which has been proven to be of substantial 
importance in quantum metrology given  by49

Here, the normalization factor N is N = 1√
2(1+e−|α|2 )

 . Thus, the Hamiltonian of the mode i can be expressed 

as Hi = �ωa†i ai for i = 1, 2 . We consider the system undergoing the time evolution with respect to the Hamil-
tonian of the second subsystem H2 , described by the unitary operator U(t) = e−iω�ta†2a2 . This operator translates 
into the unitary phase shift operator U(ϕ) = e−iϕa†2a2 . Thus, applying U(ϕ) to the state |�� gives

For the state |�� , the average photon number of the second mode is �N2� = �a†2a2� = N
2|α|2 . Hence, the variance 

of the photons of the second mode is found as ��N2� = N
2(|α|2 + |α|4)−N

4|α|4. Furthermore, the fidelity 
between the time evolved and the initial coherent states is

The minimum of the fidelity depends on both |α| and ϕ . Thus, unlike the previous example, there is no single ϕ 
minimizing fidelity for all the given parameter |α| . The minimum value of the fidelity can be calculated numeri-
cally for specific values of |α| . Nevertheless, we always have F(ρ0, ρT ) > N

4
[

1+ 2e−|α|2 − e−2|α|2]2. Hence, the 

Bures angle is bounded from above via ℓ(α) = arccos

[

1+2e−|α|2−e−2|α|2

2(1+e−|α|2 )

]

 .  Thus, we arrive at 
L (ρ0, ρT ) < ℓ(α) < arccos(1/2) = π/3. On the other hand, using the quantum Fisher information formula, 
the CRB is

Therefore, in terms of �ϕMT , CRB is limited by

Thus, we can express the MT bound of the phase estimation as δϕCRB > (3/2π)�ϕMT . If we further loosen the 
bound, we can arrive at δϕCRB > �ϕMT/π , akin to the bound of a single coherent state.

Now, considering �ϕML we arrive at

Therefore, the CRB is limited by

As mentioned before, the right hand side of the MT bound for a single coherent state is equal to �ϕMT/π . How-

ever, it is different from the ML bound for a single coherent state where we found δϕCRB ≥
√

�ϕML
2π

 . Thus, with 
these analyses and using Eq. (4), we introduce the ultimate phase estimation bound dictated by �ϕMT , for state 
ρ0 as

(9)

{

δϕCRB ≥ 1
π
�ϕQSL if |α| ≥ 1,

δϕCRB ≥
√

1
2π

�ϕQSL otherwise.

(10)|�� = N(|α�|0� + |0�|α�).

(11)|�ϕ� = N(|α�|0� + |0�|eiϕα�).

(12)F(ρ0, ρT ) = N
4
[

(1+ 2e−|α|2)2 + e−2|α|2(1−cosϕ) + 2(1+ 2e−|α|2)e−|α|2(1−cosϕ) cos(|α|2 sin ϕ)
]

.

(13)δϕCRB = 1

2N|α|
√

[

1+ |α|2(1−N2)
]

.

(14)δϕCRB �
�ϕMT

2max(L (ρ0, ρT))
>

�ϕMT

2ℓ(α)
.

(15)

δϕCRB �
1

√

1+ |α|2(1−N2)

√

π

8

�ϕML

max(L (ρ0, ρT))
2

>
1

√

1+ |α|2(1−N2)

√

π

8

�ϕML

ℓ(α)2

>
1

√

1+ |α|2(1−N2)

√

9

8

�ϕML

π
.

(16)δϕCRB >
1

√

1+ |α|2(1−N2)

√

�ϕML

2π
.

(17)δϕCRB �
�ϕMT

2L (ρ0, ρT )
�

1

π
�ϕMT .
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And, the ultimate phase estimation bound dictated by �ϕML as

Here, QM is the so-called Mandel Q parameter expressed as QM = ��n2� − �n�
�n�

50. We note that the right hand 
side of Eqs. (17) and (18) are equal. This coincides with the fact that even though there are two different bounds 
for QSL, the phase estimation is limited by a uniquely defined single Cramér–Rao bound. It is quite interesting 
to note that �ϕML , is related to the statistics of the quantum probes through the Mandel Q parameter. Accord-
ingly, sub-Poissonian statistics satisfy QM < 0 , and states with such statistics are known to be nonclassical. For 
Poissonian statistics QM = 0 , which is relaxed by the coherent states. For states having Poissonian or sub-Pois-
sonian statistics, the phase estimation bound given by Eq. (18) can be further loosened to get

This recovers the coherent state bound, given by Eq. (7). For the states with super-Poissonian statistics QM > 0 , 
the ML bound cannot be reduced to Eq. (19), in general. Hence, the ML bound of the entangled coherent state 
in Eqs.  (15) and (16) can be understood by noting that the Mandel Q parameter of this state is 
QM = |α|2(1−N

2) . Thus, when the average number of photons is large enough ( ̄n = |α|2 >> 1 ), the phase 

estimation bound is δϕCRB �

√

�ϕML
n̄π  . The bounds introduced in Eqs. (17) and (18) are generic and can be 

applied to a vast class of quantum states beyond the coherent states. To see this and to further exemplify the 
utility of the bounds obtained here, we apply the QSL bounds to the squeezed states metrology in the Methods 
section. Hence, from these analyses we realize that the states which minimize CRB, inevitably need to maximize 
QSL. This agrees with the observation of Ref.42, where a quantum metrological setting, in the context of a par-
ticular non-Markovian quantum evolution of two two-level atoms, is considered.

For a given N photon interferometry, the ultimate precision reduces to the Heisenberg limit δϕCRB = 1/N , 
which is known to be relaxed by the N00N  state13,14

This suggests that N photons can be in the first mode and no photon in the second mode or vice versa. Provided 
that the N00N state undergoes the phase shift ϕ described by U(ϕ) = e−iϕa†2a2 , it degenerates to

Thus, we immediately obtain the well–known result δϕCRB = 1/N  . On the other hand, the minimum time 
that takes the N00N state to evolve to its orthogonal state is given by Eq. (3). Since, for the N00N state 
�H2 = �H2� = N/2 , we have τQSL = π/ωN . From �ϕQSL = ωτQSL , we find that �ϕQSL = π/N . This agrees with 
the fact that, when ϕN = (2k + 1)π , the state in Eq. (21) becomes orthogonal to the N00N state in Eq. (20). Thus

where, δtCRB = (1/ω)δϕCRB . Thus, N00N state is not only optimal for quantum metrology, but it is also optimal 
for QSL, evolving with the ultimate speed v ∝ N/π . Quantum estimation beyond the classical regime that can 
reach the HL of precision is not well explored in the experiments, and most of such studies are limited to pho-
ton number N. Considering the role of the QSL in dynamical features of the quantum systems, understanding 
the relation between QSL and CRB can play a central role in enhancing the phase estimation precision, e.g., by 
quantum control techniques.

It is worth mentioning that our studies for coherent state, entangled coherent state and NOON state, revealed 
that how the speed limit of quantum dynamics provides a fundamental bound on the attainable phase estimation 
error bound. A more interesting phenomenon here is that the accuracy of the estimation can be improved by 
increasing the speed of quantum evolution. These results highlight the fact that two seemingly unrelated concepts 
(CRB and QSL time) are deeply connected in a more fundamental trait.

Numerical results
In our analyses so far, we considered pure quantum states and showed the relation between QSL and CRB through 
Eqs. (17) and (18). However, in a practical setting, generating and preserving pure quantum states are challenging 
from an experimental perspective. In most scenarios, quantum states become mixed as they inevitably interact 
with their surrounding  environment51. In this section, we consider the relation between QSL and CRB in the 
mixed state realm and address the characteristics of the bounds in Eqs. (17) and (18) in the mixed state scenario.

General d‑dimensional Werner state. The mixed states that we consider here are the class of states 
called generalized Werner states. The Werner state is an important type of mixed state that plays a fundamental 

(18)δϕCRB �
1√

1+ QM

√

π

8

�ϕML

L (ρ0, ρT )2
�

1√
1+ QM

√

�ϕML

2π
.

(19)δϕCRB �

√

π

8

�ϕML

L (ρ0, ρT )2
�

√

�ϕML

2π
.

(20)|ψ� = 1√
2
(|N�1|0�2 + |0�1|N�2).

(21)|ψϕ� =
1√
2
(|N�1|0�2 + e−iϕN |0�1|N�2.

(22)δϕCRB = 1

π
�ϕQSL ⇒ δtCRB = 1

π
τQSL
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role in the foundations of quantum mechanics and quantum information theory. The most natural generaliza-
tion of the 2× 2 Werner states to the higher dimensions can be written  as52

where the pure state |ψ� is defined as

and the normalization condition implies that |α|2 + |β|2 = 1 . Here the dimension of Hilbert space is d = N + 1 . 
Once the above Werner state undergoes the phase shift ϕ , via the unitary operator U(ϕ) = e−iϕa†2a2 , it transforms 
into

where we have

Now, in order to investigate the given bounds in Eqs. (17) and (18) we introduce the following quantities

and similarly

To analyze these bounds, we generate 105 random states for each given fixed value of p, as presented in Fig. 1. 
The parameter p varies from 0 to 1 as determined by the state in Eq. (23), and each plot presents 107 random 
states in total. The random states are generated through variations of α and β . It should also be noted that Fisher 
information for a given density matrix is independent of the phase shift ϕ ; however, QSL directly depends on 
the phase shift. The inequalities (27) and (28) are valid for any given phase that inters the formulations of the 
QSL. In our analyses, we choose ϕ = π/4 for attaining the QSL terms. We present the performance of (27) in 
Fig. 1a and b for N = 1 and N = 10 , respectively. A similar analysis for (28) is presented in Fig. 1c,d. Figure 1c 
presents the inequality for N = 1 and Fig. 1d presents the inequality for N = 10 . As Fig. 1 clearly demonstrates, 
both inequalities (27) and (28) present similar features. As is readily seen from these plots, the bounds of B1 and 
B2 are tighter when p = 1 , where from Eq. (2) we find that the inequalities in the Eqs. (27) and (28) turn into 
equalities for the pure states. Hence, it should be emphasized that for states with high purities, B1 and B2 are small, 
while for states that are far from the set of pure states, the difference can be much larger. Also, the inequalities 

(23)ρ = p|ψ��ψ | + (1− p)
I

d2
,

(24)|ψ� = α|N�1|0�2 + β|0�1|N�2,

(25)ρϕ = p|ψϕ��ψϕ | + (1− p)
I

d2
,

(26)|ψϕ� = α|N�1|0�2 + βe−iϕN |0�1|N�2.

(27)B1 = δϕCRB − �ϕMT

2L (ρ0, ρT )
≥ 0,

(28)B2 = δϕCRB − 1√
1+ QM

√

π

8

�ϕML

(L (ρ0, ρT ))2
≥ 0.

Figure 1.  Numerical analyses of the inequalities (27) and (28) vs. p. Each plot presents 107 random states, in 
total. Also, ϕ = π/4 is chosen to evaluate the inequalities. (a) and (c) present the inequalities for the photon 
number N = 1 , whereas (b) and (d) present the inequalities for the photon number N = 10.
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are tighter for the photon number N = 10 in comparison to N = 1 . This suggests that increasing the number of 
photons N can also lead to tighter bounds in the considered setting.

Single‑qubit with various phase operations. In our analyses above, we considered pure and mixed 
quantum states. The phase generation was implemented by the unitary operator U(ϕ) = e−iϕa†2a2 for both pure 
states and mixed states. In other words, the generator of the phase is N2 = a†2a2 in this framework. A natural 
question is how the bounds perform when the phase generator operator is something different than N2 . To 
address this, we consider the bounds for a single-qubit system, when the phase is implemented with various 
operators. The single-qubit system is described by a single-qubit spin operator J�n with a general unit vector �n . In 
fact, J�n is a pseudospin angular momentum operator given by

where the vector �n = (nx , ny , nz) is a unit vector and σα = (α = x, y, z) are the Pauli matrices.
An arbitrary single-qubit state can be represented in the Bloch sphere as

where �r = (rx , ry , rz) is the Bloch vector. Now, if the parametrization is described by the unitary operator 
U(ϕ) = e−iϕJ�n , the output state can be given by ρ(ϕ) = U(ϕ)ρU†(ϕ) , where ρ is an initial probe state.

The result of the simulation for the random phase generating operator J�n is presented in Fig. 2. In these 
simulations we consider the Bloch vector of the initial probe state to be �r = (α, 0, 0) , where α = 0 corresponds 
to the maximally mixed state and α = 1 corresponds to the pure state ρ = |φ��φ| with |φ� = (|0� + |1�)/

√
2 . The 

simulation is performed for by assigning 105 random values to the direction unit vector �n = (nx , ny , nz) for each 
fixed α . Therefore, each plot presents 107 points in total. Similar to analyses of the Werner states the inequalities 
B1 and B2 become tighter by increasing α . Whereas the bounds diverge for maximally mixed states, as expected.

Conclusion
In conclusion, quantum Cramér–Rao bound imposes the ultimate limit of precision on metrology. On the other 
hand, the quantum speed limit dictates a fundamental upper bound on the speed of the dynamical evolution 
of any quantum process. Considering different important cases, we showed that the speed limit of quantum 
dynamics sets fundamental bounds on the attainable minimum error in the quantum phase estimation through 
Cramér–Rao bound. The quantum speed limit has revealed that the time-energy uncertainty principle, contrary 
to its old interpretation, is not a statement about simultaneous measurements. Rather, it is about the intrinsic 
time scale of the quantum evolution, interpreted as the time a quantum system needs to evolve from an initial to a 
final orthogonal state. Our results reveal a fundamental connection between the uncertainty in the measurement 
on the one hand and the intrinsic time scale of the unitary quantum evolution on the other. As an interesting 
conclusion, we demonstrated that increasing the speed of quantum evolution can improve the accuracy of the 
estimation. Beyond its fundamental relevance, this can be useful in quantum metrology, quantum control, and 
quantum information sciences.

Methods
Here we consider the squeezed vacuum state as an example and find the connection between CRB and QSL time 
of the state. The squeezed vacuum state is defined  as50

where S(ξ) is the squeezing operator such that

(29)J�n =
∑

α=x,y,z

1

2
nασα = 1

2
�n · �σ ,

(30)ρ = 1

2
(I + �r · �σ),

|ξ� = S(ξ)|0�,

Figure 2.  Numerical analyses of the inequalities (27) and (28) vs. α . The plots presents 105 random unit vector 
�n = (nx , ny , nz) for each fixed value of α . Thus, each plot presents 107 random points in total. Also, ϕ = π/4 is 
chosen to evaluate the inequalities. The initial probe state is taken to be �r = (α, 0, 0).
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The squeezing operator fulfills

Defining ξ = r eiϕ , we have the transformed operators of the system  as50

Therefore, the average number of photons in the squeezed vacuum can be given by

And similarly,

Equivalently, we have

And,

For an squeezed state, the unitary time evolution operator is e−iHt/� = e−iϕa†a . Thus, time evolution of the 
initial squeezed state gives

Thus, the fidelity can be calculated as

Also, the quantum Fisher information FQ reads

Thus, (�ϕ)CRB can be obtained as

With these analyses, we have

Thus, one has

On the other hand

However, from the equation of (�ϕ)CRB we have

Thus (�ϕ)ML reads

Therefore, we arrive at

S(ξ) = e−1/2(ξa†
2−ξ∗a2).

S(ξ)S†(ξ) = S†(ξ)S(ξ) = I.

S†(ξ) a S(ξ) = a cosh r − a† eiϕ sinh r,

S†(ξ) a† S(ξ) = a† cosh r − a e−iϕ sinh r.

�a†a� = �0|S†(ξ)a†aS(ξ)|0� = sinh
2 r.

�(a†a)2� = 3 sinh
4 r + 2 sinh

2 r.

�H� = �ω sinh
2 r.

�H =
√
2 �ω sinh r cosh r.

e−iHt/�|ξ� = e−iϕa†a|ξ� = |ξe−2iϕ�

F = |�ξ |ξe−2iϕ�|2 = 1
√

cosh
4 r + sinh

4 r − 2 cosh
2 r sinh2 r cos(2ϕ)

.

FQ = 4 �ξ |(�H)2|ξ� = 8 sinh r cosh r.

(�ϕ)CRB = 1√
8

1

sinh r cosh r
.

ωτMT = 1√
2 sinh r cosh r

L (ρ0, ρτ ) = 2 (�ϕ)CRB L (ρ0, ρτ ).

(�ϕ)CRB �
1

π
(�ϕ)MT .

(�ϕ)ML = 2

π

1

sinh
2 r

L
2(ρ0, ρτ ).

1

sinh
2 r

= 8 cosh
2 r (�ϕ)2CRB.

(�ϕ)ML = 2

π
(8 cosh2 r (�ϕ)2CRB)L

2(ρ0, ρτ ) �
π

2
(8 cosh2 r (�ϕ)2CRB).
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On the other hand, for the squeezed vacuum, we have the Mandel Q parameter such that

Thus, the lower bound of (�ϕ)CRB can be expressed in terms of (�ϕ)ML as

Data availability
The data for the simulation results of the present study are available from the corresponding author upon a 
reasonable request.
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