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Biomarkers of ulcerative colitis 
disease activity CXCL1, CYP2R1, 
LPCAT1, and NEU4 and their 
relationship to immune infiltrates
Aijing Huo 1,2 & Fengmei Wang 2,3*

The diagnosis and assessment of ulcerative colitis (UC) poses significant challenges, which may result 
in inadequate treatment and a poor prognosis for patients. This study aims to identify potential 
activity biomarkers for UC and investigate the role of infiltrating immune cells in the disease. To 
perform gene set enrichment analysis, we utilized the cluster profiler and ggplot2 packages. Kyoto 
encyclopedia of genes and genomes was used to analyze degenerate enrichment genes. Significant 
gene set enrichment was determined using the cluster profiler and ggplot2 packages. Additionally, 
quantitative PCR (qRT-PCR) was employed to validate the expression of each marker in the ulcerative 
colitis model. We identified 651 differentially expressed genes (DEGs) and further investigated 
potential UC activity biomarkers. Our analysis revealed that CXCL1 (AUC = 0.710), CYP2R1 
(AUC = 0.863), LPCAT1 (AUC = 0.783), and NEU4 (AUC = 0.833) were promising activity markers for 
the diagnosis of UC. Using rat DSS model, we validated these markers through qRT-PCR, which 
showed statistically significant differences between UC and normal colon mucosa. Infiltrating 
immune cell analysis indicated that M1 macrophages, M2 macrophages, activated dendritic cells 
(DCs), and neutrophils played crucial roles in the occurrence and progression of UC. Moreover, 
the activity markers exhibited varying degrees of correlation with activated memory CD4 T cells, M0 
macrophages, T follicular helper cells, memory B cells, and activated DCs. The potential diagnostic 
genes for UC activity, such as CXCL1, CYP2R1, LPCAT1, and NEU4, as well as the infiltration of 
immune cells, may contribute to the pathogenesis and progression of UC.

Ulcerative colitis (UC) is classified as an inflammatory bowel disease (IBD)1. In patients with UC, the cumulative 
inflammatory burden is strongly associated with the risk of colorectal  neoplasia2. Given its autoimmune nature, 
UC is known to be influenced by immune  factors3.

Recent studies have suggested that immune cell infiltration plays a significant role in the development of 
ulcerative colitis. Alterations in M1/M2 macrophages can impact various inflammatory reactions, leading to 
persistent inflammation in and around the necrotic area of the  colon4. Activation of dendritic cells (DCs) and 
neutrophils has also been linked to an increased incidence of  colitis5,6.

Several immune-related factors have been linked to ulcerative colitis, including increases in colonic regulatory 
T cells with enhanced expression of the transcription factor ZEB2, increased IgG1 plasma cells, and enrichment 
of gamma-T cell subpopulations in peripheral  blood7. Moreover, different phases of development of CD8 tissue 
resident memory T (T.RM) cells in the colon tissue have been associated with the potential development of UC. 
The interleukin (IL)- 23/IL-17 axis has also been shown to play a significant role in the pathogenesis of UC by 
promoting Th17 cells and cytokine-related immunological  responses8.

Assessing the degree of immune cell infiltration and differentiation of infiltrating immune cells is crucial for 
developing new immunotherapeutic targets and understanding the molecular pathology of UC. The CIBER-
SORT algorithm, based on gene expression, can be used to identify immune cells and pathways. Previous studies 
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have demonstrated the combination of GEO and CIBERSORT in a variety of complex diseases such as  sepsis9, 
 osteoarthritis10 and steroid-induced osteonecrosis of the femoral  head11. Additionally, single sample gene set 
enrichment analysis (ssGSEA) can be employed to identify significant immune cells and  pathways12. The immune 
system and inflammation play significant roles in numerous disease  processes13. However, few studies have uti-
lized both CIBERSORT and ssGSEA to evaluate immune cell infiltration in UC and its potential clinical value.

In this study, we utilized machine learning algorithms and various bioinformatics approaches to identify 
microarray-based diagnostics of UC downloaded from the gene expression omnibus (GEO) database (http:// 
www. ncbi. nlm. nih. gov/ geo/). Furthermore, we employed CIBERSORT and ssGSEA to compare 22 immune cell 
subsets infiltrating normal and ulcerative colitis tissues. Our objective was to gain a deeper understanding of 
the underlying molecular immunological mechanisms involved in UC development and to determine whether 
immune cell infiltration and activity biomarkers are correlated.

Materials and methods
Data collection. We conducted a search for datasets related to “ulcerative colitis” in the GEO database 1 
using the search terms “Homo sapiens” and “Expression profiling by array”. Microarray datasets containing 
human peripheral serum gene expression profiles were selected, which included both normal and UC colon 
mucosa. We selected GSE48634, GSE107499, and GSE179285 for further investigation. All colon mucosa sam-
ples included in our analysis had a diagnosis of UC and were collected from mucosal biopsies (n = 368) located 
15–20 cm from the anal verge under endoscopic screening. Crohn’s disease samples were excluded from our 
analysis. Finally, we used GSE92415 for subsequent analysis of 162 UC samples and 21 healthy controls. The 
healthy controls were recruited during the clinical trial and showed no macroscopic evidence of mucosal pathol-
ogy.

Data. DEGs preprocessing and identification. To preprocess the initial data, we utilized the robust multiar-
ray averaging (RMA) method with the “affy” package’s background correction and normalization  procedure14. 
Subsequently, the limma package was employed in R software to identify differentially expressed genes (DEGs) 
between UC and healthy controls (HCs)15. The P values were adjusted using the Benjamini and Hochberg test, 
and the significance was determined using a cut off criteria of P < 0.05 and |log2FC| > 1.

Functional correlation analysis. To perform functional annotation of the DEGs, we conducted gene ontology 
(GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses using the R packages “cluster 
Profiler” and “ggplot2”. For KEGG pathway analysis, the degenerate enrichment genes were analyzed using the 
KEGG  package16–18. Moreover, we utilized the “cluster Profiler” and “ggplot2” packages to perform gene set 
enrichment analysis (GSEA) on the gene expression matrix with a significance threshold of P < 0.05.

Diagnostic screening and verification. Markers. To screen diagnostic biomarkers for UC  activity, 
we used logistic regression with the least absolute shrinkage and selection operator (LASSO)19, support vector 
machine-recursive feature elimination (SVM-RFE)20, and random forests (RF)21. We implemented the LASSO 
method using the “glmnet”  package22, while SVM-RFE, a support vector machine-based machine learning tech-
nique, was used to identify the most advantageous variables by eliminating eigenvectors produced by SVMs. The 
SVM function included in the R-software e1071 package was utilized to implement the SVM  model23. For the 
random forest (RF) technique, randomized algorithm techniques were used to increase accuracy from a large 
number of pertinent decision trees from a single training set of trees while reducing the overfitting of a single de-
cision  tree24. These three classification model algorithm genes were retrieved and used for further investigation. 
We tested CXCL1, CYP2R1, LPCAT1, and NEU4 in-depth for their diagnostic abilities using receiver operating 
characteristic (ROC) curves in Med Calc software. The area under the curve (AUC) was calculated as the critical 
diagnosis-related index, and a P < 0.05 demonstrated statistical significance.

Analysis of quantitative PCR. To validate the prediction results further, we performed quantitative reverse tran-
scription PCR (qRT-PCR) to investigate the expression of the four activity markers that were found to be linked 
to abnormal expression in the colon of dextran sulfate sodium (DSS) rats.

SPF-grade male Sprague–Dawley (SD) rats (230–280 g, 6–8 weeks of age, Beijing Huafukang) were cultured 
in the animal laboratory of Nankai Hospital in Tianjin. Rats were kept in a research environment under the 
following guidelines: They had seven days to get used to the conditions—25 °C ± 3 °C, 53 ± 3% humidity, a 
12-h light/dark cycle—while having unrestricted access to food and water. The DSS-induced UC model has 
immunological characteristics similar to those of human  UC25,26. Since DSS-induced murine models display 
patho-morphological changes similar to human ulcerative colitis, they have often been used in experimental 
 studies27,28. 24 rats were randomly divided into two groups: 15 rats were DSS colitis models (DSS group) and 9 rats 
were controls (HC group). DSS model was made with reference to previous  experiments29. 3% (wt/vol) dextran 
sulfate sodium (D808272, DSS, macklin, China) was added to the drinking water of DSS group for 12 weeks. 
SD rats were deeply anesthetized by sodium pentobarbital and colon specimens were isolated and immediately 
snap-frozen in liquid nitrogen. All tissues were stored at − 80 °C until analysis. This study was approved by the 
Animal Care and Ethics Committee of Tianjin Nankai Hospital (SYXK2020-0008) for animal experiments, which 
was developed based on the Helsinki convention for the use and care of animals and reported in consent with the 
ARRIVE guidelines. All efforts were made to minimize animal suffering and reduce the number of animals used.

RNA extraction was performed on all samples using TRIzol reagent (TAKARA, Dalian, China). Subse-
quently, cDNA was synthesized using a cDNA reverse transcription kit (Applied Biosystems) and amplified 
with a SYBR Green PCR kit (Qiagen Germany). The internal reference GAPDH was used to normalize the data. 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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The amplification reaction was carried out in 20 μl volumes under the following conditions: initial denaturation 
(95 °C, 2 min), followed by 40 cycles of denaturation (95 °C, 30 s), annealing (58 °C, 30 s), extension (72 °C, 30 s), 
and a final cooling step (40 °C, 30 s). The 2-ΔΔCt method was used to calculate the relative mRNA expression. 
The primers used in the reverse transcription PCR are listed in Table 1.

Evaluation of immune cell infiltration. We utilized  CIBERSORT30 and ssGSEA  scores31 to transform 
the gene expression matrix into an immune cell matrix and integrated it with the composition and percentages 
of the immune cell matrix. The immune cell matrix was generated by employing the gene expression matrix and 
the immune cell composition and percentages, and samples with a P value of less than 0.05 underwent filtra-
tion to obtain the immune cell matrix. Subsequently, we performed PCA clustering analysis on the immune 
cell infiltration matrix data using the “ggplot2” software, which enabled us to create a 2D PCA clustering map. 
The use of principal component analysis (PCA) as a multidimensional scaling method is widely  accepted32. 
PCA was applied to identify the underlying causes of the correlation pattern within a set of observed variables 
in the normal and UC groups. We created a correlation heatmap using the R package “corrplot” to display the 
connections between the 22 different types of immune cells associated with  infiltration33. Heatmap diagrams 
were constructed using the “ggplot2” software to visualize the differences in immune cell infiltration. Statistical 
significance was defined as P values < 0.05.

Identification of genes and intration-related immune cells. The relationship between the quantity 
of infiltration-related immune cells and the identified gene biological indicators was evaluated through Spear-
man’s rank correlation analysis using the R programming language. The “ggplot2” package was utilized to create 
visual representations of the correlations. A P value of less than 0.05 was considered statistically significant.

Results
Identifying DEGs and preprocessing data. Figure 1 shows the workflow used in this study. Firstly, the 
differentially expressed genes (DEGs) were identified from the gene expression matrix using R software. A total 
of 651 DEGs were extracted, of which 135 were downregulated and 78 were upregulated (Supplementary List 1). 
Figure 2A and B provide a volcano plot and heatmap, respectively, displaying the distribution of DEGs.

Functional enrichment analyses. The differentially expressed genes (DEGs) identified in this study were 
further analyzed using gene ontology (GO) analysis to identify their biological functions. The results showed that 
the DEGs were mainly associated with fatty acid metabolism, lipid catabolic processes, glycerolipid metabolic 
processes, and phospholipid metabolic processes that were involved in the immune response (Fig. 3A). Addi-
tionally, the DEGs were enriched in 10 pathways according to KEGG pathway analysis (Fig. 3B). The gene set 
enrichment analysis (GSEA) demonstrated that the normal group was primarily enriched in butanoate metabo-
lism and peroxisome pathways, while the main pathways enriched in the UC group were related to chemokine 
signaling, cytokine receptor interactions, signaling in helicobacter pylori infection, leishmania infection, and 
NOD-like receptor signaling (Fig. 3C,D). These findings were confirmed by KEGG pathway analysis.

Identifying and verifying activity biomarkers. The present study utilized various bioinformatics 
tools to identify potential diagnostic markers for ulcerative colitis (UC) based on the analysis of differentially 
expressed genes (DEGs) (Fig. 4A). Gene ontology (GO) and KEGG pathway analyses revealed that the DEGs 
were mainly associated with lipid metabolic processes and immune responses. Using LASSO logistic regression, 
SVM-RFE, and RF algorithms, 25, 31, and 9 DEGs, respectively, were identified as possible diagnostic activity 
markers for UC (Fig. 4B–D).

Four diagnostic markers were ultimately selected based on the overlapping marker genes obtained from the 
three algorithms (Fig. 5A). The accuracy of the four diagnostic markers was verified using test samples, and 
their high diagnostic value was confirmed through the analysis of ROC curves. To validate the results from the 
training cohort, a test cohort consisting of different samples was generated, and the diagnostic markers’ utility 

Table 1.  List of RT–PCR primer sequences.

Target genes Sequence

CXCL1-RAT-qF ACC GAA GTC ATA GCC ACA CT

CXCL1-RAT-qR GGG ACA CCC TTT AGC ATC TT

CYP2R1-RAT-qF GAG CGA TTT CTG GAC AGC AG

CYP2R1-RAT-qR AGT TCG TGT GGG AAA TGC AA

LPCAT1-RAT-qF GCA TCC TCA AGA CTG CAC TG

LPCAT1-RAT-qR CTC TGC GAA GTC AGG GTA CA

NEU4-RAT-qF TTT GCC TGC CTG TTT GAG AG

NEU4-RAT-qR AGC CAG TGG GTA CAT TCT CC

GAPDH-RAT-qF CAA GGC TGA GAA TGG GAA GC

GAPDH-RAT-qR GAA GAC GCC AGT AGA CTC CA
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was again demonstrated. These findings suggest that the four diagnostic markers (CXCL1, CYP2R1, LPCAT1, 
and NEU4) have the potential to be useful in diagnosing UC activity. Moreover, qRT-PCR results further sup-
port the differential expression of these markers in UC tissues. The diagnostic potential of CXCL1, CYP2R1, 
LPCAT1, and NEU4 expression as determined by the ROC curves was further confirmed in the test cohort, with 
the calculated AUC values of 0.962, 0.806, 0.980, and 0.905, respectively (Fig. 5B–E).

The mRNA expression levels of these diagnostic markers were assessed using qRT-PCR, as illustrated in 
Fig. 5F–I. In total, 15 colon tissues and 9 UC tissues were obtained, and a DSS colitis model was established 
according to previously reported  methods29. Statistical significance was detected for all four diagnostic markers 
(P < 0.05). Notably, NEU4 and CYP2R1 were downregulated in the UC group compared to the HC group, while 

Figure 1.  Process flow diagram for the analysis.

Figure 2.  Data preprocessing and DEG screening. (A) A volcano map of differentially expressed genes shows 
that red genes are upregulated, black genes are not significantly different, and blue genes are downregulated. (B) 
PCA 3D plot, differentially expressed genes between the HC and UC groups; red represents the HC group, and 
blue represents the UC group.
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CXCL1 and LPCTA1 exhibited higher levels in the UC group than in HC participants. These results indicate the 
potential clinical value of the identified diagnostic markers in UC detection and management.

Infiltration of immune cells. The levels of infiltrating immune cells in UC and normal tissues were 
assessed using two different methods, CIBERSORT and ssGSEA, encompassing a total of 22 different immune 
cell types. CIBERSORT analysis revealed significant differences in immune cell infiltration between the two 
groups (Fig. 6A). Specifically, UC tissues exhibited lower levels of infiltrating M2 macrophages, resting dendritic 
cells, CD8 T cells, and plasma cells, whereas higher levels of infiltrating memory B cells, M1 macrophages, and 
neutrophils were observed compared to normal samples. ssGSEA analysis also revealed a substantial difference 
in the numbers of invading immune cells between the two groups (Fig. 6B). In UC tissues, lower levels of infil-
trating T helper (TH) 1 cells and plasmacytoid dendritic cells (DCs) were observed, whereas higher levels of 
infiltrating activated B cells, activated CD4 T cells, activated CD8 T cells, DCs, CD56-bright natural killer cells, 
gamma delta T cells, immature B cells, myeloid-derived suppressor cells (MDSCs), natural killer T cells, natural 
killer cells, neutrophils, T follicular helper cells, TH17 cells, and TH2 cells were observed compared to normal 
tissues.

Our analysis using CIBERSORT also revealed multiple pairs of immune cells that were positively or nega-
tively associated with each other (Fig. 6C). The correlation score was calculated to indicate the strength of the 
association. We found significant negative correlations between resting mast cells and neutrophils, resting mast 
cells and active mast cells, resting mast cells and T follicular helper cells, and T follicular helper cells and resting 
memory CD4 T cells. On the other hand, we observed significant positive correlations between naive B cells and 
T follicular helper cells, activated memory CD4 T cells and M1 macrophages, activated mast cells and neutrophils, 

Figure 3.  Functional enrichment analysis results. (A) Functional enrichment analysis results. (B) Results of 
DEG pathway analysis; (C) GSEA results indicating the most related signaling pathways to HCs; (D) GSEA 
results showing that the top 5 signaling pathways are most associated with UC.
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resting mast cells and M2 macrophages, and eosinophils and CD8 T cells. These findings provide insights into 
the complex interactions between different immune cell types in UC.

According to the results obtained from ssGSEA (Fig. 6D), multiple pairs of immune cells were found to be 
either positively or negatively correlated, and their correlation strength was expressed as a score. Immature DCs, 
plasmacytoid DCs, mast cells, gamma delta T cells, TH2 cells, CD56-bright natural killer cells, macrophages, 
natural killer cells, natural killer T cells, activated DCs, regulatory T cells, neutrophils, MDSCs, TH1 cells, acti-
vated CD4 T cells, T follicular helper cells, eosinophils, immature B cells, activated B cells, activated CD8 T cells, 
monocytes, and CD56-dim NK cells were significantly correlated with each other.

An examination of the relationship between the expression of activity biomarkers and the 
numbers of infiltrating immune cells. As shown in Fig. 7A, correlation analysis based on CIBERSORT 
revealed that CXCL1 expression was positively correlated with memory B cells, M0 macrophages, activated 
memory CD4 T cells, T follicular helper cells, activated DCs, activated mast cells, M1 macrophages, plasma 
cells, monocytes, and neutrophils, while it was negatively correlated with M2 macrophages, resting mast cells, 
eosinophils, resting memory CD4 T cells, resting NK cells, and CD8 T cells. Furthermore, LPCAT1 expression 
was positively correlated with memory B cells, M0 macrophages, T follicular helper cells, activated memory CD4 
T cells, activated DCs, activated mast cells, M1 macrophages, and neutrophils, while it was negatively corre-
lated with M2 macrophages, resting mast cells, eosinophils, and resting DCs. Moreover, CYP2R1 expression was 
positively correlated with M0 macrophages, T follicular helper cells, activated memory CD4 T cells, activated 
DCs, activated mast cells, M1 macrophages, and neutrophils, and positively correlated with M2 macrophages, 
resting mast cells, and resting DCs. Finally, NEU4 expression was negatively correlated with memory B cells, 

Figure 4.  Diagnostic indicators are screened using a thorough methodology. (A,B) The varied colors represent 
distinct genes when using the LASSO technique to screen diagnostic markers; (C,D) recursive feature 
elimination (SVM-RFE) and random forest (RF) algorithms are employed to screen biomarkers.
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M0 macrophages, activated memory CD4 T cells, T follicular helper cells, activated DCs, M1 macrophages, and 
neutrophils, while it was negatively correlated with M2 macrophages, resting mast cells, and resting DCs.

The results from the ssGSEA analysis indicated a negative correlation between the expression of CYP2R1 and 
NEU4 and the levels of the majority of immune cells, as illustrated in Fig. 7B. On the other hand, the expression 
of NEU4 showed a positive correlation with the amounts of CD56-dim natural killer cells. Conversely, CXCL1 
and LPCAT1 expression was found to be positively correlated with the levels of most immune cells, but nega-
tively correlated with the level of CD56-dim natural killer cells. These findings suggest that CYP2R1, NEU4, 
CXCL1, and LPCAT1 may play important roles in the regulation of immune cell functions and their interplay 
in the tumor microenvironment.

Figure 5.  (A) The intersection of the diagnostic markers that the three algorithms produced is depicted by a 
Venn diagram. (B) Boxplot of hub genes in the training group; (C) Boxplot of hub genes in the test group. (D) 
The ROC curve of the diagnostic efficacy in the training group; (E) the ROC curve of the diagnostic efficacy in 
the test group, verification after fitting four diagnostic activity biomarkers to one variable. (F–I) qRT‒PCR was 
used to determine the expression of potential diagnostic markers (n = 24). *P < 0.05; **P < 0.01, ***P < 0.001.
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Figure 6.  Immune cell infiltration assessment and visualization. (A) Using the CIBERSORT R program, a 
boxplot of the proportions of 22 different types of immune cells is shown. (B) Boxplot showing the distribution 
of 22 different immune cell types based on ssGSEA scores. (C) CIBERSORT R software extracted the correlation 
coefficient of 22 different immune cell types and eliminated the correlation coefficient of one immune cell type 
without affecting the results. (D) The correlation coefficient was adjusted to exclude one type with no difference 
and 22 types of immune cells with ssGSEA scores. *P < 0.05; **P < 0.01, ***P < 0.001.

Figure 7.  Correlation between activity biomarkers and infiltrating immune cells. (A) Twenty-two types of 
immune cells of ssGSEA scores and one type with no difference were removed from the correlation coefficient. 
(B) ssGSEA results are correlated with invading immune cells and activity biomarkers. Red indicates a positive 
association, whereas blue indicates a negative correlation in the form of colored squares. *P < 0.05; **P < 0.01, 
***P < 0.001.
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It is evident from the analysis of immune cell infiltration assessment and its linkage with diagnostic mark-
ers that, out of 22 immune cells, neutrophils, M1 and M2 macrophages and activated DCs interact with other 
immune cells most strongly. ssGSEA scores also verified that four diagnostic markers were closely related to 22 
kinds of infiltrating immune cells in the occurrence of UC.

Discussion
Since immune cells play an important role in ulcerative colitis diagnosis and pathogenesis, it is necessary to fur-
ther study the relationship of these biomarkers to the immune response of UC patient. It is essential to analyze 
the infiltration patterns of immune cells for the improvement of outcomes. In this study, we successfully identi-
fied UC-specific potential activity markers and further explored the association between these markers and the 
levels of immune cell infiltration in UC.

The GO analysis revealed a significant association between UC development and the immune system, with 651 
DEGs identified. The enriched GO terms were mainly involved in immune response-related processes, includ-
ing fatty acid metabolic processes, lipid catabolic processes, glycerolipid metabolic processes, and phospholipid 
metabolic processes. The inflamed tissues of UC patients showed noticeable alterations in bacterial functional 
pathways, including reduced glucose metabolism and activated lipid and amino acid  metabolism34.

Emerging evidence suggests that fatty acid metabolism plays a crucial role in regulating immune cell dif-
ferentiation and function. The pathogenesis of ulcerative colitis (UC) involves a multitude of immune cells, and 
fatty acid metabolism (FAM) plays a crucial role in immune cell proliferation and function. In a study on the link 
between FAM and colonic tissue inflammation, immune-related DEGs were significantly enriched in neutrophil 
migration and positively impacted T cell  activation35.

CXCL1 is a potent neutrophil chemoattractant secreted by  astrocytes36. Previous studies have shown a positive 
correlation between IL-17 levels and UC  severity37. Upregulation of IL-17 in parenchymal cells induces recruit-
ment of polymorphonuclear cells to the site of infection through CXCL1-mediated  pathways38. The neutrophil 
response to mast cells and macrophages to be CXCL1/CXCL2-dependent39. Previous research has supported 
CXCL1 regulated by NF-κB in active  UC40.

CYP2R1 is the enzyme responsible for the critical first step in vitamin D  metabolism41,42. Activated vitamin 
D stimulates the production by neutrophils, macrophages, and cells lining epithelial surfaces of antibacterial 
peptides with broad antimicrobial  activity43–45. Expression of CYP2R1 correlated with VDR expression on the 
inflammatory  infiltrate46. Cells of the immune systems, such as macrophages, dendritic cells, monocytes, and 
T and B cell express  VDR47.

NEU4 belongs to the group of lysosomal neuraminidases, which are enzymes that catalyze the cleavage of 
sialic acids linked to  glycoconjugates48. In addition, NEU4 is the only sialidase that efficiently acts on mucins 
and is down-regulated in colon  cancer49. As a negative regulator, NEU4 plays an important and unique role in 
regulating the migration of immune cells to inflammatory sites and subsequent inflammation. NEU4 participates 
in leukocyte recruitment, such as MO, NE, and NK cells, which migrate to and recruit to inflammatory  sites50.

Previous studies have linked LPCAT1 activity to various inflammatory diseases. It is LPCAT, by controlling 
the physical state of the lipid micro environment in the rafts, could modulate the signalling receptor response 
to  LPS51. LPC, which is reacylated by LPCAT, contributes to inflammation by increasing chemokine production 
and activating endothelium, neutrophils, monocytes, macrophages, and  lymphocytes52. LPCAT may mediate 
the priming reactions of monocytes to the cytokine Interferon-γ53.

IBD pathogenesis can be augmented by inappropriate macrophage and DC responses to the  microbiota54. 
These responses involve inadequate protection and strengthen  pathogenicity55.

Macrophages are core effector cells of the innate immune system. Macrophages are functionally plastic and 
differentiate into pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotypes in response to different 
stimuli in the local  microenvironment56. M1 macrophages secret pro-inflammatory cytokines like TNF-α and 
Interferon-γ, causing mucosal damage and exacerbating inflammation. In contrast, M2 macrophages promote 
tissue repair and inhibit inflammatory response to alleviate IBD  symptoms57.

Patients with UC have been found to have a decreased percentage of CD4 + CD25 + CD127-lowFoxp3 + regu-
latory T cells, which play a crucial role in maintaining immune  tolerance58. Conversely, the lamina propria of 
UC patients has a higher number of Th17 cells, which are pro-inflammatory59. The interaction between TH cells 
and regulatory T cells is crucial for inducing and maintaining immune tolerance, and the imbalance between 
these two types of cells in UC can lead to abnormal immune  responses60. Dendritic cells (DCs) are antigen-
presenting cells that are essential for the adaptive immune system. T cells and DCs interact to initiate and control 
lymphocyte  responses61.

The study’s results indicate significant negative correlations between resting mast cells and neutrophils, resting 
mast cells and active mast cells, resting mast cells and T follicular helper cells, and resting memory CD4 T cells 
and T follicular helper cells. On the other hand, the study found significant positive correlations between naive 
B cells and T follicular helper cells, activated memory resting CD4 T cells and M1 macrophages, activated mast 
cells and neutrophils, resting mast cells and M2 macrophages, and eosinophils and CD8 T cells.

This study found correlations between the levels of infiltrating immune cells in UC. Further research and 
clarification are needed to better understand the complex interactions.

In the present study, advanced techniques such as RF, LASSO logistic regression, and SVM-RFE were 
employed to identify potential activity biomarkers for UC. Additionally, differences in immune cell infiltration 
between healthy tissues and UC tissues were evaluated using CIBERSORT and ssGSEA. However, the study had 
some limitations. Firstly, the retrospective nature of the study and the limited sample size may have skewed the 
results. Therefore, further validation of the findings in a larger patient cohort is warranted. Moreover, the CIB-
ERSORT analysis was limited to genetic information from a small number of individuals and could not account 
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for heterotypic interactions between cells, phenotypic plasticity, or disease-induced disorders. As CIBERSORT 
is an emerging technology, its performance in the context of UC needs to be verified. In conclusion, the findings 
of this study should be validated in a larger external patient cohort before they can be applied clinically.

Conclusion
Based on the findings of our study, it can be inferred that the CXCL1 gene, as well as CYP2R1, LPCAT1, and 
NEU4, may serve as potential diagnostic biomarkers for UC activity. In addition, our results revealed that neu-
trophils, M1 and M2 macrophages, and dendritic cells play significant roles in UC pathogenesis. Furthermore, 
our study found a strong correlation between the levels of immune cell infiltration and the expression of the 
above-mentioned genes. This information may facilitate the development of targeted immunotherapies and 
optimization of UC treatment.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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