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Identification 
of autophagy‑associated circRNAs 
in sepsis‑induced cardiomyopathy 
of mice
Ming‑zhi Zheng 1,2, Jun‑sheng Lou 3, Yun‑peng Fan 3, Chun‑yan Fu 4, Xing‑jia Mao 5, Xiang Li 2, 
Kai Zhong 2, Lin‑huizi Lu 6, Lin‑lin Wang 5*, Ying‑ying Chen 4* & Liang‑rong Zheng 1*

Circular RNAs (circRNAs) play a role in sepsis‑related autophagy. However, the role of circRNAs in 
autophagy after sepsis‑induced cardiomyopathy (SICM) is unknown, so we explored the circRNA 
expression profiles associated with autophagy in an acute sepsis mouse model. At a dose of 10 mg/
kg, mice were intraperitoneally administered with lipopolysaccharides. The myocardial tissue was 
harvested after 6 h for microarray analysis, qRT‑PCR, and western blotting. Gene Ontology, Kyoto 
Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were evaluated, and a 
competing endogenous RNA network was constructed, to evaluate the role of circRNAs related to 
autophagy in SICM. In total, 1,735 differently expressed circRNAs were identified in the LPS‑treated 
group, including 990 upregulated and 745 downregulated circRNAs. The expression level of the 
autophagy‑specific protein p62 decreased, while the ratio of LC3 II to LC3 I increased. Additionally, 309 
mRNAs and 187 circRNAs were correlated with autophagy in myocardial tissue after SICM. Of these, 
179 circRNAs were predicted to function as “miRNA sponges”. Some distinctive circRNAs and mRNAs 
found by ceRNA analysis might be involved in autophagy in SICM. These findings provide insights into 
circRNAs and identified new research targets that may be used to further explore the pathogenesis of 
SICM.

Sepsis has a high annual incidence and often causes acute dysfunction of multiple organs. In particular, sepsis-
induced cardiac dysfunction maintains a high  mortality1,2. The pathogenesis of sepsis is complex and involves 
the inflammatory cascade response, oxidative stress, mitochondrial dysfunction, calcium overload, autophagy, 
and  apoptosis3–9.

Circular RNA (circRNA) molecules are a general feature in gene expression programs in human cells and 
were first identified in  201210. Tey et al. revealed that some circRNAs act as molecular sponges that bind and 
seal  microRNAs11. The role of circRNAs has been studied in the pathogenesis of various diseases, e.g., cancer, 
spinal cord injury, and vascular  diseases12–16. The role of circRNAs has also been reported in multiple organ 
damage triggered by sepsis. For example, the circRNA HIPK3 aggravates sepsis-induced acute kidney injury by 
modulating the microRNA-33817. However, there are few studies on the function of circRNAs in sepsis-induced 
cardiomyopathy (SICM).

Autophagy is a process that involves phagocytosis of the cytoplasmic protein or organelle of the cell itself, 
which are coated into the vesicles and fuse with the lysosome to form autolysosomes that degrade their wrapped 
contents. Recent studies have shown that circEXOC5-related signal cascade regulates inflammation and 
autophagy, and aggravates sepsis-induced acute lung  injury18. It is poorly understood whether autophagy is 
modulated by circRNAs in SICM.
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In this study, we analyzed circRNA expression profiles in SICM in a mice model to predict the autophagy-
related circRNAs and mRNAs in SICM based on the circRNA-miRNA-mRNA network.

Materials and methods
Animals and study design. We conducted all animal experiments following the Guide for the Care and 
Use of Laboratory Animals published by the US National Institutes of Health (8th edition, NRC 2011). This 
study was approved by the Experimental Animal Ethics Committee of Zhejiang University (ZJU201305-1-02-
047). Forty male C57BL/6 mice (7–8 weeks and 20–25 g, equivalent to adults at the ages of about 20 years old) 
were provided by the Zhejiang University Laboratory Animal Research Center. Mice had free access to food and 
water in cages at 23 °C and a 12-h light/dark cycle.

Mice were randomly divided into two groups and received intraperitoneal injections of lipopolysaccharides 
(LPS, Darmstadt) or normal saline at a dose of 10 mg/kg as described by our previous  study19. According to the 
inclusion and exclusion criteria, the mice who died within 6 h after injection should be excluded from the study. 
In the present study, no mice died within 6 h after injection, so all mice treated with LPS or saline were used 
for further analysis in the study. After 6 h of injection, mice in each group were intraperitoneally injected with 
1% pentobarbital sodium (40 mg/kg) for anesthesia and sacrificed by cervical dislocation. In total, eight mice 
hearts from two groups were immediately removed and placed in liquid nitrogen. The expressions of circRNAs 
and mRNAs in the samples were evaluated by Shanghai Biotechnology Corporation. Four additional myocardial 
samples per group were tested using western blotting. Sixteen mice hearts from two groups were collected to 
measure superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. Another four left ventricle 
samples per group were collected to evaluate myocardial ultrastructure.

Assessment of the myocardial injury. According to the commercial assay kits (Haimen), SOD activity 
and MDA content in the heart samples which had been homogenized and lysed in lysis buffer were measured.

Left ventricular samples were fixed in 2.5% glutaraldehyde solution and 1% osmic acid. After being dyed with 
4% uranyl acetate solution, the myocardial tissues were dehydrated with alcohol and acetone. Then, the samples 
were embedded and sliced, stained with 5% Uranium acetate staining and lead citrate. Changes of myocardial 
ultrastructure were observed under a transmission electron microscopy.

RNA extraction and purification. According to the method mentioned in our previous work, RNA was 
extracted, identified, and purified from the left ventricle of all mice heart  samples19. The reagents used included 
Takara RNAiso Plus (Mountain View), NucleoSpin RNA Clean-up XS kit (Düren), and RNase-Free DNase Set 
(QIAGEN).

Microarray analysis. Similar to our earlier work, we used Cy-3 to label the amplified total  RNA19. The 
labeled cRNAs were purified and hybridized. Agilent Microarray Scanner was used to scan the array slides of 
circRNAs and mRNAs. We used Quantile algorithm and limma packages in R software to normalize the raw 
data. The reagents used included Low Input Quick Amp Labeling Kit, Gene Expression Hybridization Kit and 
Wash Buffer Kit (Santa Clara), and RNeasy mini kit (QIAGEN).

Quantitative real‑time polymerase chain reaction. Similar to the previously reported method, 
qRT-PCR was performed to confirm circRNA  expression19. The reagents used included ReverTra Ace qPCR kit 
(Tokyo) and Capacity cDNA Reverse Transcription Kit (ABI).

Bioinformatics analysis. Normalized signal values were calculated using the log2 method. The circRNAs 
(fold change > 2, p < 0.05) after SICM damage were evaluated. To explore the potential function of circRNAs, 
especially of the autophagy-related circRNAs, we performed relevant functional and bioinformatics analyses 
using the method reported by Yao  Ying20. We used websites for correlation analyses, including Gene Ontology 
(http:// www. geneo ntolo gy. org), Kyoto Encyclopedia of Genes and Genomes (https:// www. genome. jp/ kegg/), 
miRDB (http:// www. mirdb. org/), and Cytoscape (https:// cytos cape. org/)21–23.

Western blot (WB) analysis. The left ventricles from mice myocardial tissue (LPS or control group, n = 4 
per group) were homogenized in RIPA lysis solution (Beyotime) to prepare the sample for western blotting. We 
examined the contents of the autophagy landmark proteins p62 and microtubule-associated protein 1 light chain 
3 (LC3) using the method reported by Lou  Junsheng24. The reagents used included cocktail (Sigma-Aldrich), 
BCA Protein Assay Kit (Thermo Fisher Scientific), p62 (Abcam), LC3 (Cell Signaling Technology), β-actin, and 
secondary antibodies (Santa Cruz Biotechnology).

Gene set enrichment analysis (GSEA). GSEA was performed to identify the markedly enriched gene set 
clusters in myocardial tissue. The enrichment score (ES) curve was built using the GSEA4.3.1 software. The gene 
set with False Discovery Rate (FDR) < 0.25, |normalized enrichment scores (NES)|> 1, and nominal (NOM) p 
value < 0.05 was recognized as statistically significant.

Statistical analysis. All data were shown as mean ± standard deviation. GraphPad Prism 9.0 was used for 
analysis. Normality test was performed by using Shapiro–Wilk test. Student’s t test was used to compare signifi-
cance between two groups. P < 0.05 was considered statistically significant.

http://www.geneontology.org
https://www.genome.jp/kegg/
http://www.mirdb.org/
https://cytoscape.org/)
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Results
CircRNA expression profiles in myocardium of septic mice. After LPS injection, mouse hearts dis-
played an increased MDA content and a decreased SOD activity (Fig S1). Meanwhile, the mitochondrion bloated 
and bubbled, and cristae was disrupted in the mice myocardial treated with LPS (Fig. S1). All the above results 
indicated that the animal model of sepsis-induced cardiomyopathy was established.

We performed RNA sequencing on mouse hearts (Fig. 1A). The distribution of circRNA expression profiles in 
all samples showed good symmetry and dispersion (Fig. 1B). Differentially expressed circRNAs (DE circRNAs) 
were illustrated in red or blue color (Fig. 1C, D). Red color represents twofold upregulation of circRNAs, while 
blue color represents twofold downregulation of circRNAs in Fig. 1C. In Fig. 1D, circRNAs with fold change ≥ 2 
(p < 0.05) and those with fold change ≤ 0.05 (p < 0.05) are shown in red or blue color, respectively. The expression 
features of dysregulated circRNAs were evaluated (Fig. 1E). In the LPS group vis-à-vis the control group, 1,735 
circRNAs were differentially expressed (fold change > 2, p < 0.05), including 990 upregulated (57.06%) and 745 
downregulated (42.94%) circRNAs. Depending on the degree of the fold change, the top 20 DE circRNAs are 
listed in Table 1. The genomic locations of the 1735 dysregulated circRNAs transcribed from all chromosomes, 
except chromosomes X and Y, are shown in Fig. 2A.

Figure 1.  Expression profiles of circRNAs in the mouse myocardium after LPS injection. (A) Experimental 
design for RNA sequencing. (B) The box plot shows the distribution of circRNA expression profiles. (C–E) 
The scatter plot, volcano plot, and heatmap show the differentially expressed circRNAs. Red and blue colors 
represent upregulated and downregulated circRNAs, respectively. LPS, lipopolysaccharides; Ctrl, control; 
circRNA, circular RNA.
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Altered CircRNA expression was confirmed by real‑time PCR. Among the top 20 DE circRNAs, two 
circRNAs were randomly selected for qRT-PCR. The primers of circRNAs and GAPDH are shown in Table 2. 
Consistent with the microarray results, circRNA.27393 was significantly upregulated, while circRNA.22171 was 
significantly downregulated (vs. control group, p < 0.05; Fig. 2B–C).

DE CircRNA function analysis. The potential functions of 1735 DE circRNAs were predicted by GO and 
KEGG enrichment analyses, and the results are shown in bubble charts (Fig. 3A–B). Based on the size of the 
enriched factors, the top 30 most remarkably enriched GO items were selected (Fig. 3A). The results showed 
that the host genes of DE circRNAs during LPS treatment were mostly involved in the “negative regulation of 
metalloenzyme activity” and “I-kappa B/NF-kappa B complex” (Fig. 3A). The KEGG pathway for enrichment 

Table 1.  The top 20 differentially expressed CircRNAs in the myocardium after LPS injection.

circRNA Fold change Regulation Chromosome Strand Host Gene p value

cicRNA.19315 25.98361958 Up chr9 + Casp4 2.18 ×  10–7

cicRNA.2986 22.32013373 Up chr17 − Fkbp5 5.58 ×  10–5

cicRNA.27393 21.23872246 Up chr2 − Pfkfb3 5.52 ×  10–6

mmu_circ_0006655 21.06661119 Up chr17 − Fkbp5 6.04 ×  10–5

cicRNA.2985 20.18851181 Up chr17 − Fkbp5 6.84 ×  10–7

cicRNA.2983 19.42937517 Up chr17 − Fkbp5 2.98 ×  10–4

cicRNA.321 19.37133487 Up chr19  + Cd274 6.43 ×  10–7

cicRNA.3756 19.04363807 Up chr16 − Nfkbiz 5.67 ×  10–6

cicRNA.2982 18.84151186 Up chr17 − Fkbp5 3.72 ×  10–4

cicRNA.2984 18.46545391 Up chr17 − Fkbp5 1.81 ×  10–3

cicRNA.15200 13.54572201 Down chr10  + Ptprb 5.28 ×  10–5

cicRNA.15202 12.57297813 Down chr10  + Ptprb 1.36 ×  10–3

mmu_circ_0015638 12.38524172 Down chr9  + Fam55d 1.27 ×  10–7

cicRNA.27243 11.45238239 Down chr2  + Stard9 3.26 ×  10–3

cicRNA.14922 9.564336752 Down chr10  + Arhgap18 9.67 ×  10–5

cicRNA.25961 9.384905328 Down chr2  + Etl4 1.34 ×  10–4

cicRNA.22171 9.279374752 Down chr4 − Car8 1.44 ×  10–6

cicRNA.8088 9.110753037 Down chr13 − Rasgrf2 2.73 ×  10–4

cicRNA.27242 8.752751778 Down chr2  + Stard9 7.22 ×  10–3

cicRNA.8799 8.591014207 Down chr13  + Cmah 1.22 ×  10–5

Figure 2.  Distribution of altered circRNAs and their validation. (A) The distributions of dysregulated circRNAs 
in mouse chromosomes. (B, C) qRT-PCR verification of two circRNAs (circRNA.22171 and circRNA.27393). 
Data are presented as mean ± SD (n = 4). **p < 0.01 vs. control group.
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analysis indicated that most of the host-genes of DE circRNAs were related to glycosaminoglycan degradation 
and ECM-receptor interaction pathways (Fig. 3B).

CeRNA network prediction and annotation. The functions of circRNA include competitive adsorp-
tion of microRNAs (miRNA), regulation of RNA-binding proteins, and modulation of variable cleavage or tran-
scription. CircRNAs bind to the corresponding miRNAs by MREs, which act as “sponges” preventing miRNA 
binding to the target gene and then jointly participating in the expression regulation of the target genes. This 
mechanism of action is called the “ceRNA mechanism”. This is the main research concept related to circRNAs. 
We filtered the DE circRNAs shown in Table 1 and found four associated mRNAs using ceRNA analysis: cir-
cRNA.2982, circRNA.2983, circRNA.2986, and mmu_circ_0006655. The result is shown in Fig. 4 and shows that 
the ceRNA mechanism exists after SICM.

Autophagy‑related CircRNA prediction. We explored the SICM-induced autophagy-related circRNAs. 
First, to confirm the protein expression of autophagy markers in mouse myocardium after SICM, we performed 
western blotting to detect the levels of proteins p62 and LC3 (Fig. 5A). Compared to the control group, the 
LPS group saw a decrease in the expression of p62 protein (1.80 ± 0.12, p < 0.05, Fig. 5B) as well as a significant 
increase in the ratio of LC3 II to LC3 I (1.60 ± 0.38, p < 0.01, Fig. 5C), suggesting the occurrence of autophagy. 
GSEA indicated that the gene set related to positive regulation of autophagy was enriched in SICM damage 
(Fig. 5D). The results further confirmed that autophagy occurs in mouse cardiomyocytes after 6 h of LPS treat-
ment. In the animal autophagy signaling pathway (KEGG: mmu04140), several circRNA-related host genes were 
altered after SICM, with some of them (e.g., REDD1, FLIP, Bcl-XL, and TBK1) upregulated and others (e.g., 
RAB7B and RUBCN) downregulated (Fig.  5E). Next, we predicted the pathways associated with autophagy 
via KEGG pathway analysis and found nine autophagy-associated endogenous signaling pathways (Fig. 7A–B). 
The mRNAs were predominantly enriched in the PI3K-Akt (n = 103) and MAKP (n = 79) signaling pathways 
(Fig. 7A). The circRNAs were also predominantly enriched in the PI3K-Akt (n = 86) and MAKP (n = 70) signal-
ing pathways (Fig. 7B). Third, based on the nine autophagy-related signaling pathways, GO analysis revealed that 

Table 2.  Primers used for qRT-PCR of circRNAs.

Gene Primer name Sequence (5’–3’)

GAPDH (Mouse)
Gapdh-F TCC TGC ACC ACC AAC TGC TTAG 

Gapdh-R AGT GGC AGT GAT GGC ATG GACT 

circRNA_27393
CUST_98850_PI435794180-F TGT CAC CAG GCT GTT CTA CGC 

CUST_98850_PI435794180-R CAA GTC CCT GCA CTC TTG TCG 

circRNA_22171
CUST_91041_PI435794180-F CAG CGA AGG AGT TAC CTG GAT ATT 

CUST_91041_PI435794180-R CCT CCT GAC AAG ACT GCA TCTG 

Figure 3.  GO and KEGG enrichment analyses of differentially expressed circRNAs. (A) Top 30 enriched GO 
terms. (B) Top 30 enriched KEGG pathways.
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39 mRNAs (fold change > 2, p < 0.05) were correlated with biological processes of autophagy, such as “autophagy 
(GO: 0006914)”, “regulation of autophagy (GO: 0010506)”, “negative regulation of autophagy (GO: 0010507)”, 
and “positive regulation of autophagy (GO: 0010508)” (Fig.  6A). Additionally, 14 circRNAs related to these 
mRNAs were found and were forecasted to be associated with autophagy (Fig. 6B). KEGG analysis revealed that 
279 autophagy-correlated mRNAs (fold change > 2, p < 0.05) were enriched in the same nine autophagy-related 
signaling pathways (Fig. 7C, Table S1). Furthermore, ceRNA network prediction showed that 183 circRNAs were 
correlated with these mRNAs (Fig. 7D, Table S2). Finally, among these circRNAs, 179 autophagy-related circR-
NAs have binding sites on miRNAs based on the prediction of MREs (Table S3). Then, we found the correspond-
ing target genes using Forecast websites. The top 10 upregulated autophagy-related circRNAs, based on the 
fold-change size, were circRNA.27393, circRNA.27392, circRNA.5564, circRNA.5562, mmu_circ_0005739, cir-
cRNA.5566, circRNA.5563, circRNA.27348, circRNA.5573, and circRNA.27394. Based on the top 10 circRNAs, 
we applied the miRDB websites and explored the mRNAs associated with autophagy. In Table 3, we listed the 
autophagy-related mRNAs that bind to the corresponding miRNAs with the highest target score. Most mRNAs 
were predominantly involved in the Hippo, PI3K-Akt, and mTOR signaling pathways.

Discussion
In the present study, a mouse model of sepsis-induced cardiomyopathy was established. A total of 1735 differ-
ently expressed circRNAs were identified in the LPS-treated mouse hearts. And 187 circRNAs were found to 
be related to 309 autophagy-associated mRNAs in septic myocardial tissue. Among these, 179 circRNAs were 
predicted to function as “miRNA sponges”.

There is a high mortality rate of  SICM2. Dysregulated autophagy is one of the main pathophysiological 
events in  SICM25,26. Some studies have found that circRNAs, such as circCDYL, circCUL2, circRNA_002581, 
and circEXOC5, were involved in regulating autophagy, even in an LPS-challenged mouse cell  model18,27–29. The 
abovementioned reports suggest a role of circRNAs in sepsis-induced autophagy. In our study, we established an 
SICM mouse model and confirmed the occurrence of the autophagic response in the mouse myocardium tissue 
by testing the protein levels and performing GSEA for LC3 and p62. In total, 1735 dysregulated circRNAs (includ-
ing 990 upregulated and 745 downregulated circRNAs) were found in septic mice myocardium tissues using 
microarrays. In these DE circRNAs, 187 circRNAs are related to autophagy on GO and KEGG pathway analyses.

Autophagy is a fundamental cell protection pathway, and lysosomes are the site of intracellular  autophagy30–32. 
As autophagy-marker proteins, LC3 and p62 are related to autophagosomal membrane  formation33. In the present 
study, the p62 protein expression decreased, while the ratio of LC3 II to LC3 I increased after LPS treatment 

Figure 4.  CeRNA analysis of mouse myocardium after LPS injection. CircRNAs, miRNAs, and mRNAs are 
showed as blue diamonds, pink ellipses, and green rectangles, respectively. ceRNA, competing-endogenous 
RNA; miRNA, microRNA; mRNA, messenger RNA.
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Figure 5.  Detection of autophagy in mouse myocardium after LPS injection. (A–C) Western blotting analysis 
for p62 protein expression and the ratio of LC3 II to LC3 I. *p < 0.05, **p < 0.01 vs. control group. Data are 
presented as mean ± SD. n = 4. (D) Positively enriched gene sets identified by GSEA. NES, NOM p value, and 
FDR are shown. (E) KEGG map04140 shows the autophagy-animal pathway (https:// www. kegg. jp/ kegg/ kegg1. 
html)21–23. Red and blue colors represent gene upregulation and downregulation, respectively. GSEA, Gene Set 
Enrichment Analysis; NES, Normalized Enrichment Scores; NOM, Nominal; FDR, False Discovery Rate.

Figure 6.  GO analysis of mRNAs and circRNAs related to autophagy in mouse myocardium after LPS injection. 
(A) Heat map showing differentially expressed mRNAs based on the GO analysis of autophagy. (B) Heat map 
showing differentially expressed circRNAs based on the GO analysis of autophagy-related mRNAs.

https://www.kegg.jp/kegg/kegg1.html)
https://www.kegg.jp/kegg/kegg1.html)
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(vs. control group, p < 0.05). This is consistent with the findings from previous  studies34,35. Although autophagy 
was not present in the top 30 pathways shown in Fig. 3A, B, we still found that the gene set related to “positive 
regulation of autophagy” was enriched in the LPS group by GSEA.

Several molecular mechanisms may participate in autophagy. In our study, we found nine autophagy-associ-
ated endogenous signaling pathways based on KEGG pathway analysis. These signaling pathways associated with 
autophagy are involved in various cellular and animal  models36–39. For example, ER stress-induced autophagy, 
which was mediated by oxidative stress, decreased via the modulation of the PI3K-related cascade reaction in 
acute lung injury in LPS-induced  mice40. In an ischemic/reperfusion-induced H9C2 cell injury model, autophagy 
induced by HIF-1α/BNIP3 signaling pathway protects the  myocardium41. Laminar flow-induced endothelial 
autophagy and SIRT1 expression due to inhibited Hippo/YAP signaling pathways interrupt atherosclerotic plaque 
 formation42. Notably, the HIF-1 and Hippo signaling pathways are involved in autophagy regulation, but the 
regulatory role has not been adequately explored in SICM-induced autophagy.

The role of circRNAs in SICM-induced autophagy has not been fully explored. Additionally, circRNAs that 
act as “sponges” are involved in the regulation of target gene expression. Depending on GO and KEGG analyses, 
we found 179 autophagy-related circRNAs that may bind to miRNAs. Autophagy-associated mRNA-binding 
sites also exist on the same miRNAs. Thus, we predicted the SICM-induced autophagy-related target genes using 
the ceRNA networks. For example, circRNA.27393 showed the top fold-change among the autophagy-related 
circRNAs and might regulate the mRNAs, such as the death-associated protein (DAP), ring-finger protein 152 
(rnf152), and Ajuba by sponging mmu-miR-1933-3p, mmu-miR-448-5p, mmu-miR-125a-5p, and mmu-miR-
125b-5p. These predicted mRNAs are associated with  autophagy43–45. Other predicted autophagy-related mRNAs 
identified on ceRNA analysis in our research have also been proved to be related to autophagy, such as Bnip3, 
PPP2R2A, eEF2K, and  IGF146–49.

Figure 7.  KEGG analysis of mRNAs and circRNAs related to autophagy in mouse myocardium after LPS 
injection. (A, B) The number of differentially expressed mRNAs and circRNAs in the prediction of autophagy-
related KEGG signaling pathways. (C) Heat map showing differentially expressed mRNAs based on the KEGG 
analysis of autophagy. (D) Heat map showing differentially expressed circRNAs based on the KEGG analysis of 
autophagy-related mRNAs.
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In our previous research, we identified the mitochondrial function-associated lncRNAs in  SICM19. Bnip3 
and PPP2R2A are predicted to be autophagy-related mRNAs and are associated with  mitophagy46,47,50. These 
results showed that circRNAs and lncRNAs might regulate mitochondrial function and degradation after SICM. 
Ajuba Tead3, Serpine1, Gli2, and Bmp2 were predicted to be related to the Hippo signaling pathway and were 
involved in  autophagy45,51–54. Serpine1 and Bcl2 were predicted to be related to the HIF signaling pathway and 
 autophagy51,55. Therefore, our results provide new ideas to further evaluate the role of the HIF-1 and Hippo sign-
aling pathways in LPS-induced cardiomyocyte autophagy. The role of certain predicted circRNAs and mRNAs 
in SICM-induced autophagy has not been elucidated and should be evaluated in future studies.

Sepsis is a life-threatening organ dysfunction. Autophagy is a major pathogenesis of sepsis-induced cardio-
myopathy. Our study identified differently expressed circRNAs in the hearts of septic mice. We also gained some 
specific circRNAs and their potential target mRNAs which might be involved in autophagy in septic hearts. These 

Table 3.  The top 10 differently expressed circRNAs involved in LPS-induced autophagy.

circRNA Fold change Regulation miRNA Target gene
Downstream pathways or biological 
proecsses

circRNA.27393 21.24 Up

mmu-miR-1933-3p Dap Autophagy

mmu-miR-448-5p Rnf152 Autophagy
mTOR signaling pathway

mmu-miR-125a-5p Ajuba Hippo signaling pathway

mmu-miR-125b-5p Ajuba Hippo signaling pathway

circRNA.27392 12.80 Up mmu-miR-1903 Vav3 cAMP signaling pathway

mmu-miR-669f.-5p Bcl2
Autophagy
PI3K-Akt signaling pathway
HIF-1 signaling pathway

mmu-miR-770-3p Thbs1 PI3K-Akt signaling pathway

mmu-miR-671-5p Arrb1 MAPK signaling pathway

mmu-miR-705 Laptm5 Lysosome

circRNA.5564 10.77 Up mmu-miR-105 Hspa1b MAPK signaling pathway

mmu-miR-5114 Gli2 Hippo signaling pathway

mmu-miR-1933-3p Dap Autophagy

mmu-miR-770-5p Rnf152 Autophagy
mTOR signaling pathway

circRNA.5562 9.53 Up mmu-miR-3100-5p Bmp2 Hippo signaling pathway

mmu_circ_0005739 9.07 Up mmu-miR-1897-5p Map3k12 MAPK signaling pathway

mmu-miR-3091-5p Mef2c MAPK signaling pathway

mmu-miR-345-3p Adrb2 cAMP signaling pathway
Calcium signaling pathway

circRNA.5566 8.71 Up mmu-miR-1953 Bmp2 Hippo signaling pathway

mmu-miR-5114 Gli2 Hippo signaling pathway

mmu-miR-3100-5p Bmp2 Hippo signaling pathway

mmu-miR-721 Map3k12 MAPK signaling pathway

mmu-miR-1933-3p Dap Autophagy

circRNA.5563 8.47 Up mmu-miR-105 Hspa1b MAPK signaling pathway

mmu-miR-5130 Orai2 Calcium signaling pathway

mmu-miR-711 Slc7a5 mTOR signaling pathway

circRNA.27348 8.18 Up mmu-miR-763 Tead3 Hippo signaling pathway

mmu-miR-3104-5p Fzd7 mTOR signaling pathway
Hippo signaling pathway

circRNA.5573 7.95 Up mmu-miR-1198-5p Nr4a1 PI3K-Akt signaling pathway
MAPK signaling pathway

mmu-miR-1896 Bmp2 Hippo signaling pathway

mmu-miR-1941-5p Fzd7 mTOR signaling pathway
Hippo signaling pathway

mmu-miR-1954 Il1r1 MAPK signaling pathway

circRNA.27394 7.14 Up mmu-miR-1904 Bnip3 autophagy

mmu-miR-693-3p Fgf11 PI3K-Akt signaling pathway
MAPK signaling pathway

mmu-miR-3097-3p Ddit4 PI3K-Akt signaling pathway
mTOR signaling pathway

mmu-miR-199a-5p Serpine1 HIF-1 signaling pathway
Hippo signaling pathway

mmu-miR-345-3p Adrb2 cAMP signaling pathway
Calcium signaling pathway
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findings offer a fine view of circRNAs and might allow developing new treatment strategies for sepsis-induced 
cardiomyopathy and reducing the incidence and mortality of sepsis.

Because of the limitations of our detection methods, our experiment also has some limitations. First, the pre-
sent study only focused on the acute phase of sepsis. Expression profiles of cirRNAs associated with autophagy 
in the chronic phase of sepsis needs to be further explored, which might provide a more panoramic view of 
autophagy-related circRNAs in sepsis-induced cardiomyopathy. Second, the combination of various methods is 
more reliable to detect circRNA, such as PCR, RNase R, and Northern blot. We explored the circRNAs using only 
qRT-PCR56,57. Third, autophagy-related pathways were not studied in detail, and we only screened circRNAs based 
on the reported autophagy pathways. Therefore, some potentially undiscovered circRNAs may be missed. Fourth, 
although we identified some potential autophagy-related circRNAs (such as circRNA.27393, circRNA.27392, and 
circRNA.5564), the mechanism of action of these circRNAs in SICM needs further in vivo and in vitro studies.

Conclusions
Our data indicate that the circRNAs, including circRNA.27393, may influence SICM-induced autophagy. Our 
research provides a new potential treatment strategy for SICM via the regulation of autophagy by circRNAs.

Data availability
The microarray data of circRNAs and mRNAs have been deposited in the GEO database (GSE142615).
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