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Adaptive filtering and smoothing 
algorithm based on variable 
structure interactive multiple 
model
Kai‑Yu Hu 1,2*, Jiaming Wang 1, Yuqing Cheng 1 & Chunxia Yang 1

For maneuvering target tracking, a novel adaptive variable structure interactive multiple model 
filtering and smoothing (AVSIMMFS) algorithm is proposed in this paper. Firstly, an accurate model of 
the variable structure interactive multiple model algorithm is established. Secondly, by constructing 
a new model subset based on the original model subsets, the matching accuracy between the model 
subset and the actual maneuvering mode of the target is improved. Then, the AVSIMMFS algorithm 
is obtained by smoothing the filtered data of the new model subset. Because of the combination of 
forward filtering and backward smoothing, the target tracking accuracy is further improved. Finally, 
in order to verify the effectiveness of the algorithm, the simulation is carried out on two cases. The 
simulation results show that the tracking performance of AVSIMMFS algorithm is better than other 
methods and has lower calculation cost.

In the past few years, filters have been extensively employed in target tracking, parameter estimation, and state 
 prediction1–6. When the target maneuvering is extremely complicated and the filtering model does not align 
with the target maneuvering model, the accuracy of the filtering methods based on a single model will signifi-
cantly decrease. To address this problem, the interactive multiple model (IMM) algorithm exhibits superior 
 performance7–9.

The IMM algorithm has received a great deal of attention in recent years, scholars have continuously devel-
oped and improved it in different aspects.  In10, an IMM algorithm was designed based on the Constant Velocity 
(CV) and Current Statistics (CS) models, in which the average velocity of the CS model was first estimated by 
the least square method, and then the CS model was applied to the IMM algorithm, which improved the model 
accuracy.  In11, IMM algorithm had been improved in many aspects, including the adoption of improved Kalman 
filter as a sub-filter, and an entropy-based model probability update formula. An alternative method to IMM 
had been proposed  in8,12, the models in the model set were all composed of Constant accelerated (CA) models, 
which reduces the complexity of the model set. On the basis of this alternative method,  the13 proposed an adap-
tive IMM algorithm, which firstly used the filter to estimate the acceleration of the target, and then selected the 
value near the estimated acceleration to build the model set, this method could reduce the number of models 
in the model set and improved the model accuracy while reducing the computational cost.  In14, a second-order 
IMM algorithm was proposed based on the second-order Markov chain, which further improved the filtering 
accuracy due to the use of more prior information. Since the type and quantity of models in the model set of the 
above-mentioned IMM are unchanged, it is also called a Fixed Structure IMM (FSIMM)15.

In order to avoid accuracy errors due to model mismatch, when using the IMM algorithm, as many models 
as possible should be used to cover the target maneuvering model. However, it is worth noting that too many 
models in a single model set will also reduce the filtering  accuracy16,17. To overcome this defect, a variety of Vari-
able Structure IMM (VSIMM) algorithms have been presented. After continuous development and improvement, 
VSIMM can be divided into four types: Model-Group-Switching (MGS), Likely-Mode-Set (LMS), Expected-
Mode-Augmentation (EMA) and Adaptive Grid (AG)15,18,19. Among them, MGS divides the model set into model 
subsets, only one model subset is selected for estimation at a time, and the switching between model subsets 
is selected according to the transition probability of model  subsets20. The LMS divides the models into three 
types at each moment: impossible, important, and dominant models, and the model subset used for estimation 
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at each moment consists of dominant and near-dominant  models21,22. Similar to MGS, two typical estimators 
divide a large model set into small model subsets, then calculates the probabilities of all model subsets at the 
next moment, and selects the model subset with the highest probability for  estimation23. Combined with graph 
theory, the AG algorithm forms a grid of all models, and uses prior information and current data to get a local 
refined grid, which forms a candidate model subset, and then selects models according to some rules to form a 
model subset for estimation at the next  moment24.

It is worth noting that the above-mentioned EMA algorithm approximates the formula when calculating 
the likelihood function and model subset probability. To solve this problem, a normal VSIMM algorithm with 
accurate mathematical model is designed in this paper. In addition, considering that when EMA divides a 
large model set into small model subsets, in order to reduce the computational cost, although all model subsets 
include all models, they are not all permutations and combinations. Therefore, in order to ensure that there is 
a model subset that can best match the target maneuver mode in all model subsets, on the basis of the existing 
model subset, a new model subset is constructed according to the rules, thus obtaining the adaptive VSIMM 
(AVSIMM) algorithm. Because the model in the new model subset may match the target maneuver model better, 
the target tracking accuracy can be improved. Finally, based on the forward AVSIMM estimation, the data are 
further smoothed backward, so we get an AVSIMM Filtering and Smoothing (AVSIMMFS) algorithm, which 
can further improve the tracking accuracy. The main contributions of this study can be summarized as follows:

(1) A model of normal VSIMM algorithm is established and applied in the design of filter, it has obvious effect 
on eliminating fast random clutter. The variable structure accurate model in the algorithm avoids EMA’s 
model approximation error and makes the subsequent filtering smooth more accurate.

(2) Based on the VSIMM algorithm, the AVSIMM algorithm is presented and improves the matching degree 
between the model subset and the target maneuvering model, thus improving the tracking accuracy. The 
calculation time is greatly reduced by extracting the existing high probability models to form a new model 
subset and matching them directly.

(3) The adaptive variable structure smoothing ensures that the peak buffeting of the tracking signal is elimi-
nated when the target frequently switches flight modes, making the multi-target characteristics of the 
AVSIMMFS scheme more adaptive than the existing algorithms.

The rest of the paper is organized as follows. In Section “The IMM filtering and IMM smoothing algorithm”, 
the filtering and smoothing problems are described, and the mathematical models of the IMM filtering algorithm 
and the IMM smoothing algorithm are given. In Section “The AVSIMMFS algorithm”, the AVSIMMFS algorithm 
is designed based on normal VSIMM, including forward filtering and backward smoothing. The numerical 
simulation results are shown in Section “Simulation and discussion”. Eventually, the conclusion is summarized 
in Section “Conclusion”.

The IMM filtering and IMM smoothing algorithm
Filtering and smoothing problems. Assuming that the target may have r motion models, the model set 
is denoted as � =

{

M1, ...,Mr
}

 , and the transition probability matrix between the models is:

where, pij(1 ≤ i ≤ r, 1 ≤ j ≤ r) is the transition probability from model i to model j.
The state equation for the discretization of the system is as follows:

where, xjk is the state vector of the system, Fjk is the state transition matrix of the model j , wj
k−1 is Gaussian white 

noise with mean 0, and its covariance matrix is Qj
k−1.

The measurement equation of model j is:

where, zk is the measurement vector, Hj
k is the measurement matrix of model j , vjk is Gaussian white noise with 

mean 0, and its covariance matrix is Rj
k.

Based on the above state equation, measurement equation and Bayesian theory, the IMM filtering algorithm 
estimates the system state xk at time k according to the measurement set Zk = {z1, ..., zk} and the model set � . The 
purpose of smoothing is to estimate the system state x̂t|k at the time t  according to all the current observations 
Zk = {z1, z2, ..., zk} , where 1 ≤ t ≤ k − 1 . Combining forward IMM filtering and backward IMM smoothing, the 
IMM Filtering and Smoothing algorithm (IMMFS) can be obtained.

Forward IMM filtering. The forward IMM filtering algorithm is described in Fig. 1, which can be divided 
into the following four  steps7,8:
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A_Step1: forward interaction. 

where, x̂ojk−1|k−1 and Pojk−1|k−1 are the mixed state estimation of model j and the corresponding covariance matrix, 

respectively, x̂ik−1|k−1 and Pik−1|k−1 are the Kalman estimate of model i and the corresponding covariance matrix, 

and uijk−1|k−1 is the mixing probability, and its calculation formula is:

where, uik−1 is the probability of model i , and the predicted probability cjk =
∑r

i=1 p
ijuik−1 is the normalization 

factor.

A_Step2: Kalman filtering. For each model, Kalman filtering is performed according to the following formulas:
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Figure 1.  The forward IMM filtering algorithm.
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A_Step3: model probability update. The probability of model j at time k is:

where, �j
k obeys the Gaussian distribution, and its calculation formula is:

where,

A_Step4: output. The state estimate and covariance of the forward IMM filtering algorithm are:

Backward IMM smoothing. On the basis of the forward IMM filtering, the data is further smoothed to 
obtain the backward IMM smoothing algorithm. The block diagram of the IMM smoothing algorithm is shown 
in Fig. 2, including the following  steps25:

B_step1: backward interaction. The backward state interaction and corresponding covariance are:
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Figure 2.  The backward IMM smoothing algorithm.
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where, ui|jt+1|k is the backward mixing probability, and its calculation formula is:

where, dj =
∑N

l=1 blju
l
t+1|k is the normalization factor, bij is the backward model transition probability, and its 

calculation formula is:

where, ei =
∑N

l=1 pliu
l
t|t is the normalization factor.

B_Step2: Kalman  smoothing26. The smoothing value and the corresponding covariance are:

where, Aj
t|k = P

j
t|tF

jT
t (P

oj
t+1|k)

−1.

B_step3: model probability update. The model probability calculation formula after smoothing is:

B_step4: output. The state estimate and covariance of the backward IMM smoothing algorithm are:

The AVSIMMFS algorithm
The normal VSIMM algorithm. In order to avoid too many models in the model set and reduce model 
errors, the normal VSIMM algorithm is designed in this section. The normal VSIMM filtering algorithm 
includes multiple model subsets, each model subset is independently used in parallel, and the estimation result 
of the model subset with the highest probability is selected as the final estimated state output. The block diagram 
of the normal VSIMM algorithm is shown in Fig. 3, which includes the following steps:

C_step1: parallel independent IMM filtering. For different model subsets, run the IMM algorithm indepen-
dently to obtain the estimated state value x̂k|k(n) and the corresponding covariance Pk|k(n) , and to obtain the 
model probability uik(n) , likelihood function �i

k(n) and predicted probability cik(n) in each model subset, where 
n is the number of the model subset, 1 ≤ n ≤ N , i is the number of the models in the model subset.

C_step2: calculation of the likelihood function for model subsets. 

where, �k(n) represents the nth model subset, �i
k(n) is calculated by A_Step3, and cik(n) is calculated by A_Step1. 

Let Ck(n) = p( zk|Z
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C_step3: calculation of probabilities for model subsets. Denote the model subset probability p(�k(m)|Zk) = κk(n) , 
then we have:

where, p( zk|Zk−1,�k(n)) has been calculated in C_step2, the denominator is the normalization factor, and 
p(�k(n)|Z

k−1) according to the full probability formula is:

where κk−1(m) = p(�k−1(m)|Zk−1) is the model subset probability at the previous moment. Applying the 
Markov property, it can be obtained that the model subset transition probability is independent of the observed 
value, namely:

C_step4: output. The IMM estimation result of the model subset with the largest probability is selected as the 
final state estimation output. Firstly, the number of the model subset with the highest probability is calculated 
as follows:

Thus, the final state estimation and corresponding covariance can be obtained as follows:

The AVSIMM algorithm. Assuming that the number of models in the model subset in the normal VSIMM 
algorithm is L , so CL

r  model subsets can be obtained by permutation and combination. However, in order to 
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Figure 3.  The NVSIMM algorithm.
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reduce the computational cost, only r − 1 model subsets are usually constructed to cover all models (denoted as 
the original model subset). These r − 1 model subsets may not be the model subsets that best match the target 
maneuvering model. Therefore, in order to ensure that the calculation amount is not excessively increased, and 
to improve the matching degree between the model subsets and the target actual maneuvering model, a new 
model subset is constructed based on all the original model subsets, so we get the AVSIMM algorithm. The 
AVSIMM algorithm consists of the following steps:

D_step1: parallel independent IMM filtering. Operate on all original model subsets in the same way as C_step1.

D_step2: calculation of the likelihood function for model subsets. Operate on all original model subsets in the 
same way as C_step2.

D_step3: calculation of probabilities for model subsets. Operate on all original model subsets in the same way 
as C_step3.

D_step4: build a new model subset. Find the L model subsets with the highest probability according to the fol-
lowing formula:

where, the symbol maxL is used to find the model subsets with the 1st, 2nd, …, Lth largest probability according 
to the set 

{

p(�k+1(1)|Z
k), . . . , p(�k+1(N)|Zk)

}

 , which means p(�k+1(mL)|Z
k) ≤ · · · ≤ p(�k+1(m1)|Z

k) . Then, 
the model with the highest probability is selected from each model subset to form a new model subset. If the 
new model subset has the same model, or is the same as the original model subset, skip to D_step8; otherwise, 
continue to the next step.

D_step5: parallel independent IMM filtering. Operate on all original model subsets and new model subset in 
the same way as C_step1, the sum of the number of original model subsets and new model subsets is denoted 
by N ′ = N + L.

D_step6: calculation of the likelihood function for model subsets. Operate on all original model subsets and new 
model subset in the same way as C_step2.

D_step7: calculation of probabilities for model subsets. Operate on all original model subsets and new model 
subset in the same way as C_step3.

D_step8: output. The procedure for this step is the same as C_step4.

(34)
{

�k+1(m1), · · · ,�k+1(mL)
}

= maxL
{

p(�k+1(1)|Z
k), · · · , p(�k+1(N)|Zk)

}

Figure 4.  Backward smoothing process.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12993  | https://doi.org/10.1038/s41598-023-39075-9

www.nature.com/scientificreports/

The AVSIMMFS algorithm. In this section, the AVSIMMFS algorithm can be obtained by further back-
ward smoothing for the data obtained by forward AVSIMM filtering. The smoothing process is shown in Fig. 4, 
including the following steps:

E_step1: parallel independent IMM smoothing. N ′ original model subsets and new model subsets are operated 
independently, and the backward IMM smoothing algorithm was run respectively to obtain the smoothing esti-
mate x̂t|k(n) and the corresponding covariance matrix Pt|k(n).

E_step2: Calculation of the likelihood function for model subsets. Applying the full probability formula and the 
Markov property, the likelihood function of the model subset can be obtained as:

where, p( zk|Zk−1,�k(m)) is the likelihood function of the model subset in the forward NVSIMM filtering pro-
cess. Applying the full probability formula and the Markov property, p(�k(m)|�t(n)) can be transformed into:

where, p(�t+1(nt+1)|�t(n)), ..., p(�k(m)|�k−1(nk−1)) is the transition probability of the model subset, which 
has been calculated in C_step3, and the model subset transition probability p(�k(m)|�k−1(nk−1) is denoted 
by Pm|nk−1

k|k−1  , then formula (36) becomes:

Denote p( zk|Zk−1,�t(n)) as Cs
t (n) , then Eq. (35) becomes:

E_step3: calculation of probabilities for model subsets. According to Bayes theorem, the model subset probabil-
ity can be obtained as:

where, p(�t(n)|Z
k−1) has been calculated in the smoothing process at the previous moment and is a known 

value. p( zk|Zk−1,�t(n)) is obtained in E_step2. Denoting p(�t(n)|Z
k) as κ st|k(n) , Eq. (39) can be transformed 

into:

E_step4: output. The model subset number with the highest probability is:
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The state estimate and the corresponding covariance of AVSIMMFS are:

It is worth noting that applying the smoothing process to normal VSIMM, the normal VSIMM filtering 
and smoothing algorithm can also be obtained. In the normal VSIMM filtering and smoothing algorithm, the 
smoothing process only operates on the N  original model subsets; in AVSIMMFS algorithm, the smoothing 
process needs to operate on the N ′ original model subsets and the new model subsets.

With the development of semiconductor technology, the computing speed of multi-core heterogeneous chips 
on aircraft will become faster and  faster27–29. Through the distributed computing technology of the on-board 
computer, different algorithms can be injected into different chip cores or kernel computing units, and then 
parallel computing. Therefore, complex algorithm is naturally fast. Based on the advanced hardware resources, 
we complete the design process in steps: Step 1: forward IMM and a backward IMM. Step 2: a model of normal 
VSIMM algorithm is established and applied. Step 3: based on the VSIMM algorithm, the AVSIMM algorithm 
is presented and improved the matching degree between the model subset and the target model. When we have 
completed the first step of IMM, we first conduct validity verification experiment, rather than rushing to design 
Step 2. Under the condition of clear verification criteria, the Step 1 of successful verification is used to design the 
VSIMM in Step 2: the process of connecting multiple IMM combinations in parallel and calculating the largest 
possible subset. The Step 2 of the design also needs to be verified first rather than rushed into the third step of 
the content. Similarly, the Step 2 of verifying success is used as the basis for completing the Step 3, which adds 
D_step4 to the Step 2. This improvement avoids a lot of repeated calculation of multiple subsets, and only needs 
to calculate each subset once and get a new subset, then use the new subset to perform filtering and smoothing 
task, which theoretically ensures the rapidity of the algorithm. Finally, the experiment is verified again to ensure 
the whole scheme feasibility. By independently verifying/designing each step, adding D_step4, this study ensures 
the complexity, feasibility and fast real-time of the algorithm scheme from both experimental and method design.

Simulation and discussion. In order to verify the effectiveness of AVSIMMFS, this section first analyzes 
three cases. The first and third cases are simulation data, and the second case is real data. Suppose the target 
maneuvers in a two-dimensional plane.

In the first case, the initial position, velocity and acceleration of the target are (300 m, 100 m), (5 m/s, 0) and 
(0, 0), respectively. The maneuvering parameters of the target are as follows:

(1) CV motion in 20 s.
(2) CT motion in 20 s, the turning angle rate is 0.157 rad/s.
(3) CA motion in 10 s, its acceleration is (− 2 m/s2, 0 m/s2).
(4) CT motion in 10 s, the turning angle rate is 0.157 rad/s.

In the second case, the initial position, velocity and acceleration of the target are (30 km, 40 km), (300 m/s, 
0), (0, 0), respectively. The maneuvering parameters of the target are as follows:

(1) Singer  motion30 in 30 s, its acceleration is (− 20 m/s2, − 20 m/s2), maneuvering constant α = 1/60.
(2) Both CV motions in 30 s.
(3) CA motion in 30 s, its acceleration is (20 m/s, 10).

(41)nsm = max
n

{κ st|k(n)}

(42)x̂t|k = x̂t|k(n
s
m)

(43)Pt|k = Pt|k(n
s
m)

Figure 5.  The target trajectories in two cases.
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(4) CT motion in 30 s, the turning angle rate is 0.2 rad/s.

In the two cases, the target’s trajectory is shown in Fig. 5.
The performance of IMM, normal VSIMM, AVSIMM and AVSIMMFS is analyzed and compared by Monte 

Carlo method. For the first and second cases, the model set of all algorithms is {CV,CA, CT} , normal VSIMM, 
AVSIMM and AVSIMMFS algorithms include two model subsets, {CV,CA} and {CV,CT} , respectively. For the 
second case, the model set of all algorithms is 

{

CV,CA, CT, Singer
}

 , normal VSIMM, AVSIMM and AVSIMMFS 
algorithms include three model subsets, {CV,CA} , {CV,CT} and 

{

CV, Singer
}

 . The model transition probability 
matrixes of three models and four models are:

In the first case and the third case, it is assumed that the standard deviations of the system process noise 
and the measurement noise are 1 m/s2 and 50 m, respectively. The values of the covariance Qj

k−1 are between 0 
and 0.03. It is randomly designed and calculated without affecting the result. The measured data of the second 
case are obtained by GPS measurement. The simulation results are shown in Figs. 6, 7, 8, 9, 10, 11, 12, and 13.

Figure 6 shows the model probability curve in the IMM algorithm. For these two cases, the model correspond-
ing to the curve with the highest probability is the same as the target actual maneuvering model. Figure 7 shows 
the probability curve of model subsets in normal VSIMM, in which the model subset with the largest model 
probability always includes the model that matches the actual maneuvering model of the target.

It can be seen from Fig. 8 that the model subset probability curve in AVSIMM is roughly the same as that in 
Fig. 7, and the main difference between AVSIMM and normal VSIMM lies in the AVSIMM algorithm builds a 
new model subset. From Fig. 8a, it can be seen that AVSIMM constructs a new model subset {CA,CT} when the 
target performs CT maneuver around 50–60 s. It can be seen from Fig. 8b that a new model subset 

{

CA, Singer
}

 
is constructed when the target performs Singer maneuver in 0–30 s and CA maneuver in 60–90 s. For all of the 
above cases, the probability of the newly constructed model subset is greater than that of the original model 

P3 =

�

0.95 0.025 0.025
0.025 0.95 0.025
0.025 0.025 0.95

�

, P4 =







0.94 0.02 0.02 0.02
0.02 0.94 0.02 0.02
0.02 0.02 0.94 0.02
0.02 0.02 0.02 0.94







Figure 6.  Model probability in IMM algorithm.

Figure 7.  Model subset probability in normal VSIMM algorithm.
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subset, because the newly constructed model subset matches the target actual maneuvering model more closely. 
However, for the third case, when the target performs CT maneuver around 120–150 s, a new model subset 
{CA,CT} is constructed. At this time, the probability of the new model subset {CA,CT} is less than the probability 
of the original model subset {CV,CT} , so the estimation of the new model subset will not be the final estimation 
of the AVSIMM algorithm. Figure 9 depicts the moment when the new model subset is constructed. Analyzing 
this figure leads to the same conclusion as Fig. 8.

As can be seen from Fig. 10, IMM, normal VSIMM, AVSIMM and AVSIMMFS all have good target tracking 
capabilities, and the differences among them are reflected in Figs. 11, 12, and 13.

Even considering only the results of Fig. 10b, Table 1 still shows the difference in experimental results. In fact, 
due to the larger scale, the true errors are even larger than that of Fig. 10a. Table 1 is as follows:

Figure 8.  Model subset probability in AVSIMM algorithm.

Figure 9.  Whether a new model subset CAVT is built in AVSIMM.

Figure 10.  Target trajectory tracking effect.
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In Table 1,  eav and  emax are the average error and maximum error respectively. It can be seen from the table that 
the error differentiation in different algorithm design stages in Fig. 10 indicates that the AVSIMMFS designed at 
last has the best performance based on the previous design. This ensures that the readers can distinguish between 
the filtering and smoothing capabilities in Fig. 10.

Figures 11, 12, and 13 shows the RMSE of different algorithms for target position tracking. From Fig. 11, it can 
be seen that the RMSE of normal VSIMM and AVSIMM is smaller than that of IMM, and only for a short time 
when the target maneuver mode is changed, the performance of normal VSIMM and AVSIMM will decrease. 
The performance of normal VSIMM and AVSIMM is very close. Main difference between the two is in the time 

Figure 11.  Root mean square error (RMSE) of position tracking.

Figure 12.  RMSE of position for IMMFS, normal VSIMMFS and AVSIMMFS.

Figure 13.  RMSE of position for AVSIMM and AVSIMMFS.
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period when the new model subset is built. As can be seen from the enlarged area in Fig. 11, the performance 
of AVSIMM is slightly better than that of normal VSIMM, because the new constructed model subset better 
matches the actual maneuvering model of the target. ‘NVSIMM’ means normal VSIMM.

Figure 12 compares the tracking performance of IMMFS, normal VSIMMFS and AVSIMMFS. It can be seen 
from the figure that the RMSE of AVSIMMFS and normal VSIMMFS for target tracking is less than the RMSE of 
IMMFS. Similar to the results in Fig. 11, the performance of AVSIMMFS and normal VSIMMFS is similar, but 
the main difference between them is that AVSIMMFS performs slightly better than normal VSIMMFS in the time 
period when the new model subset is built. Figure 13 analyzes and compares AVSIMM and AVSIMMFS. It can 
be seen from the figure that the RMSE of AVSIMMFS for position estimation is smaller than that of AVSIMM, 
so the AVSIMMFS has better performance.

To further demonstrate the superiority of AVSIMMFS algorithm. VSIMMFS is compared with Maneuver-
ing Target Tracking based on Deep Reinforcement Learning (MTTDRL)31, Particle Filter (PF), Particle Swarm 
Optimization algorithm-based PF (PSO-PF)32, Chaos PSO-PF (CPSO-PF)33,34. In order to ensure the validity 
of the comparison, the simulation parameters are designed according  to31,34, and the trajectories of the target is 
shown in Fig. 14. Figure 15 analyzes and compares the tracking performance of the above algorithm. It can be 

Table 1.  Comparative analysis of tracking errors in different algorithm design stages.

IMM NVSIMM AVSIMM AVSIMMFS

eav/m

 Case 1 5.7 1.4 0.83 0.42

 Case 2 49 17 13 3

emax/m

 Case 1 9.8 2.9 1.5 0.51

 Case 2 241 58 20 7

Figure 14.  Target trajectories.

Figure 15.  Performance comparison of algorithms.
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seen from Fig. 15a that the RMSE of AVSIMMFS is smaller than that of PF, PSO-PF and CPSO-PF. As can be seen 
from Fig. 15b, compared with MTTDRL algorithm, AVSIMMFS has smaller position deviation when tracking 
the target. In conclusion, AVSIMMFS has better tracking performance than other algorithms mentioned above.

The simulations of AVSIMMFS are implemented in a MATLAB environment, and the main configuration of 
the computer is 2.1 GHz CPU and 16 GByte RAM. When the smoothing interval is 150 steps, the time required 
for the smoothing process is about 0.06 s. Therefore, computers with better hardware performance will greatly 
improve the real-time performance of the algorithm. Under the same hardware configuration and smoothing 
step size, the computational cost comparison between the proposed algorithm and the existing algorithms is 
shown in Table 2. In terms of computation time and memory footprint, AVSIMMFS has the lowest computation 
cost: the memory footprint is in the median of existing algorithms, but the computation time is significantly less. 
Combined with the significant performance advantages, AVSIMMFS is clearly the best overall performance.

Conclusion
In order to improve the target tracking performance, an AVSIMMFS algorithm is presented in this paper. This 
method builds a new model subset on the basis of the original model subset, which can improve the matching 
degree between the model subset and the actual maneuvering model of the target without excessively increas-
ing the computational cost, so as to improve the tracking accuracy of the target. Finally, the filtering data of 
the AVSIMM algorithm is smoothed to obtain the AVSIMMFS algorithm, which further improves the target 
tracking accuracy. By using real data and simulation data to compare with IMM, normal VSIMM, AVSIMM, PF, 
PSO-PF, CPSO-PF and MTTDRL algorithms, AVSIMMFS has the best tracking performance. Compared with 
IMM and normal VSIMM, AVSIMMFS can construct a new model subset based on the original model subsets, 
which improves the matching accuracy of the model subset, thus improving the tracking accuracy. Due to the 
smoothing of the filtered data, the root mean square error of AVSIMMFS for position tracking is less than that 
of AVSIMM. In addition, compared with other types of filtering algorithms such as PF, PSO-PF, CPSO-PF and 
MTTDRL, AVSIMMFS also has the smallest tracking error. In terms of calculation cost, AVSIMMFS only needs 
about 0.06 s to obtain the results, showing good real-time performance.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due the Chinese 
military’s strictest secrecy policy on hypersonic missile technology. but are available from the corresponding 
author on reasonable request.
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